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Abstract

Background

High-throughput sequencing (HTS) analysis of microbial communities from the respiratory

airways has heavily relied on the 16S rRNA gene. Given the intrinsic limitations of this

approach, airway microbiome research has focused on assessing bacterial composition

during health and disease, and its variation in relation to clinical and environmental factors,

or other microbiomes. Consequently, very little effort has been dedicated to describing the

functional characteristics of the airway microbiota and even less to explore the microbe-

host interactions. Here we present a simultaneous assessment of microbiome and host

functional diversity and host-microbe interactions from the same RNA-seq experiment,

while accounting for variation in clinical metadata.

Methods

Transcriptomic (host) and metatranscriptomic (microbiota) sequences from the nasal epi-

thelium of 8 asthmatics and 6 healthy controls were separated in silico and mapped to avail-

able human and NCBI-NR protein reference databases. Human genes differentially

expressed in asthmatics and controls were then used to infer upstream regulators involved

in immune and inflammatory responses. Concomitantly, microbial genes were mapped to

metabolic databases (COG, SEED, and KEGG) to infer microbial functions differentially

expressed in asthmatics and controls. Finally, multivariate analysis was applied to find

associations between microbiome characteristics and host upstream regulators while

accounting for clinical variation.

Results and Discussion

Our study showed significant differences in the metabolism of microbiomes from asthmatic

and non-asthmatic children for up to 25% of the functional properties tested. Enrichment

PLOS ONE | DOI:10.1371/journal.pone.0131819 June 30, 2015 1 / 17

a11111

OPEN ACCESS

Citation: Pérez-Losada M, Castro-Nallar E, Bendall
ML, Freishtat RJ, Crandall KA (2015) Dual
Transcriptomic Profiling of Host and Microbiota during
Health and Disease in Pediatric Asthma. PLoS ONE
10(6): e0131819. doi:10.1371/journal.pone.0131819

Editor: Brenda A Wilson, University of Illinois at
Urbana-Champaign, UNITED STATES

Received: April 17, 2015

Accepted: June 7, 2015

Published: June 30, 2015

Copyright: © 2015 Pérez-Losada et al. This is an
open access article distributed under the terms of the
Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any
medium, provided the original author and source are
credited.

Data Availability Statement: Sequence data was
deposited in the Sequence Read Archive and can be
found under the BioProject [SRA: PRJNA255523].
Other relevant data are within the paper and its
Supporting Information files.

Funding: MP-L was funded in part by a K12 Career
Development Program 5 K12 HL119994 award. EC-N
was funded by "CONICYT + PAI/ Concurso nacional
apoyo al retorno de investigadores/as desde el
extranjero, convocatoria 2014 + folio 82140008". This
study was supported by Award Number
UL1TR000075 from the National Institute of Health to
National Center for Advancing Translational

http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0131819&domain=pdf
http://creativecommons.org/licenses/by/4.0/


analysis of 499 differentially expressed host genes for inflammatory and immune responses

revealed 43 upstream regulators differentially activated in asthma. Microbial adhesion (viru-

lence) and Proteobacteria abundance were significantly associated with variation in the

expression of the upstream regulator IL1A; suggesting that microbiome characteristics

modulate host inflammatory and immune systems during asthma.

Introduction
The application of novel, culture-independent techniques of high-throughput sequencing
(HTS) is transforming our understanding of the role of microbes in respiratory illnesses such
as asthma. HTS of specific microbial genes or whole genomes has first demonstrated that the
pulmonary tract, historically considered sterile in health, contains diverse communities of
microbes, i.e., the airway microbiome [1–4]. Since then, several studies have used HTS to esti-
mate microbiome composition during health and disease (see reviews in [5, 6–9]) and revealed
changes in the relative abundances of microbial groups (e.g., Proteobacteria, Bacteroidetes)
and pathogenic taxa (e.g.,Moraxella, Haemophilus or Streptococcus species) during asthma
[10–12]–although some have challenged this statement [13]. Microbiome research has also
shown associations between different bacterial community profiles, asthma phenotypes and
specific clinical features (e.g., body mass index, neutrophil counts, antibiotic usage) [14]; and
suggested that environmental factors (e.g., farms, pets, siblings, upbringing) or other microbio-
tas (i.e., gastrointestinal, oral) may also alter respiratory tract immune function in infancy and
play a role in the development of asthma [5, 14].

