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Abstract

The symmetric Sinc–Galerkin method applied to a separable second-
order self-adjoint elliptic boundary value problem gives rise to a sys-
tem of linear equations (Ψx ⊗ Dy + Dx ⊗ Ψy)u = g where ⊗ is the
Kronecker product symbol, Ψx and Ψy are Toeplitz-plus-diagonal ma-
trices, and Dx and Dy are diagonal matrices. The main contribution
of this paper is to present a two-step preconditioning strategy based on
the banded matrix approximation and the multigrid iteration for these
Sinc–Galerkin systems. Numerical examples show that the multigrid
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preconditioner is practical and efficient to precondition the conjugate
gradient method for solving the above symmetric Sinc–Galerkin linear
system.
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1 Introduction

We present a two-step preconditioner which is a technical hybrid of the
banded matrix approximation and the multigrid iteration, for solving sys-
tems of linear equations arising from symmetric Sinc–Galerkin discretization
of a separable second order self-adjoint elliptic boundary value problem{

Lu = −52 u(x, y) + (µ(x) + ν(y))u(x, y) = f(x, y) , (x, y) ∈ Ω ,
u(x, y) = 0 , (x, y) ∈ ∂Ω ,

(1)

where Ω is a rectangular region in the plane R2, ∂Ω its boundary, and µ(x),
ν(y) and f(x, y) are given nonlinear functions. Without loss of generality,
we assume that Ω is the unit square (0, 1) × (0, 1) . According to Lund [7]
and Lund and Bowers [8] the dxdy × dxdy matrix system is of the form

(Ψx ⊗Dy + Dx ⊗Ψy)u = g , (2)
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where P ⊗ Q represents the Kronecker product of two matrices P and Q,
Ψx and Ψy are symmetric Toeplitz-plus-diagonal matrices, Dx and Dy are
diagonal matrices, and dx and dy are the numbers of the mesh-points along
the x- and the y-directions, respectively. The attraction of this approach is
that the symmetric Sinc–Galerkin method for boundary value problems is
convergent exponentially under suitable conditions, and it is also effective in
handling singular problems [7, 11].

Lund [7] used block Gauss elimination to solve the system of linear equa-
tions (2) through finding an orthogonal matrix which transforms the coeffi-
cient matrix into a block-diagonal one, and then solving the reduced system
of linear equations by a block Gauss elimination process. This approach per-
forms well because all matrix inversions and matrix multiplications in the
Gauss elimination process can be performed only on diagonal matrices. Its
cost for solving the symmetric Sinc–Galerkin linear system (2) is of O(dxd

3
y)

or O(d3
xdy) operations.

Recently, Ng [9] constructed a banded-matrix preconditioner

B = Bx ⊗Dy + Dx ⊗By , (3)

to precondition the coefficient matrix in (2) and employed the resulting pre-
conditioned conjugate gradient method to solve the linear system (2). Here
Bx and By are tridiagonal matrices. All eigenvalues of the preconditioned
matrix are uniformly bounded by positive constants from below and above,
respectively [9], and therefore, the condition number of the preconditioned
matrix is uniformly bounded by a constant independent of the matrix size.
Considering that the computational complexity of solving Bv = r is still
quite expensive, Ng [9] further adopted the minv [3] as a second-step pre-
conditioner to precondition the matrix B in numerical experiments. Numer-
ical results showed that the preconditioned conjugate gradient method with
the two-step preconditioner composed of the banded matrix B and its minv
factorization converges quite rapidly.

In this paper, we investigate the solution of the system of linear equa-
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tions (2) by the preconditioned conjugate gradient method with a two-step
preconditioner which is a technical hybrid of the banded matrix B and its
multigrid iterations. Numerical examples show that the new preconditioner
gives a practical and efficient to precondition the conjugate gradient method
for solving the symmetric Sinc–Galerkin linear system (2). In Section 2 we
study some properties of the discrete Sinc–Galerkin linear system. In Sec-
tion 3 we introduce the new two-step preconditioner. Numerical results are
presented in Section 4 to illustrate the effectiveness of the new preconditioner.

