
Himmelfarb Health Sciences Library, The George Washington University
Health Sciences Research Commons

Computational Biology Institute Institutes, Centers, and Laboratories

1-1-2015

Composition, taxonomy and functional diversity of
the oropharynx microbiome in individuals with
schizophrenia and controls.
Eduardo Castro-Nallar
George Washington University

Matthew L Bendall
George Washington University

Marcos Pérez-Losada
George Washington University

Sarven Sabuncyan

Emily G Severance

See next page for additional authors

Follow this and additional works at: https://hsrc.himmelfarb.gwu.edu/smhs_centers_cbi

Part of the Computational Biology Commons, Research Methods in Life Sciences Commons,
and the Structural Biology Commons

This Journal Article is brought to you for free and open access by the Institutes, Centers, and Laboratories at Health Sciences Research Commons. It
has been accepted for inclusion in Computational Biology Institute by an authorized administrator of Health Sciences Research Commons. For more
information, please contact hsrc@gwu.edu.

APA Citation
Castro-Nallar, E., Bendall, M., Pérez-Losada, M., Sabuncyan, S., Severance, E., Dickerson, F., Schroeder, J., Yolken, R., & Crandall, K.
(2015). Composition, taxonomy and functional diversity of the oropharynx microbiome in individuals with schizophrenia and
controls.. PeerJ, 3 (). http://dx.doi.org/10.7717/peerj.1140

https://hsrc.himmelfarb.gwu.edu?utm_source=hsrc.himmelfarb.gwu.edu%2Fsmhs_centers_cbi%2F16&utm_medium=PDF&utm_campaign=PDFCoverPages
https://hsrc.himmelfarb.gwu.edu/smhs_centers_cbi?utm_source=hsrc.himmelfarb.gwu.edu%2Fsmhs_centers_cbi%2F16&utm_medium=PDF&utm_campaign=PDFCoverPages
https://hsrc.himmelfarb.gwu.edu/smhs_centers?utm_source=hsrc.himmelfarb.gwu.edu%2Fsmhs_centers_cbi%2F16&utm_medium=PDF&utm_campaign=PDFCoverPages
https://hsrc.himmelfarb.gwu.edu/smhs_centers_cbi?utm_source=hsrc.himmelfarb.gwu.edu%2Fsmhs_centers_cbi%2F16&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/28?utm_source=hsrc.himmelfarb.gwu.edu%2Fsmhs_centers_cbi%2F16&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1385?utm_source=hsrc.himmelfarb.gwu.edu%2Fsmhs_centers_cbi%2F16&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/6?utm_source=hsrc.himmelfarb.gwu.edu%2Fsmhs_centers_cbi%2F16&utm_medium=PDF&utm_campaign=PDFCoverPages
http://dx.doi.org/10.7717/peerj.1140
mailto:hsrc@gwu.edu


Authors
Eduardo Castro-Nallar, Matthew L Bendall, Marcos Pérez-Losada, Sarven Sabuncyan, Emily G Severance,
Faith B Dickerson, Jennifer R Schroeder, Robert H Yolken, and Keith A Crandall

This journal article is available at Health Sciences Research Commons: https://hsrc.himmelfarb.gwu.edu/smhs_centers_cbi/16

https://hsrc.himmelfarb.gwu.edu/smhs_centers_cbi/16?utm_source=hsrc.himmelfarb.gwu.edu%2Fsmhs_centers_cbi%2F16&utm_medium=PDF&utm_campaign=PDFCoverPages


Submitted 19 February 2015
Accepted 10 July 2015
Published 25 August 2015

Corresponding author
Eduardo Castro-Nallar,
castronallar@gmail.com

Academic editor
Gerard Lazo

Additional Information and
Declarations can be found on
page 14

DOI 10.7717/peerj.1140

Copyright
2015 Castro-Nallar et al.

Distributed under
Creative Commons CC-BY 4.0

OPEN ACCESS

Composition, taxonomy and functional
diversity of the oropharynx microbiome
in individuals with schizophrenia and
controls
Eduardo Castro-Nallar1,6, Matthew L. Bendall1,
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ABSTRACT
The role of the human microbiome in schizophrenia remains largely unexplored.
The microbiome has been shown to alter brain development and modulate
behavior and cognition in animals through gut-brain connections, and research
in humans suggests that it may be a modulating factor in many disorders. This
study reports findings from a shotgun metagenomic analysis of the oropharyngeal
microbiome in 16 individuals with schizophrenia and 16 controls. High-level
differences were evident at both the phylum and genus levels, with Proteobacteria,
Firmicutes, Bacteroidetes, and Actinobacteria dominating both schizophrenia
patients and controls, and Ascomycota being more abundant in schizophrenia
patients than controls. Controls were richer in species but less even in their
distributions, i.e., dominated by fewer species, as opposed to schizophrenia patients.
Lactic acid bacteria were relatively more abundant in schizophrenia, including
species of Lactobacilli and Bifidobacterium, which have been shown to modulate
chronic inflammation. We also found Eubacterium halii, a lactate-utilizing species.
Functionally, the microbiome of schizophrenia patients was characterized by an
increased number of metabolic pathways related to metabolite transport systems
including siderophores, glutamate, and vitamin B12. In contrast, carbohydrate and
lipid pathways and energy metabolism were abundant in controls. These findings
suggest that the oropharyngeal microbiome in individuals with schizophrenia is
significantly different compared to controls, and that particular microbial species
and metabolic pathways differentiate both groups. Confirmation of these findings in
larger and more diverse samples, e.g., gut microbiome, will contribute to elucidating
potential links between schizophrenia and the human microbiota.
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INTRODUCTION
Schizophrenia is a serious neuropsychiatric disorder with substantial social and economic