But as with most respiratory illnesses, the study of the microbiome in asthma is still in its
infancy; to our knowledge, no study has investigated the metabolic functions of the microbial
communities residing in the airways, or to what extent the microbes that make up health- and
asthma-associated communities (or other respiratory diseases) may also change their respec-
tive activities. Functional analyses of microbial communities may result even more informative
and valuable than taxonomic characterization for understanding the role of microbes in health
and disease [15, 16]. Microbiome functional analyses of illnesses such as periodontal and
inflammatory bowel diseases, for example, have revealed major shifts in metabolic pathways
related to disease pathogenesis in gut and oral microbiomes [17–20]. Considering that the
genomic potential of the human oral and gut microbiomes are far greater than that of their
host [21–23], and that previous studies have detected in the bronchial tree an average of 2,000
bacterial genomes per cm2 [3], one could expect that dysbioses in asthma may result not only
from compositional changes in the airway microbiota, but also from shifts in fundamental
microbial metabolic functions.

Similarly, although it is accepted that microbes contribute to mucosal inflammation in
asthma, our immunological relation with the airway microbiota is still poorly understood [24].
New insights into the human’s innate sensing systems are beginning to delineate the mecha-
nisms of host signaling and innate and specific immune response to microbes in the respiratory
mucosa [24]; however, no study has assessed to what extent changes in the microbial commu-
nities constituting the microbiome contribute to mucosal inflammation or modulate host
immune response during asthma. Such studies are beginning to emerge in other areas and have
shown how shifts in the composition and function of the gut microbiota contribute to pediatric
Crohn’s disease pathogenesis and inflammatory bowel disease [15, 19] or affect the expression
of host genes associated with the innate immune system in epithelial cells [20].
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Asthma microbiome research has mainly relied on the 16S rRNA gene. 16S is the gold
standard for bacterial taxonomic profiling, but cannot be used to characterize other microbial
groups (viruses and fungi) or to directly assess microbial metabolic functions or microbe-host
interactions. If we are to characterize the functionality of the asthma microbiome and its
interaction with the host during pathogenesis, high-resolution profiling genomic data from
the host (transcriptomics) and microbial community (metatranscriptomics), and clinical and
environmental data need to be generated and integrated using sophisticated analyses and
computational tools.

Here we present a dual transcriptomic profiling analysis of the microbiomes of 14 asthmatic
and non-asthmatic children for which host and microbial RNA-seq data has been collected.
We then use several bioinformatic methods of high-throughput sequencing analysis to: 1)
characterize the nasal microbiome functional diversity and human epithelial gene expression
during health and disease in pediatric asthma; and 2) find associations between microbial shifts
in function and composition and selected host genes (upstream regulators) involved on inflam-
matory and immune responses while accounting for clinical variation.

Materials and Methods

Ethics
All participants in this study were part of the AsthMaP2 (Asthma Severity Modifying Polymor-
phisms) Study. AsthMaP2 and the study presented here were approved by the Children's
National Medical Center Institutional Review Board (Children's National IRB), which requires
that consent is obtained and documented prior to conducting study procedures and collection
of samples for research. Written consent was obtained from all independent participants or
their legal guardians using the Children's National IRB approved informed consent documents.