2 Symmetric Sinc–Galerkin linear systems

We solve the system of linear equations (2) by the preconditioned conjugate
gradient method, in which the matrix-vector product is the most costly part
in each iteration. However, for the special structure of the coefficient matrix
in the system of linear equations (2) we show that the matrix-vector product
can be computed efficiently.

By assembling the Sinc–Galerkin linear system for the coefficients, we
obtain the system of linear equations

Au = [(Tx + Φx)⊗Dy + Dx ⊗ (Ty + Φy)]u = g , (4)

where

u = [u1,1, u1,2, . . . , u1,my+ny+1, . . . , umx+nx+1,my+ny+1]
T ; (5)

g = [g1,1, g1,2, . . . , g1,my+ny+1, . . . , gmx+nx+1,my+ny+1]
T ; (6)

Φx = h2
x · diag

[(
−1

φ′(x−mx)
3/2

) (
1

φ′(x−mx)
1/2

)′′

+
µ(x−mx)

φ′(x−mx)
2
, . . . ,(

−1

φ′(xnx)
3/2

) (
1

φ′(xnx)
1/2

)′′

+
µ(xnx)

φ′(xnx)
2

]
,
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Φy = h2
y · diag

[(
−1

φ′(y−my)
3/2

) (
1

φ′(y−my)
1/2

)′′

+
ν(y−my)

φ′(y−my)
2
, . . . ,(

−1

φ′(yny)
3/2

) (
1

φ′(yny)
1/2

)′′

+
ν(yny)

φ′(yny)
2

]
,

with φ(·) a conformal mapping [7, 8],

xj = φ−1(jhx) , yk = φ−1(khy) , j, k = 0,±1,±2, . . . ;

and for z ∈ {x, y} , dz = mz + nz + 1 , Tz is a dz × dz symmetric Toeplitz
matrix with its first column

[π2/3,−2, 2/22, . . . , 2(−1)dz−1/(dz − 1)2]T ;

and

Dz = diag

[
1

φ′(z−mz)
1/2

, . . . ,
1

φ′(znz)
1/2

]
.

Evidently, the coefficient matrix A in (4) is a block Toeplitz-plus-diagonal
matrix. By sufficiently considering this special structure, we see that the
matrix-vector product Aw should be computed in O(dxdy log(dxdy)) oper-
ations [9]. Thus, iterative methods such as the conjugate gradient method
may be efficient in solving this system of linear equations. In general, the
convergence rate of the conjugate gradient method depends on the condition
number of the coefficient matrix A. Also, Ng [9] showed that the condition
number of the matrix A is of order O(d2

x +d2
y), which implies that the conju-

gate gradient method may converge very slowly when it is employed to solve
the system of linear equations (4).

To accelerate the convergence speed of the conjugate gradient method,
Ng [9] constructed a banded matrix preconditioner

B = (Lx + Φx)⊗Dy + Dx ⊗ (Ly + Φy) (7)
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to the matrix A, and showed that this preconditioner is optimal in the sense
of the spectral equivalence. Here Lx (or Ly) is an one-dimensional discrete
Laplacian matrix of the form

Lx = tridiag[−1, 2,−1] .

More precisely, we state the main result of Ng [9].

Theorem 1 If µ and ν in the separable second-order self-adjoint elliptic
boundary value problem (1) are nonnegative, and the conformal mapping φ
satisfies (

−1

(φ′(x))3/2

) (
1

(φ′(x))1/2

)′′

≥ 0 , for all x ∈ (0, 1) , (8)

then Lx +Φx , Ly +Φy , Dx, Dy and B are symmetric positive definite matri-
ces. In addition, all eigenvalues of the matrix B−1A are within an interval lo-
cated on the positive semi-axis, and therefore, the condition number κ(B−1A)
of the matrix B−1A is uniformly bounded by a positive constant c independent
of the matrix size.