consequences such as low performance on social knowledge and emotion recogni-

tion, high family burden, and high annual treatment costs worldwide, especially in

treatment-resistant subjects (Achim et al., 2013; Kennedy et al., 2014; Knapp, Mangalore

& Simon, 2004). Population-based studies suggest that the risk of an individual developing

schizophrenia is based on both genetic and environmental factors (van Os, Kenis &

Rutten, 2010); e.g., concordance-rates between monozygotic twins are higher than those

between dizygotic twins, and adopted children of schizophrenic parents have similar risks

of schizophrenia to those of their biological parents (Fowler et al., 2012; Tienari et al.,

1985). Additionally, a recent genome-wide association study examining a large cohort

of subjects (36,989 cases and 113,075 controls) found 108 independent associated loci

that appeared to account for 7% of a given person’s risk of developing schizophrenia,

as assessed by polygenic risk scores. Moreover, some of the key loci were related to host

immunity, thus providing genetic support for immune dysregulation in schizophrenia

(Schizophrenia Working Group of the Psychiatric Genomics Consortium, 2014). Likewise, a

population-based study has identified that single-nucleotide polymorphisms associated

with schizophrenia are also associated with immunity (Andreassen et al., 2014), which

has also been confirmed in clinical/epidemiological studies (Benros et al., 2014; Eaton

et al., 2010). More studies linking immunity/immune disorders and schizophrenia have

been published (reviewed in Severance et al., 2013); however, the source of the immune

activation in most individuals has not been identified.

Recent advances in High-Throughput Sequencing (HTS) technologies have enabled

the study of unculturable/difficult to culture microbial communities and have shown that

the human body harbors microbial ecosystems that interact with human physiological

processes, thus influencing health and disease (Cho & Blaser, 2012; De Vos & De Vos, 2012;

Pflughoeft & Versalovic, 2012). The collection of genes and genomes belonging to these

microbial communities, the microbiome, has been studied using HTS to demonstrate the

extent to which the human microbiota plays a role in human health issues ranging from

obesity to respiratory disease (Huang, 2013; Turnbaugh et al., 2006).

In relation to human health, observational and experimental studies have shown

that the microbiome can modulate the immune response and its alterations could

be associated with disease (reviewed in Round & Mazmanian, 2009). For instance, a

recent experimental study using an osteomyelitis mice model has shown that diet can

modulate the microbiome (high fat diet induces a decrease in Prevotella), which in turn

offered protection against inflammatory bone disease (Lukens et al., 2014). Increasing
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evidence suggests that alteration of the microbiota not only has effects on intestinal

conditions such as Crohn’s and other Inflammatory Bowel Diseases (Gevers et al., 2014;

Morgan et al., 2012), but also in the development of systemic immune diseases such as

rheumatoid arthritis (Scher & Abramson, 2011; Wu et al., 2010), type I diabetes (Kriegel et

al., 2011; Suez et al., 2014), and allergic diseases (Castro-Nallar et al., in press; Hong et al.,

2010; Nakayama et al., 2011; Pérez-Losada et al., 2015).

Although the mechanisms by which microorganisms outside the brain might impact

the central nervous system (CNS) are not known, the human microbiota have been

demonstrated to affect brain development and to modulate cognition through imbalances

in the microbiota-gut-CNS axis (reviewed in Clarke et al., 2012; Davari, Talaei & Alaei,

2013; Foster & McVey Neufeld, 2013; Hsiao et al., 2013). As a consequence, microbiota

alterations impact anxiety-like and depression-like behaviors and have been linked to

neurodevelopmental disorders such as autism spectrum disorder (Kang et al., 2013) and

multiple sclerosis (Farrokhi et al., 2013; Yokote et al., 2008).

While there is growing evidence suggesting a key role for the human microbiome in

mental health, the microbiome of schizophrenia patients has not yet been extensively

explored (reviewed in Dinan, Borre & Cryan, 2014; Severance, Yolken & Eaton, 2014;

Yolken & Dickerson, 2014). Recent work by our group has shown that the oropharyngeal

“phageome” of individuals with schizophrenia differs from that of non-schizophrenic

controls. In particular, Lactobacillus phage phiadh was significantly more abundant in

schizophrenia individuals when controlling for age, gender, race, socioeconomic status,

or cigarette smoking (Yolken et al., 2015). However, studies evaluating the structure

and diversity of bacterial and fungal communities in schizophrenia individuals are not

available. In particular, gut and oral microbiome analysis could provide insights into

the identity and quantity of the microbes residing in these body sites, and whether they

encode functions that are relevant to and/or known to be involved in schizophrenia. In

addition, the analysis of the oral microbiome could prove instrumental in the development

of taxonomic and functional biomarkers because of the ease of sampling, which can be

performed in a non-traumatic manner, allowing to distinguish schizophrenia patients

from healthy individuals, as it has been done in other illnesses (e.g., Farrokhi et al., 2013).