Samples and molecular analyses
Detailed information about the cohort and molecular methods can be found in Castro-Nallar
et al. [12]. Briefly, nasal epithelial cells were collected from 8 children and adolescents (ages 6
to 17), both males (75%) and females (25%), with asthma and 6 healthy controls (ages 10 to 20;
83% males). Four of the asthmatics were using inhaled corticosteroids at the time of sampling.
Total RNA was extracted using Trizol (Life Technologies) and chloroform reagents and the
resulting lysate was used for affinity RNA purification in silica columns, following manufactur-
er’s instructions (Total RNA purification kit, Norgen Biotek, Canada). Total RNA was sub-
jected to RiboZero ribosomal RNA reduction prior to library preparation using Illumina
TruSeq Stranded Total RNA kit (San Diego, CA) and sequenced on a HiSeq 2500 platform at
Boston University School of Medicine. An average of 41.4 million single-end 100 bp sequenc-
ing reads were generated per sample. Sequence data was deposited in the Sequence Read
Archive and can be found under the BioProject [SRA: PRJNA255523].

RNA sequence processing
Raw reads were preprocessed (QC) using PRINSEQ-lite 0.20.4 (trimming reads and bases< 25
PHRED, removing exact duplicates, reads with undetermined bases, and low complexity reads
using Dust filter = 30) [25]. Filtered reads were aligned to the human genome (hg19) using
Bowtie2 [26] (—very-sensitive-local). An average of 33.7 million reads per sample aligned to
the human genome, while 1.8 million reads (microbial reads) were filtered off (S1 Table).
Human reads were used for downstream analyses of host differential expression, while micro-
bial reads were used for downstream analyses of microbial function.
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Microbial community composition and function
Taxonomic composition from microbial RNA data was inferred using PathoScope 2.0 [27–29].
A detailed characterization of the microbial composition of the microbiomes of asthmatic and
non-asthmatic patients in this study is presented in Castro-Nallar et al. (2015). Taxonomic
profiles identified in Castro-Nallar et al. (2015) will be used here to assess potential associations
with the host gene expression during asthma. Metabolic functions of the microbiotas residing
in asthmatic and non-asthmatic patients were inferred from metatranscriptome data by first
aligning the microbial reads against the NCBI-NR protein reference database (as of Nov 2014)
using DIAMOND [30]. Aligned gene reads (SAM files) with a bit-score of�50 were then
loaded into MEGAN5 [31] and mapped to clusters of orthologous groups, functional roles, and
metabolic pathways (categories 1–3) in the COG [32], SEED [33] and KEGG [34] databases,
respectively. Only reads that mapped to bacterial genes were considered (0.96 to 1.8 million)
and were aggregated across 1–3 categories for the three databases. Abundance differences
between asthmatic and non-asthmatic children were compared in STAMP [35] using Welch’s
test [36] or White’s non-parametric t-test [37]. Confidence intervals were estimated by the
inverting Welch’s t-test and using a percentile bootstrapping method (10,000 replications),
respectively. Results were depicted in post-hoc extended error bar plots (effect size filter: differ-
ence between proportions<1%). Differences between samples were also shown using principal
component analysis in STAMP. False discovery rate (FDR) in multiple testing was controlled
by using the Benjamini-Hochberg FDR [38] or Storey’s FDR [39] tests. Absolute counts were
either converted to percentages and/or randomly subsampled (1,000 replicates) to the smallest
count of any of the given samples.

Host gene expression
Differential gene expression analysis was performed essentially as described by Trapnell et al.
[40]. Briefly, human reads for each sample were aligned to the human reference genome
(hg19) using TopHat2 [41]. Gene annotations from the UCSC knownGene database (genome.
ucsc.edu/) were used to facilitate the mapping process. Transcripts present in each sample were
assembled independently, then merged with the reference annotation using Cufflinks2 [40].
An average of 12.9 million reads per sample aligned to the human transcriptome. The merged
transcriptome annotation was used to compute bias-corrected gene and transcript expression
profiles for each sample using cuff quant [42]. We identified genes that were differentially
expressed between asthmatics and healthy controls by treating samples as biological replicates;
statistical significance and fold-change calculations were performed using cuffdiff [43]. Ingenu-
ity Pathway Analysis (IPA) (www.ingenuity.com/products/ipa) software was then used for
enrichment analyses of upstream regulators involved in inflammatory and immune responses
during asthma. IPA predicts regulators that are likely to be activated or inhibited based on a
given gene expression pattern and their activation z-score or P values.