In fact, the matrix B is a block-tridiagonal matrix. However, the work
for solving the generalized residual system

Bv = r (9)

for some vector r, is quite costly. In the next section, we propose a multigrid
strategy for solving (9).

3 Multigrid preconditioners

Consider two basic iterations

x(j+1) = V (i)x(j) + b(i) := V(i)(x(j),b(i)) , i = 1, 2 , (10)
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for the solution of the linear system Ax = b , where A, M (i), V (i) := I −
[M (i)]−1A ∈ Cn×n , and b,b(i) := [M (i)]−1b ∈ Cn . Given a full-rank matrix
P k ∈ Cn×k , with k < n , a Two-Grid Method (tgm) is defined by the
following algorithm [6]

TGM(V (1), V (2), P k, ν1, ν2)(x
(j))

1. x̃(j) = [V(1)]ν1(x(j),b(1))

2. d̃ = Ax̃(j) − b

3. d = (P k)∗d̃

4. Ak = (P k)∗AP k

5. Solve Aky = d

6. x̂(j) = x̃(j) − P ky

7. x(j+1) = [V(2)]ν2(x̂(j),b(2))

In the algorithm, ∗ denotes the Hermitian transpose. Steps 1 and 7
concern the application of ν1 sweeps of the “intermediate iteration” (10)
with i = 1 and of ν2 steps of the “smoothing iteration” (10) with i = 2 ,
whereas steps 2–6 define the “coarse grid correction” that depends on the
projection operator P k. Here the names “intermediate” and “smoothing”
refer to the multi-iterative terminology [10]. We say that a method is multi-
iterative if it is composed of at least two distinct iterations: the idea is that
these basic components should have complementary spectral behaviours so
that the whole procedure is fast. In our case the “smoothing iteration” is
chosen in such a way that it reduces the error in the subspace where A is
well-conditioned; (but it is slowly convergent in the rest of the space) the
coarse grid iteration has spectral radius equal to 1 and therefore does not
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converge at all, but it is very rapidly convergent in the subspace where A is
ill-conditioned; finally the “intermediate” iteration is strongly convergent in
that subspace where the combined effect of the other two iterations resulted
to be less effective.

The global iteration matrix of tgm := tgmk is then

tgm(V, P k) =
[
V (2)

]ν2
[
I − P k

(
(P k)∗AP k

)−1
(P k)∗A

] [
V (1)

]ν1
.

Fiorentino and Serra-Capizzano [4, 5] proposed a fast tgm and a fast multi-
grid (V-cycle) method for Toeplitz and τ problems (the τ class is the algebra
associated to the most known sine transform [1]). In this paper, we consider
the smoothing iteration (10), where the matrix

V (1) = I −B/‖B‖∞ ,

and the intermediate iteration is

V (2) = I − 2B/‖B‖∞ .

Following [4, 5, 2], the projection is constructed as

Pk = (tridiag[1, 2, 1]⊗ tridiag[1, 2, 1])Uk ,

where the matrix
Uk = T k1

n1
⊗ T k2

n2
,

with nj = 2kj + 1 and the matrix

(T k
n )i,j =

{
1 , for i = 2j − 1 , j = 1, . . . , k ,
0 , otherwise .

(11)

Numerical results in the next section show that the proposed multigrid
preconditioners are efficient.
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4 Numerical results

The two examples from Ng [9] illustrate the performance of the new hybrid
multigrid preconditioner.

Example 2

−52u(x, y) = 3ex+yxy[(x+3)(1−y)+(y+3)(1−x)] , (x, y) ∈ (0, 1)×(0, 1) .

The known solution is u(x, y) = 3ex+yxy(1 − x)(1 − y) . The conformal
mapping φ(z) =log(z/(1− z)) is used in this example.

Example 3

−52 u(x, y) +

(
1

x2
+

1

y2

)
u(x, y) =

y ln(y)(ln(x)− 1)

x
+

x ln(x)(ln(y)− 1)

y
,

(x, y) ∈ (0, 1)× (0, 1) .