The premise of our study is that the oropharyngeal microbiome may be associated with

or contribute to an altered immune state consistent with findings in schizophrenia; hence,

differences in the microbiome could be instrumental to pinpoint associations between

microbial diversity and immune response. Consequently, here we aim to characterize

the schizophrenia microbiome by interrogating the oropharyngeal microbiome structure

regarding its taxonomic and functional diversity. This represents a second crucial step

towards understanding the relationship between microbiome diversity and schizophrenia.

Our initial study identified differences in the oropharyngeal phageome; whereas here we

focus on the complete microbiome (virus, bacteria, fungi). Future work will investigate

additional microbiome compartmentalizations, including gut, and amniotic fluid.
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MATERIALS AND METHODS
Samples and sequencing
Participants were individuals with schizophrenia and non-psychiatric controls from

the Stanley Research Program at Sheppard Pratt Hospital who were enrolled in the

period between January 1, 2008 and March 1, 2012 in a study of the association

between antibodies to infectious agents and serious mental illness. The methods for

identification and recruitment of individuals with schizophrenia and controls have been

previously described (Dickerson et al., 2013). Briefly, individuals with schizophrenia were

recruited from psychiatric treatment programs at a large psychiatric health system and

community psychiatric programs in central Maryland. Inclusion criteria were: a diagnosis

of Schizophrenia or Schizoaffective disorders (established by consensus of the research

team based on the SCID for DSM-IV Axis 1 Disorders—Patient Edition and available

medical records). Participants met the following additional criteria: age 18–65; proficient

in English; absence of any history of intravenous substance abuse; absence of mental

retardation; absence of HIV infection; absence of serious medical disorder that would

affect cognitive functioning; absence of a primary diagnosis of alcohol or substance use

disorder (First et al., 2012). In order to define an individual with schizophrenia, we used

the criteria from the DSM IV manual of the American Psychiatric Association (2000). The

Institutional Review Boards of Sheppard Pratt Hospital and the Johns Hopkins School of

Medicine approved this study. Informed consent was obtained from all participants prior

to enrollment into the study (Protocols SMRI/SPHS: 2002-01 and SF/SPHS: 2000-02).

We selected the oropharynx microbiome since it is easily accessible by non-invasive

techniques and biological samples from cases and controls could be collected and

processed in an identical manner. Moreover, studies have found the oral microbiome to be

associated with immune and neurological diseases such as inflammatory bowel disease and

Alzheimer’s disease, and offers opportunities for development of taxonomic and functional

biomarkers (Docktor et al., 2012; Farrokhi et al., 2013; Shoemark & Allen, 2014).

Throat swabs were obtained at the study visit (16 individuals with schizophrenia and 16

controls) by research staff that rubbed a sterile cotton swab at the back of subjects’ throat

and then immediately put the swab into a sterile container. The swabs were either sent

immediately to the processing laboratory or refrigerated and then sent to the processing

laboratory in a refrigerated container. Throat swabs were kept frozen at −70 ◦C until

further processing. DNA was extracted from throat swabs using Qiagen’s Gentra Puregene

Buccal Cell Kit. The collection brush heads from the swab ends were excised and incubated

at 65 ◦C overnight in the kit cell lysis solution. Aliquots of 75–100 ng of DNA were used

to generate sequencing libraries using the Nugen Ultralow DR Multiplex System following

the manufacturer’s instructions. Briefly, following sonication, the DNA fragments were

end repaired and ligated to barcoded adaptors. Using the adaptors as PCR priming sites,

the library was amplified using 15 cycles of amplification. The samples were purified

by chromatography and analyzed by capillary electrophoresis in a Bioanalyzer 2100 to

confirm size and concentration. Sequencing libraries were matched one case and one

control per lane and anonymized until analysis. Samples were sequenced at the same time
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to further minimize batch effects. Sequences were generated using the Illumina HiSeq

2000 platform producing approximately 58-million single-end reads of 100 nucleotides in

length per sample (File S1). All sequence data were deposited in the Sequence Read Archive

and are available under the BioProject PRJNA255439.