Associations between microbial profiles, host gene expression and
clinical variables
To test for associations between microbiome functions and taxa and selected genes of interest
from the host, while accounting for clinical variation, we applied the multivariate method
implemented in MaAsLin (huttenhower.sph.harvard.edu/galaxy) [18]. MaAsLin performs
boosted, additive general linear models between metadata (the predictors) and microbial abun-
dance or function (the response). Boosting of metadata and selection of a model was performed
per taxon. The following metadata were investigated in the analysis: asthmatic vs non-
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asthmatic and nasal epithelial gene expression of selected upstream regulators predicted by the
IPA. We also controlled for age, gender and medication (corticosteroids) since these three vari-
ables may play a role in asthma phenotypic clustering [44] and microbial diversity [45]. All
microbial data were arcsin-square root transformed [18]. Significant associations after multiple
testing were considered below a q value threshold of 0.25 as recommended by the authors [18].

Results
In this study, we assessed microbial and human gene expression and human-microbe associa-
tions in pediatric asthma while accounting for clinical information. In order to measure func-
tional diversity in microbial communities and hosts, we subjected the RNA from microbiomes
and human nasal epithelial cells of 8 asthmatic and 6 non-asthmatic (controls) patients to shot-
gun sequencing using the Illumina HiSeq platform. RNA reads from the microbes (metatran-
scriptome) and host (transcriptome) were in silico separated and analyzed using different
bioinformatic pipelines.

Host gene expression differs between asthmatic and non-asthmatic
children
Our transcriptomic analyses identified 499 (324 up-regulated and 175 down-regulated) core
asthma genes differentially expressed (P< 0.003; log-fold-change�1.5) in the epithelial cells
of asthmatic and non-asthmatic patients (S2 Table). Both were fully separated based on the
abundances of the most differentially expressed (log-fold-change�3) 79 host genes (Fig 1).
The core asthma signature (499 genes) was then loaded into IPA and enriched for genes con-
nected to upstream regulator molecules related to inflammatory and immune responses during
asthma [46–59]. Regulators were classified by group, including: complex, cytokine, group,
growth factor, transcription regulator, chemical and other molecules. Four and 39 regulators
were predicted to be inhibited (z-score�-2; P value range: 6.7E-05 to 2.9E-15) and activated
(z-score�2; P value range: 1.9E-02 to 8.5E-50), respectively (Fig 2).

Microbial metabolic functions differ between asthmatic and non-
asthmatic children
Here we performed an analysis of the metabolism of the bacterial communities residing in the
nares of asthmatic and non-asthmatic children. Bacterial sequence reads (0.96–1.8 million per
sample) in our RNA-seq experiment were assigned to 4 and 20 orthologous groups (COG;
285,672 reads); 25 to 171 functional roles (SEED; 347,061 reads) and 5 to 132 metabolic path-
ways (KEGG; 720,716 reads) in MEGAN5. These read numbers are higher or similar to those
reported in other metatranscriptomic studies of the more diverse gut microbiota [20, 60]. Pro-
portions of genes assigned to these functional properties varied between asthmatics and con-
trols. Our principal component analysis confirmed that the metatranscriptomes of asthmatic
children are relatively different from those of non-asthmatic children (Fig 3 and S1 Fig). More-
over, some of the component pairs in the analyses clustered the asthmatic microbiomes
together, suggesting that they are more similar to each other in their functionality than the
microbiomes of the non-asthmatic controls (Fig 3A; PC1 vs PC3). Multiple functional proper-
ties were differentially expressed during health and disease across different functional catego-
ries 1–3, but after FDR correction (q-value< 0.05), only 5 orthologous groups (COG), 6–9
functional roles (SEED), and 2–14 metabolic pathways (KEGG) remained significant (Fig 4).
These differences were consistent within groups and showed and effect size of at least 1%. All
these properties remained significant when accounting for clinical variation in age, gender and
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medication in our multivariate analysis (MaAsLin). There was considerable overlap (i.e., con-
gruence) between analyses, with most of the selected (i.e., significant) properties involving
basic metabolism (e.g., biosynthesis and degradation) and metabolite transport routes. Protein
metabolism showed major perturbations, with several genes involved in the metabolism, bio-
synthesis, and degradation of amino acids and derivatives (threonine, histidine, tryptophan,
tyrosine, phenylalanine) varying between asthmatics and controls. Nitrogen metabolism also

