
ANZIAM J. 46 (E) ppE85–E104, 2004 E85

Simulation of monthly rainfall totals
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Abstract

The observed distribution of non-zero rainfall totals for a given
month is often modelled using a maximum likelihood estimate for the
Gamma distribution. In this paper we show that a Gamma distri-
bution can be regarded as a zero order approximation to a density
distribution constructed by a series of associated Laguerre polynomi-
als. The coefficients of the series are easily calculated and used to
improve the shape of the initial approximation by adjusting higher
order moments. We show that this more general method models joint
probability distributions for two or more months and in particular
that the series model does not require an assumption of independence
between months. Finally we explore how the series method generates
simulated data that is statistically indistinguishable from the observed
data. We illustrate our methods on a case study at Mawson Lakes and
although monthly correlations may not be significant we note that the
rainfall records at Koonamore Station show many significant correla-
tions for successive months.
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1 Introduction

We previously modelled [8] the non-zero monthly rainfall at Mawson Lakes
by a maximum likelihood Gamma distribution Γ(α, β). Researchers in other
countries [1, 10, 11] have also used the Gamma distribution for fitting rainfall
data.
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The maximum likelihood Gamma distribution matches the first order
statistics but does not match higher order statistics and consequently may
not match the observed characteristics. At Mawson Lakes there are some
months where the Gamma distribution does not appear to have the correct
shape. In this paper we propose a more general model in which the Gamma
distribution is extended to a rapidly convergent series of associated Laguerre
polynomials Lα

m(βx), where α and β are obtained from the parameters for the
original Gamma distribution. The more general model allows us to match
the observed higher order moments and hence allows us to match more of
the observed characteristics. In Figure 1 we show how the shape of the fitted
distribution converges to the shape of the observed distribution for the month
of July as the number of terms increases.

If there are some observed zero values it may be best to assume that
Pr[X = 0] > 0 . In such cases the data is modelled by a mixed distribution
and the Gamma distribution or the more general series representation is used
to model the non-zero part of the distribution.

We also show that the series of associated Laguerre polynomials can be
used to model the joint probability distribution for two or more months. Once
again we show that the series method can be regarded as a generalisation
of the elementary method in which the joint distribution is modelled by a
product of independent Gamma distributions. In this case observe that the
series method does not require an assumption of independence. In order
to obtain analytic expressions for the various marginal distributions we will
show that it is convenient to use new variables representing weighted totals
and weighted proportions. For two variables x1 and x2 we define

t = β1x1 + β2x2 and s =
β1x1

β1x1 + β2x2

,

for the weighted total and weighted proportion of the first month respec-
tively. Our methods make extensive use of several well-known formulae from
the theory of special functions. In particular we use power series expansions
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Figure 1: Compares the fitted densities for the Gamma and Laguerre series
with the original data for July. There are 114 years of rainfall records at
Mawson Lakes and all monthly recorded totals were non-zero. The parame-
ters α = 3.4595 and β = 0.0730 were determined by the maximum likelihood
method
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and standard integrals involving the Gamma and Beta functions. We em-
phasise that the calculations are performed easily in matlab on standard
desktop computers.

The cumulative marginal probability for the weighted total and the cu-
mulative conditional probability for the weighted proportion contributed by
the first month can now be used to generate simulated rainfall totals for each
month in a two month period. We use standard statistical tests to show
that simulated data cannot be distinguished from the observed data and we
extend our methods to the more general case of n months. We are also able
to simulate certain special cases such as unusually dry spells or prolonged pe-
riods of high rainfall. Such unusual events are of great interest in catchment
planning and management.

2 The associated Laguerre polynomials

For each non-negative integer m the associated Laguerre polynomial Lα
m(x)

of order α is the unique polynomial solution of degree m to the differential
equation

xy′′ + (α+ 1− x)y′ +my = 0 .

This equation is known as the associated Laguerre differential equation. The
associated Laguerre polynomial

Lα
m(x) =

m∑
p=0

Γ(α+m+ 1)(−1)pxp

Γ(α+ p+ 1)p!(m− p)!
. (1)

The associated Laguerre polynomials satisfy an orthogonality relationship on
the interval [0,∞):

m!

Γ(α+m+ 1)

∫ ∞

0
Lα

m(x)Lα
n(x)xαe−x dx =

{
0 , m 6= n ,
1 , m = n ,

(2)

with weight function xαe−x. For further details see Bell [2] or Lebedev [4].
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3 The probability distribution for one

variable

Rosenberg et al. [8] modelled the distribution of non-zero monthly rainfall
totals at Mawson Lakes as a random variable Xi for each i = 1, 2, . . . , 12 with
probability density given in non-standard notation by a Gamma distribution

ϕ(xi) =
βi

Γ(αi + 1)
(βixi)

αie−βixi . (3)

They used maximum likelihood estimation to find the parameters α and β,
and a Chi-square test was used to check the goodness of fit. The initial model
formulated by Rosenberg et al. is here refined to find a probability density
function (pdf) with matching statistics using a series of associated Laguerre
polynomials [9] in the form

ϕ(xi) =
∞∑

m=0

cmL
αi
m (βixi)(βixi)

αie−βixi . (4)

We calculate the coefficients cm, from the standard orthogonality relation-
ships (2), which imply

cm =
βim!

Γ(m+ αi + 1)
E [Lαi

m (βiXi)] .

In practice the pdf is represented by a truncated associated Laguerre series
with density

ϕ(xi) ∼
M∑

m=0

cmL
αi
m (βix)(βixi)

αie−βixi .