Sequence read preprocessing
Reads were preprocessed using PRINSEQ-lite 0.20.4 (trimming reads and bases <25

PHRED, removing exact duplicates, and reads with undetermined bases). We constructed

a ‘target’ genome library containing all bacterial, fungal, and viral sequences from the

Human Microbiome Project Reference Database (http://www.hmpdacc.org/reference

genomes/reference genomes.php; 131 archeal, 326 lower eukaryotes, 3,683 viral, 1,751

bacterial species) using the PathoLib module from PathoScope 2.0 (Hong et al., 2014). We

aligned the reads to these libraries using the Bowtie2 algorithm (Langmead & Salzberg,

2012), and then filtered any reads that also aligned to the human genome (hg19) as

implemented in PathoMap (—very-sensitive-local -k 100—score-min L,20,1.0). We then

applied PathoScope 2.0—specifically the PathoID module (Francis et al., 2013)—to obtain

accurate read counts for downstream analysis.

Statistical analyses
Exploratory and differential species abundance analyses were performed in R 3.1.2 and

Bioconductor 3.0 (Gentleman et al., 2004) using packages xlsx 0.5.7, gtools 3.4.1, CHNOSZ

1.0.3.1, plyr 1.8.1, ggplot2 1.0.0, reshape2 1.4.1, gplots 2.16.0, Phyloseq 1.10.0, and DESeq2

1.6.3 (Love, Huber & Anders, 2014; McMurdie & Holmes, 2013; Wickham, 2009). Briefly,

various indices (Richness: Observed, Chao1, ACE; richness and evenness: Shannon,

Simpson, Inverse Simpson, Fisher’s alpha) were obtained using the plot richness function

of the PhyloSeq package and beta diversity was obtained using R base package. We used

richness indices to estimate the number of species in the microbiome with (Chao1;

ACE) (Chao, 1984; Colwell & Coddington, 1994) and without (Observed) correction for

subsampling. In addition, we used metrics that aim to measure diversity by accounting

for “evenness” or homogeneity (Shannon; Fisher; Simpson; InvSimpson) (Jost, 2007). For

instance, communities dominated by one species will exhibit low evenness, as opposed to

communities where species are relatively well represented (high evenness).

For statistical comparison between cases and controls, the number of mapped reads

estimated in PathoScope was normalized across all samples using the variance stabilized

transformation method as implemented in DESeq2 using a generalized linear model

(Love, Huber & Anders, 2014). Then, statistical inference was performed using the negative

binomial Wald test (with Cook’s distance to control for outliers (Cook, 1977)) and adjusted

by applying the Benjamini–Hochberg method to correct for multiple hypotheses testing

(Benjamini & Hochberg, 1995) at an alpha value =0.01. We controlled for covariates by

adding them as coefficients in DESeq’s linear model.

We also used generalized linear models implemented in STAMP and MaAsLin (Morgan

et al., 2012; Parks et al., 2014) to test for differences between groups. In STAMP, differences

in relative abundance between two groups of samples were compared using White’s
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non-parametric t test (White, Nagarajan & Pop, 2009). We estimated confidence intervals

using a percentile bootstrapping method (10,000 replications), and false discovery rate

(FDR) in multiple testing was controlled by the Storey’s FDR at 0.05 (Storey, Taylor &

Siegmund, 2004). MaAsLin is a multivariate statistical framework that finds associations

between clinical metadata and microbial community abundance. These associations are

without the influence of the other metadata in the study. In our study, we used MaAsLin to

detect the effect of schizophrenia (presence/absence) in microbiome species composition

taking into account the effects of other variables (confounders) in the study population

(medication, smoker, age, gender and race).

Descriptive statistics were run on all samples. Cases and controls were compared with

respect to demographic and substance use variables; χ y tests were used for categorical

variables and t tests were used for continuous variables. Principal coordinate analysis

(PCoA) was performed on a Jensen–Shannon distance matrix derived from read counts

aggregated by genus as estimated in PathoScope.

In order to explore and formally test for differences in the coding potential of

the oropharyngeal microbiome, non-human reads were mapped against the Kyoto

Encyclopedia of Genes and Genomes (Kanehisa & Goto, 2000) (KEGG; from June 2011;

1291309 genes with KO assignments) database using a two-stage local alignment algorithm

as implemented in UBLAST (e-value 1e−9), part of the USEARCH package v7.0.1090

(Edgar, 2010). Then, metabolic pathway abundance and coverage was estimated using the

Human Microbiome Project metabolic reconstruction pipeline, HUMAnN v0.99, where

pathways are inferred as gene sets using maximum parsimony as the optimality criterion

[MinPath (Ye & Doak, 2009)] and smoothed-averaged over all genes within a pathway.

Significant differences between groups were tested using Kruskal–Wallis rank sum and

Wilcoxon tests (alpha = 0.05) using Linear Discriminant Analysis as implemented in LEfSe

(Segata et al., 2011). All figures were plotted using the ggplot2 and PhyloSeq packages.

RESULTS
Study sample demographic variables
The study sample consisted of 16 schizophrenia patients and 16 controls. Participants

had a mean age of 34.5 years, were 56.3% male, and 37.5% white. On average, their

mothers had over 13 years of education, and 31.3% of participants smoked. Cases were

more likely to be cigarette smokers than controls (χ2
= 18.6; p value < 0.0001; 62.5%

and 0%, respectively) and were also more likely to have a higher body mass index (BMI;

controls = 25.5, cases = 34.7; p value < 0.0001). Groups did not differ significantly on

demographic variables such as maternal education, self-reported race, age, or gender

(Table 1).