Fig 1. Heat map of 79 genes with a log-fold-change�3 between asthmatics and controls.Red to blue
shows lower to higher proportions of sequences assigned to each sample.

doi:10.1371/journal.pone.0131819.g001
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differed between asthmatic and non-asthmatic microbiomes, with ammonium transporter and
glutamate synthase overexpressed in the former. Asthma was also associated with increased
abundance of genes related to central carbohydrate metabolism (Entner-Doudoroff Pathway)
and sugar alcohols (ethanolamine utilization). Similarly, genes involved in xenobiotic biodeg-
radation (e.g., dioxin, naphtalene) and glycan biosynthesis were also more abundant in asth-
matic microbiomes. Finally, within the virulence, disease and defense SEED subsystems (Fig
4C), adhesion had more sequence hits in asthmatics, while type III, IV and VI and ESAT secre-
tion systems had less. At the most exclusive level, 4/5, 5/6 and 9/14 of the significantly different
orthologous groups (COG), functional roles (SEED), and metabolic pathways (KEGG), respec-
tively, were enhanced in asthmatic samples, which strongly suggests that they may be impor-
tant for stability of disease-associated populations and likely contribute to the disease process.

Fig 2. Ingenuity pathway enrichment analyses to detect upstream regulators associated with the inflammatory and immune responses during
asthma. The activation z-score depicts the degree of activation or suppression of a given regulator.

doi:10.1371/journal.pone.0131819.g002
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Fig 3. Principal Component Analysis (PCA) plot comparing functional profiles of asthmatics (AS) and controls (CL). PCA plots for COG category 2
(A), SEED category 2 (B) and KEGG category 3 (C).

doi:10.1371/journal.pone.0131819.g003
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Fig 4. Extended error bar (EEB) plots showing functional properties differing significantly between
asthmatics (AS) and controls (CL) with an effect size�1%. EEB plots for COG category 2 (A), SEED
categories 1 to 3 (B–D) and KEGG categories 1 to 3 (E–G).

doi:10.1371/journal.pone.0131819.g004
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Microbial metabolic functions and composition are associated with
upstream regulators involved in immune and inflammatory responses
during asthma
For the purpose of uncovering potential microbe-host interactions in the nasal epithelial cells,
we used a multivariate approach (MaAsLin) to examine the multifactorial structure between
taxonomic and functional characteristics of the microbiota and selected host transcriptome
upstream regulators. Given the limited number of samples in our study (14 patients) and the
high number of variables in our data and metadata (some also continuous), and to maintain
statistical power in our association analysis while testing biologically meaningful interactions
(i.e., microbiome shifts influence immune response), we restricted the number of host
upstream regulators, microbial groups and functions tested in our host-microbe multivariate
analysis, while controlling for phenotype, age, gender and medication. Of the predicted 43
upstream regulators involved in immune and inflammatory responses (Fig 2), we tested the 8
regulators (IL1A, EDN1, TGFA, VEGFA, BMP2, COL18A1, TICAM1 and NFKB1) also pres-
ent in our host gene expression analysis. Three of those genes, IL1A (interleukin 1 alpha),
EDN1 (endothelin 1) and NFKB1 (nuclear factor of kappa light polypeptide gene enhancer in
B-cells 1) were also found to be activated in pharyngeal and lung epithelial cell cultures in
response to infection withMoraxella catarrhalis [61]. Accordingly, to constrain the number of
microbial functions and taxa in the MaAsLin analysis, we only tested categories 2 in our ortho-
logous groups (COG), functional roles (SEED), and metabolic pathways (KEGG) and the most
inclusive microbial taxonomic profile (Phylum) in Castro-Nallar et al. (2015). Moreover, func-
tional properties and Phyla not present in at least 50% of the asthmatics or controls were
excluded. Our multivariate analysis detected one significant association (P = 0.025) between
IL1A and the microbial functional property of adhesion (SEED) (Fig 5A). Similarly, the bacte-
rial Phylum Proteobacteria was also significantly associated (P = 0.042) to IL1A, but this associ-
ation did not remain significant after FDR correction (Fig 5B). These associations are without
the influence of the other metadata (phenotype, sex, age and medication) in the study.