The solution is u(x, y) = xy ln(x) ln(y) . Here, the solution has logarithmic
singularities at x = 0 or y = 0 . The conformal mapping φ(z) =log(z/(1−z))
is also used in this example.

In these two examples, φ satisfies the conditions of Theorem 1. In the
test, we take d = π/2 and mx = nx = my = ny = m as suggested in
Lund [7], where the size of the Sinc–Galerkin matrix is (2m + 1)2. More-
over, the problems all have homogeneous Dirichlet boundary conditions and
known solutions.

All the experiments are performed in matlab with machine precision 10−16.
In our tests, the zero vector is the initial guess of the preconditioned con-
jugate gradient iterations. We note that the accuracy of the computed so-
lution depends on the Sinc–Galerkin method used in the discretization of
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Table 1: Number of iterations required for convergence for Example 2 when
α = β = 1/2 and h = π/

√
m .

Size Error I B M
92 4.1× 10−3 19 3 3
172 3.7× 10−4 46 3 3
332 1.1× 10−5 ** 4 4
652 7.6× 10−8 ** 5 5

Table 2: Number of iterations required for convergence for Example 2 when
α = β = 1 and h = π/

√
2m .

Size Error I B M
92 1.5× 10−2 22 3 3
172 3.3× 10−3 46 4 4
332 3.0× 10−4 >100 5 5
652 8.9× 10−6 >100 6 6

the boundary value problem. We determine the error between the numerical
approximation and the true solution at the Sinc points defined as follows:

Error = max
−mx≤j≤nx,−my≤k≤ny

|uj,k − u(xj, yk)| .

These error numbers were computed by Ng [9] by a direct solver applied to
the relevant Sinc–Galerkin system. One cannot expect iterative methods to
solve the underlying problem more accurately, so we stop the iterations when
the error between numerical iterate and true solution at the Sinc nodes is
comparable to the error computed by the direct solver.

Tables 1–4 list the number of iterations required for the convergence of
the conjugate gradient method using the hybrid preconditioner. Two sets
of parameters: (a) α = β = 1/2 and h = π/

√
m , and (b) α = β = 1 and

h = π/
√

2m , are used to test the method (see Lund [7]). In the tables, the
symbol I means that the system is solved without using a preconditioner,
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Table 3: Number of iterations required for convergence for Example 3 when
α = β = 1/2 and h = π/

√
m .

Size Error I B M
92 6.6× 10−4 19 4 4
172 1.1× 10−4 46 5 5
332 5.8× 10−6 >100 8 6
652 6.0× 10−8 >100 13 9

Table 4: Number of iterations required for convergence for Example 3 when
α = β = 1 and h = π/

√
2m .

Size Error I B M
92 5.1× 10−3 19 6 5
172 1.7× 10−3 46 8 5
332 2.2× 10−4 >100 15 6
652 9.6× 10−6 >100 24 9

the symbol B represents the banded minv preconditioner that was used by
Ng [9], and the symbol M represents that the system is solved using the
new hybrid preconditioner. The used multigrid algorithm is the V-cycle with
direct solution of the system when the size equals 92.

See that as the size increases, the number of conjugate gradient itera-
tions increases if no preconditioner is used. In Example 3, when the size is
332 or 652, the numbers of conjugate gradient iterations required for conver-
gence exceed 100 iterations. However, all the preconditioned systems con-
verge in less than 100 iterations. For Example 3, we find that the performance
of hybrid preconditioners is better since our preconditioning strategy is based
on the banded matrix approximation and the banded matrix approximation
is better than minv preconditioning for variable coefficient problems.

Finally, we conclude that the main contribution of this paper is to present
a two-step preconditioning strategy based on the banded matrix approxima-
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tion and the multigrid iteration for these symmetric Sinc–Galerkin linear
systems. Our numerical results show that the two-step preconditioner is
practical and efficient to precondition the conjugate gradient method for
solving the symmetric Sinc–Galerkin linear systems.
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