Microbial communities in the oropharynx of schizophrenia
patients differ significantly from those in controls
At the phylum level, schizophrenia samples exhibit higher proportions of Firmicutes

across samples in comparison to controls, where we observe higher relative proportions

of Bacteroidetes and Actinobacteria (Fig. 1). Relative proportions of other phyla such as
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Table 1 Study samples’ demographics data. Cases and controls were matched and not statistically
different with the exception of smoking condition and body mass index.

Entire sample
(N = 32)

Controls
(N = 16)

Schizophrenia
cases (non-
smoking; N = 6)

Schizophrenia
cases
(all; N = 16)

Age 34.5 ± 7.8 34.3 ± 10.1 35.9 ± 3.4 34.7 ± 4.8

Male gender 18/32 (56.3%) 9/16 (56.3%) 3/6 (50%) 9/16 (56.3%)

White race 12/20 (37.5%) 5/16 (31.3%) 4/6 (66.6%) 7/16 (43.8%)

Mother’s education 13.6 ± 2.9 14.1 ± 3.0 14 ± 3.4 13.1 ± 2.97

Cigarette smoker 10/32 (31.3%) 0/16 (0%) 0/0 (0%) 10/16 (62.5%)

Body Mass Index 30.1 ± 7.0 25.5 ± 4.5 33.4 ± 7.5 34.7 ± 6.0

schizophrenia control

0.00

** * * * * * ***
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Rothia dentocariosa
Rothia mucilaginosa
Actinobacteria (other)
Prevotella melaninogenica
Bacteroidetes (other)
Streptococcus gordonii
Streptococcus mitis
Streptococcus oralis
Streptococcus pneumoniae
Streptococcus salivarius
Streptococcus sp. oral taxon 071
Veillonella parvula
Veillonella sp. 3_1_44
Veillonella sp. 6_1_27
Firmicutes (other)
Fusobacterium periodonticum
Fusobacteria (other)
Campylobacter concisus
Delftia acidovorans
Neisseria flavescens
Neisseria subflava
Proteobacteria (other)
rare (other)

Figure 1 Oropharyngeal microbial composition at phylum and species levels exhibits different pat-
terns for schizophrenia and control samples. The stacked bar chart shows the most prevalent species
present in schizophrenia and controls color-coded by phylum. Green, Actinobacteria; Orange, Bac-
teroidetes; Blue, Firmicutes; Green, Proteobacteria. The symbol (*) indicates samples from smoker
individuals.

Fusobacteria and Proteobacteria do not differ greatly (Fig. 1). Overall, groups do not differ

significantly at the phylum level, which is also supported by non-metric multidimensional

scaling (Fig. S1B; NMDS; Bray–Curtis dissimilarity). Differences between smoker and

non-smoker cases are not evident at the phylum level (Fig. 1; smoker cases denoted with a

star).

Regarding species diversity among samples, we observe that controls are richer in the

number of species compared to schizophrenia samples. The median number of observed
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species is higher than the interquartile range of schizophrenia samples, which is congruent

with other richness metrics (Chao1, ACE, and Fisher; Fig. S1A), suggesting that controls

contain a higher number of lower abundance species as opposed to schizophrenia samples.

However, we observe that species abundance in controls is dominated by fewer species

(Streptococcus spp.; Fig. 1), as evidenced by their lower evenness or homogeneity (Simpson,

and Inverse Simpson; Fig. S1A), although both groups are fairly equivalent in species

richness when accounting for species evenness (Shannon; Fig. S1A). Chao1 index provides

an estimate of the expected number of species in a habitat. We found that the observed

richness is similar to Chao1 richness, suggesting that we are capturing most of the diversity

present in the samples (Fig. S1A).

Microbial species commonly inhabiting the oropharynx are
differentially more abundant in schizophrenia patients than in
controls
Out of a total of 25 differentially abundant species (bacteria and fungi), we found

6 microbial species to be more abundant in cases than controls after accounting for

different library sizes, smoking condition and medication (covariates were added as extra

coefficients; Wald test; p value < 0.01). Overall, schizophrenia samples were relatively

more abundant for Lactic Acid Bacteria (LAB) including Lactobacillus and Bifidobacterium.

Of these, the largest effect was observed in Lactobacillus gasseri, which appeared to be at

least 400 times more abundant in schizophrenia patients than controls (log2 = 8.4 ± 1.2

standard error). We also detected Eubacterium halii, a lactate-utilizing bacterium present

in human feces, and Candida dubliniensis, which is an opportunistic fungus that is part of

the oral fungal microbiome (Table 2).

Using STAMP, we also found Streptococcus gordonii, Streptococcus thermophilus, and

Streptococcus sp. (oral taxon 071) to be relatively more abundant in schizophrenia. The

latter species was also detected by MaAsLin, which in addition detected Bifidobacterium

pseudocatenulatum, Bifidobacterium breve (File S3).