Discussion

Microbiome functional diversity
Several studies have shown that microbial infection is a contributing factor to asthma and that
microbial communities in the respiratory airways vary between health and disease (see reviews
in [5, 6–9]). Despite these findings, it is unknown how specific activities of different members
of the community impact disease. This study represents the first metabolic reconstruction of
the microbial populations residing in nasal nares and identifies numerous functions and path-
ways associated with healthy and diseased asthmatic children.

Our functional analyses of the most exclusive categories analyzed here identified 5/20 (25%)
orthologous groups (COG), 6/171 (3.5%) roles (SEED) and 14/132 (10.6%) metabolic pathways
(KEGG) differentially expressed (q< 0.05) in asthmatic and non-asthmatic children. These
same analyses applied to taxonomic profiles in Castro-Nallar et al. [12] only detected 1/174
(0.6%) families (Moraxellacea) and 1/797 bacterial species (Moraxella catarrhalis) significantly
different in their proportions between asthmatics and controls.M. catarrhalis is a pathogen
that has been associated with childhood asthma [11, 62]. Hence, this comparison suggests that
metabolic activities are more perturbed in asthma than are organismal abundances, as previ-
ously indicated in inflammatory bowel disease [18]. Moreover,Moraxella accounted for a great
proportion of the microbial transcripts; therefore, the differences in metabolism seen here
between asthmatic and non-asthmatic subjects are, to a large extent, due to differences in
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expression ofMoraxella genes. This constitutes an exemplar case of how changes in the taxo-
nomic composition of one bacterium during disease can lead to major modifications in the
metabolic functions of the microbial community.

Most microbiome functional analyses, like the one presented here, aim to describe and com-
pare healthy and diseased microbiotas. Further insight into the microbiome dysfunction in
asthma can be gained from prior knowledge of these metabolic pathways in known asthma
pathogens and from comparisons with other microbiome studies. Very little information, how-
ever, has been accumulated in this regard with most research focused on the gut and oral

Fig 5. MaAsLin scattergrams showing associations between the microbial functional property of Adhesion (A) and proportions of Proteobacteria
(B) and change in expression of the host gene regulator IL1A. P and q value tests for significance and correlation coefficients are shown.

doi:10.1371/journal.pone.0131819.g005
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microbiota [16–18, 20, 22, 63]. Other studies, however, [61, 64], have used cell cultures to look
at the gene expression ofM. catarrhalis genes in pharyngeal and lung epithelial cells and, like
here, have shown increased expression of genes involved in central metabolism, transport pro-
teins and adhesion (virulence) functions. Similar to these studies, our functional analyses in
asthmatic children revealed general perturbations of the amino acid, carbohydrate and vitamin
metabolism and transport, xenoniotic degradation and virulence. This reinforces the idea of a
“common mucosal response” [65], and suggests that either these functions play a common role
in gastrointestinal-lung human diseases or that oral and gut microbial communities share
members or exchange metabolites across mucosae [66]. Our results represent the first step
towards the functional investigation of asthma microbiotas. As sequencing costs continue to
fall, new metatranscriptomes combined with proteomic and metabolomic data will generate
insights in our understanding of the microbial functionality and which of those functions are
most strongly affecting the host during disease.