We also identified species that were related to variables other than schizophrenia/non-

psychiatric controls. Among these, we found that some species were related to indi-

viduals’ age (Neisseria subflava, Neisseria flavescens, Neisseria polysaccharea, Escherichia

fergusonii, and Pseudomonas protegens), being white (Klebsiella variicola, Actinomyces

phage Av-1, Streptococcus sp. (oral taxon 071)), and to cigarette smoking (Streptococcus

mitis, Streptococcus pneumoniae) (File S3). Regarding species relatively more abundant

in cases, we found that these preferentially belonged to Pasteurella, Neisseriaceae, and

Flavobacteriaceae. We also collated the list of species found in schizophrenia patients

against a list of potential contaminants published by Salter et al. (2014) and found no

obvious contaminants (Table 2).

We also tested whether microbial composition could differentiate schizophrenia

patients from controls by inferring synthetic variables that could explain the variability

of the samples at the genus level (PCoA on Jensen–Shannon distance; Fig. 2). We observe

that schizophrenia samples tend to group together (first three coordinates = 40%, 25%
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Table 2 Microbial species relatively more abundant in schizophrenia samples than in controls. Effect size represents the size of the difference
of schizophrenia samples over controls. The effect size as an associated standard error, and multiple comparisons were adjusted using the
Benjamini–Hochberg procedure (BH).

Effect size
(log2 fold
change)

Effect size
standard
error

p value
(BH
adjusted)

Phylum Genus Species Description

8.37 1.17 2.55E−10 Firmicutes Lactobacillus Lactobacillus gasseri Lactic acid bacterium. Member of diverse
communities including gut, vaginal, and
oral microbiome. Appears to be the main
species of Lactobacilli that inhabits the
human gastrointestinal tract

6.81 0.99 9.61E−10 Firmicutes Catenibacterium Catenibacterium
mitsuokai

Phylogenetic relative of Lactobacilli. Found
in gastrointestinal tract

4.82 0.99 3.94E−05 Firmicutes Eubacterium Eubacterium hallii* Butyrate forming, Lactate-utilizing bac-
terium. Present in human feces

5.71 1.29 3.13E−04 Ascomycota Candida Candida dubliniensis Opportunistic fungus. Part of the oral
fungal microbiome. Present in periodontal
disease

2.98 0.80 4.17E−03 Firmicutes Lactobacillus Lactobacillus
salivarius

Lactic acid bacterium. Member of diverse
communities including vaginal and oral
microbiome

3.79 1.06 6.30E−03 Actinobacteria Bifidobacterium Bifidobacterium
pseudocatenulatum

Lactic acid bacterium. Gastrointestinal
tract, vagina and mouth of mammals,
including humans

Notes.
* indicates that Eubacterium hallii has been associated with smoking in the nasopharynx microbiome (PMID: 21188149).

and 23% of variance, respectively); however, this differentiation seems to be influenced by

mental health status and in part by cigarette smoking (Figs. 2A and 2B).

Microbial metabolic pathways differ between schizophrenics and
controls
We identified 18 metabolic pathways enriched and 14 decreased in schizophrenia (p

value < 0.05; Fig. 3). Pathways significantly associated with schizophrenia were related

to environmental information processing, in particular to transport systems such as

saccharide, polyol, and lipid transport systems (M00197, M00194, M00200), peptide

and nickel transport (M00239), metallic cation, iron-siderophore, and vitamin B12

transport (M00246), and phosphate and amino acid transport (M00222), including

glutamate transport (M00233). In turn, pathways found in control individuals, but not in

individuals with schizophrenia, were related to energy metabolism, such as ATP synthesis

and ATP synthase (M00144, M00150, M00157, M00164) and carbohydrate and lipid

metabolism, such as central carbohydrate metabolism (M00011, M00009, M00007) and

lipopolysaccharide metabolism (M00060).

DISCUSSION
This study is among the first surveys on the composition and differences in the microbiome

of schizophrenia patients and healthy controls using shotgun metagenomic sequencing.
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Figure 2 Covariation of community structure shows that diversity patterns of samples correlate
with disease status, i.e., schizophrenia and controls, and potentially with smoking (at the genus
level). Points represent principal coordinate analysis (PCoA loadings) on Jensen–Shannon Diversity
distances. Principal coordinates 1 and 2 in (A) (65% of variance) and principal coordinates 1 and 3
in (B) (63% of variance).

Saccharide, polyol, and lipid transport system: M00197
Saccharide, polyol, and lipid transport system: M00194

Purine metabolism: M00049

Phosphotransferase system (PTS): M00276

Purine metabolism: M00050

Peptide and nickel transport system: M00239
Phosphate and amino acid transport system: M00237

Arginine and proline metabolism: M00029
Serine and threonine metabolism: M00018

Pyrimidine metabolism: M00053
Phosphate and amino acid transport system: M00222

Cysteine and methionine metabolism: M00017
Phosphate and amino acid transport system: M00233

Arginine and proline metabolism: M00028
Aromatic amino acid metabolism: M00025

Metallic cation, iron−siderophore and vitamin B12 transport system: M00246
Saccharide, polyol, and lipid transport system: M00200

Methane metabolism: M00174

Pyrimidine metabolism: M00051
Cofactor and vitamin biosynthesis: M00115

ATP synthesis: M00144
Central carbohydrate metabolism: M00011

Lipopolysaccharide metabolism: M00060
Central carbohydrate metabolism: M00009
Cofactor and vitamin biosynthesis: M00125

Mineral and organic ion transport system: M00300
Cofactor and vitamin biosynthesis: M00123
Central carbohydrate metabolism: M00007

ATP synthesis: M00150

ATP synthesis: M00157
ATP synthase: M00164

Peptide and nickel transport system: M00324

−4−2024

LDA Effect Size

M
et

ab
ol

ic
 P

ro
ce

ss

Samples

Control

Schizophrenia

Figure 3 Microbial metabolic pathways with significantly altered abundances in the schizophrenia
oropharyngeal microbiome. MXXXXX codes correspond to KEGG modules, i.e., a collection of manu-
ally defined functional units (genes). LDA, linear discriminant analysis.

The oropharyngeal microbiome is particularly attractive for microbiome-associated

biomarker development because biological samples can be collected and processed in an

identical and non-traumatic manner from both individuals with psychiatric disorders and

controls. Additionally, while oral and gut microbiomes share little taxonomic resemblance,
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both are significantly associated (Ding & Schloss, 2014), which might be instrumental for

future diagnostic aids. In addition, shifts in oral microbiome diversity have been linked to

immune and neurological diseases such as inflammatory bowel disease and Alzheimer’s

disease (Docktor et al., 2012; Shoemark & Allen, 2014). Although there is little mechanistic

understanding about the role of the microbiome on inflammatory and neurological

disease, some studies have found specific markers (microbes and metabolites) associated

with both gut and oral microbiomes. These markers have been shown to enter the systemic

circulation and elicit systemic immune responses, thus serving as specific biomarkers of

disease (Clark et al., 2013; Farrokhi et al., 2013).

We show that the oropharynx microbiome in schizophrenics is significantly different in

comparison from that of healthy controls. High-level differences were evident at both the

phylum and genus levels; however, the overall composition of the microbiome is similar to

those previously reported (Belda-Ferre et al., 2011; Dewhirst et al., 2010). Proteobacteria,

Firmicutes, Bacteroidetes, and Actinobacteria dominated both schizophrenia patients and

controls, with Ascomycota being more abundant in schizophrenia patients than controls.

At the genus level, we identified key members of the healthy oropharynx microbiome

such as Prevotella, Capnocytophaga, Campylobacter, Veillonella, Streptococcus, Neisseria and

Haemophilus; as reported in other studies that characterize the oropharynx microbiome

(Charlson et al., 2010). We also detected in schizophrenia samples an increase in lactic acid

bacteria, Candida, and Eubacterium, and a marked reduction of Neisseria, Haemophilus,

and Capnocytophaga, suggesting a characteristic dysbiosis signature (Gao et al., 2014).

Notably, decreases in Neisseria and Capnocytophaga abundance have been associated with

cigarette smoking (Charlson et al., 2010); therefore, although we incorporate cigarette

smoking as a coefficient in our models, we can not rule out that this observation is due

to smoking and not mental health status. We also found that Streptococcus mitis and

Streptococcus pneumoniae abundance was associated with smoking, which is consistent

with other findings from culture independent (Charlson et al., 2010) and culture-based

studies (Brook & Gober, 2005).

Reagent and laboratory contamination in genomics in general (Merchant, Wood &

Salzberg, 2014; Strong et al., 2014) and in microbiome studies in particular (Lusk, 2014;

Salter et al., 2014; Weiss et al., 2014) have been recently brought into attention as an

alarming problem. Although contamination affects primarily samples coming from low

diversity ecosystems, in our analysis we used high statistical significance (p value < 0.01

coupled with independent filtering and outlier removal) to prevent spurious detection

of contaminants as differentially abundant. Moreover, our laboratory protocols (library

preparations; sequencing) were performed simultaneously for all samples, and both case

and control samples were loaded in the same sequencing lane, thus minimizing chances of

contamination, i.e., contamination correlated with disease status.

Some of the most abundant species found in samples from individuals with schizophre-

nia (e.g., Lactobacillus, Bifidobacterium, Candida) have been reported previously as

members of the respiratory tract microbiome and have been linked to opportunistic

infections (Kim & Sudbery, 2011; Land et al., 2005). However, relatively abundant species
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in schizophrenia samples are not exclusive inhabitants of the respiratory tract, as bacterial

species we detected have also been described in the gastrointestinal tract (Dillon, 1998;

Duncan, Louis & Flint, 2004; Kageyama & Benno, 2000). In addition, some reports show

that oral and intestinal Lactobacilli share a common origin in the oral cavity (Dal Bello &

Hertel, 2006), suggesting that species such as L. salivarius and L. gasseri (both identified

in this study) might be allochthonous to the human gut and autochthonous to the

respiratory tract (Reuter, 2001), and therefore potentially useful for microbiome signature

development (Aagaard et al., 2012; Haberman et al., 2014). In addition, Lactobacilli

(except L. salivarius) in the intestine has been linked to emotional behavior regulation and

alteration of mRNA expression patterns of the GABA receptor via the vagus nerve (Bravo

et al., 2011). Lactobacilli have also been linked to chronic inflammation and anxiety-like

behavior (Bercik et al., 2010). In particular, L. gasseri has been shown to modulate the

immune system by altering the function of dendritic cells, enterocytes, and components of

innate immunity (Luongo et al., 2013; Selle & Klaenhammer, 2013).