Immune and inflammatory responses during asthma
Our transcriptomic analyses identified a core of 499 genes differentially expressed in the epi-
thelial cells of asthmatic and non-asthmatic patients. Using that set of genes, IPA enrichment
predicted 39 and 4 upregulators to be activated or inhibited, respectively. These upregulators
have been associated with cell and tissue proliferation and reconstruction, cell-mediated and
humoral immunity responses and inflammation during asthma (as indicated by experimentally
observed relationships and references in IPA and in [46–59]). Our analysis shows that most of
these cell and tissue processes are activated (z-score�2) in asthmatics; as seen in human and
mouse models assessing airway remodeling in asthma [46, 47, 51, 53, 55–58, 67–71]. Untan-
gling the metabolic pathways and networks displayed by these regulators and examining in
detail the functions of the genes connected to them is beyond the scope of this study. Our ulti-
mate goal here was to illustrate the potential of dual transcriptomic profiling and find candi-
date genes in our host transcriptomic data that could interact with the microbiome (see next
section).

Microbe-host interactions
Microbe-host interactions are expected to play a significant role in the development of multi-
factorial diseases like asthma. Here we present a dual profiling analysis of host and microbial
genes to assess such interactions in relation to immune and inflammatory responses. Our mul-
tivariate analysis showed a significant association between the host gene IL1A and the virulence
characteristic of adhesion of the microbiome—an increase of adhesion is positively associated
with an upregulation of IL1A. The protein encoded by this gene is a member of the interleukin
1 cytokine family. This cytokine is a pleiotropic cytokine involved in various immune
responses, inflammatory processes, and hematopoiesis. This association is also supported by
previous studies linking up-regulation of IL1A and other interleukins to epithelial infection by
M. catarrhalis [61, 64]; moreover, IL1A has also been correlated to virulence characteristics of
the gut microbiome in infants [20]. Similarly, our multivariate analyses also suggested that an
increase in Proteobacteria is potentially related to specific changes in the expression of IL1A.
Significant increases in Proteobacteria have been associated with pediatric asthma [3, 11, 12,
62, 72]. Our analysis, hence, reveals that functional and compositional changes in the micro-
biome contribute to or modulate host mucosal inflammation and immune response during
asthma.

Our study describes a pipeline to identify interactions between key host regulators (as pre-
dicted by ingenuity pathway enrichment and reconstruction) and microbial characteristics.
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Other approaches based on linear models and canonical correlation analysis have been also
described to investigate similar associations [20, 73, 74]. Given the multifactorial nature of
respiratory diseases and the high number and diversity of the potential variables (continuous,
discrete, Boolean) under study, comprehensive microbe-host multivariable analyses require
large sample sizes. Future high-throughput sequencing platforms will eventually reduce RNA
sequencing costs to make the study of large cohorts affordable. But given the data currently at
hand, multivariate analyses like those presented here could be readily applied to 16S metage-
nomic and host microarray gene expression profiles under different clinical and environmental
settings [e.g., 18, 73, 75].

Conclusions
Our study demonstrates how metagenomic data from the same RNA-seq experiment can be
processed with powerful bioinformatic approaches to simultaneously characterize human and
microbiome functional diversity and infer microbe-host interactions. Our analyses show 1)
that the metabolism of both the bacterial communities in the nasal cavity and the host nasal
epithelial cells differ between asthmatic and non-asthmatic children, and 2) that microbiome
variation in function and composition may impact host metabolic regulation during immune
and inflammatory responses. We hope our study inspires future research on respiratory air-
ways driven to determine the contributions and interactions of microbes, host, and environ-
ment to and during health and disease, and to eventually elucidate whether microbiome
changes are the cause or the consequence of those diseases.
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