We also detected non-bacterial species such as fungi and DNA viruses (phage;

File S2) that would have been beyond the scope of gene marker surveys, e.g., 16S rRNA

gene (Weinstock, 2012). One fungal species, Candida dubliniensis, was differentially

abundant in individuals with schizophrenia, which has been associated to immune-

compromised individuals (Eggimann & Pittet, 2014; Sebti et al., 2001), but also found

in healthy respiratory tract microbiomes (prevalence of 75% Candida) (Ghannoum et

al., 2010). This suggests that the high abundance of these microbes in schizophrenia

individuals might be associated with altered immune responses or changes in the local

environment that enable their outgrowth, as observed in other diseases (Bisgaard et al.,

2007; Molyneaux et al., 2013). We also detected viruses, primarily phages, in our datasets;

however our group has published a more comprehensive characterization of them in a

larger study population (see Yolken et al., 2015).

We also assessed the functional diversity of the oropharynx microbiome in schizophre-

nia and control samples. There is little information regarding the functional diversity of the

respiratory tract in general, and a complete lack of information in schizophrenia. In our

study, we identified metabolic pathways significantly associated with the microbiomes

of schizophrenics (i.e., environmental information processing) including glutamate

transport (M00233), while the microbiomes of healthy controls were enriched for

bioenergy pathways. Microbial metabolic pathways found in schizophrenia samples have

also been described in samples from the respiratory and digestive tracts such as in gingiva,

oral cavity, and stool (M00239, M00276, M00200, M0028, M0029), reinforcing the notion

that oral and gut microbial communities share features and are associated (Meehan &

Beiko, 2012; Sczesnak et al., 2011; Seekatz et al., 2014; Segata et al., 2012). Dominant

hypotheses for the pathophysiology of schizophrenia, as well as recent genetic studies,

point to neurotransmitter disturbances in glutamatergic and dopaminergic activities

(Falkai, Schmitt & Cannon, 2011; Schizophrenia Working Group of the Psychiatric Genomics

Consortium, 2014). While we found glutamate related pathways to be more abundant in

schizophrenia samples, the design and scope of this study does not allow us to evaluate
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mechanistic hypotheses regarding pathophysiology of schizophrenia and the potential

contribution of the microbiome. Study designs based on metatransciptomics or dual

RNAseq strategies coupled with advanced statistical techniques such as feature reduction

might be instrumental to detect associations between known host genetic determinants

and their expression, and microbiota structure (Morgan et al., 2015). Undoubtedly, study

designs using larger sample sizes and both RNA and DNA information (Franzosa et al.,

2014) collected from different body sites (e.g., intestines) are needed for accurate statistical

validation of microbial and metabolic as promising biomarkers for schizophrenia. Further

analyses of other body sites involving larger study populations will be presented elsewhere

as we collect relevant samples.

In summary, by using metagenomic sequencing, we have shown that it is possible to dis-

tinguish schizophrenia patients from controls by profiling the oropharyngeal microbiome

based on the diversity and composition of microbes. Additionally, microbiomes from

schizophrenics and controls differ in the functions they potentially encode suggesting it

may be important to further characterize other body sites such as the intestines. These

differences could be exploited for the development of biomarkers and ultimately for

therapeutic interventions.

The fact that all controls were non-smokers, although statistically accounted for in

our inferences, might confound the effects of schizophrenia from those of smoking on

microbiome composition. A recent study found no significant differences in diversity

(alpha and beta) between the oral microbiome in healthy smokers and non-smokers

without psychiatric disorders (Morris et al., 2013). However, this and other studies have

found specific taxa (Haemophilus influenzae, Streptococcus pneumoniae, Megasphaera and

Veillonella spp) to be differentially abundant in smokers and non-smokers (in humans

Charlson et al., 2010; in mice Voss et al., 2015). Here we found that the distributions of two

Streptococcus species were better explained by whether the individual was a smoker than

whether the individual had schizophrenia.

Additionally, studies in animal models have indicated that changes in the microbiome

can cause alterations in behavior and cognitive functioning and that these changes can be

modulated by probiotic and antibiotic interventions (Jakobsson et al., 2010; Martin et al.,

2008). The establishment of a link between the microbiome and behavioral and cognitive

functioning in humans might lead to the development of new strategies for the prevention,

management, and treatment of psychiatric disorders.
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