It is a matter of judgment as to how many terms are used. The expansion
of the pdf in (4) gives

ϕ(xi) = c0(βixi)
αie−βixi + c1L

αi
1 (βixi)(βixi)

αie−βixi

+c2L
αi
2 (βixi)(βixi)

αie−βixi + · · ·

∼ βαi+1

Γ(αi + 1)
xαi

i e
−βixi ,
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since c0 = βi/Γ(αi + 1) . The above expansion shows that the first term
of the pdf is the maximum likelihood Gamma distribution, which means
that the Gamma distribution is equivalent to the associated Laguerre series
distribution with M = 0 . The other terms from the expansion successively
improve the fit of the truncated series to the data. There is no mathematical
guarantee that the truncated series will be non-negative for M = 1, 2, . . . but
in practice this property is usually preserved.

4 Correlation of monthly rainfall totals

Many assume that monthly rainfall totals are independent. At Mawson Lakes
the observed correlations suggest this assumption is unjustified. We use
Spearmans correlation method to test the significance of the correlations for
monthly totals, see Table 1. Details of the Spearmans correlation method
can be found in books by Hoel [3] or Pollard [6].

Our methodology can be applied to any location and some locations will
have more inter-monthly dependence than others. Koonamore Station in the
North-East pastoral district of South Australia has several pairs of monthly
rainfall totals which have highly significant correlations, see Table 2. Note,
for example, the block of significant correlations in the months August to
November. On the other hand the number of correlations at Mawson Lakes
are far less significant. At both locations there is correlation between months
which are not adjacent; this suggests that an autoregressive model of order 1,
or a Markov Process, would be inappropriate.

The method proposed in the following sections does not require the vari-
ables to be independent and can therefore account for any inter-monthly
dependence which may be present.



4 Correlation of monthly rainfall totals E92

Table 1: P-values resulting from Spearmans correlation method on the
monthly rainfall totals at Mawson Lakes. Significant results at the 0.05 level
are shown in bold.

Jan Feb Mar Apr May Jun Jul Aug Sep
Jan - 0.170 0.632 0.294 0.820 0.667 0.236 0.303 0.109
Feb 0.170 - 0.586 0.199 0.735 0.152 0.017 0.348 0.976
Mar 0.632 0.586 - 0.709 0.287 0.693 0.655 0.483 0.149
Apr 0.294 0.199 0.709 - 0.696 0.071 0.729 0.521 0.076
May 0.820 0.735 0.287 0.696 - 0.251 0.430 0.038 0.045
Jun 0.667 0.152 0.693 0.071 0.251 - 0.115 0.618 0.389
Jul 0.236 0.017 0.655 0.729 0.430 0.115 - 0.139 0.225
Aug 0.303 0.348 0.483 0.521 0.038 0.618 0.139 - 0.013
Sep 0.109 0.976 0.149 0.076 0.045 0.389 0.225 0.013 -
Oct 0.882 0.818 0.899 0.781 0.070 0.424 0.398 0.052 0.310
Nov 0.326 0.825 0.076 0.826 0.583 0.645 0.376 0.026 0.118
Dec 0.255 0.724 0.500 0.010 0.363 0.724 0.589 0.544 0.646

Oct Nov Dec
Jan 0.882 0.326 0.255
Feb 0.818 0.825 0.724
Mar 0.899 0.076 0.500
Apr 0.781 0.826 0.010
May 0.070 0.583 0.363
Jun 0.424 0.645 0.724
Jul 0.398 0.376 0.589
Aug 0.052 0.026 0.544
Sep 0.310 0.118 0.646
Oct - 0.022 0.055
Nov 0.022 - 0.192
Dec 0.055 0.192 -
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Table 2: P-values resulting from Spearmans correlation method on the
monthly rainfall totals at Koonamore Station. Significant results at the 0.05
level are shown in bold.

Jan Feb Mar Apr May Jun Jul Aug Sep
Jan - 0.972 0.517 0.000 0.001 0.981 0.014 0.414 0.793
Feb 0.972 - 0.077 0.547 0.790 0.910 0.934 0.699 0.362
Mar 0.517 0.077 - 0.324 0.046 0.047 0.131 0.857 0.887
Apr 0.000 0.547 0.324 - 0.000 0.955 0.317 0.454 0.140
May 0.001 0.790 0.046 0.000 - 0.584 0.417 0.441 0.526
Jun 0.981 0.910 0.047 0.955 0.584 - 0.043 0.934 0.338
Jul 0.014 0.934 0.131 0.317 0.417 0.043 - 0.706 0.120
Aug 0.414 0.699 0.857 0.454 0.441 0.934 0.706 - 0.005
Sep 0.793 0.362 0.887 0.140 0.526 0.338 0.120 0.005 -
Oct 0.272 0.021 0.905 0.033 0.777 0.125 0.928 0.448 0.000
Nov 0.336 0.498 0.298 0.781 0.318 0.768 0.311 0.015 0.005
Dec 0.281 0.540 0.847 0.285 0.516 0.044 0.068 0.997 0.127

Oct Nov Dec
Jan 0.272 0.336 0.281
Feb 0.021 0.498 0.540
Mar 0.905 0.298 0.847
Apr 0.033 0.781 0.285
May 0.777 0.318 0.516
Jun 0.125 0.768 0.044
Jul 0.928 0.311 0.068
Aug 0.448 0.015 0.997
Sep 0.000 0.005 0.129
Oct - 0.253 0.027
Nov 0.253 - 0.665
Dec 0.027 0.665 -
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5 The joint distribution for two variables

We represent the two dimensional joint density for monthly rainfall in the
form of a series of associated Laguerre polynomials

ϕ(x) =
∞∑

m=0

cm

[
2∏

i=1

Lαi
mi

(βixi)wαi
(βixi)

]
, (5)

where wαi
(βixi) = (βixi)

αie−βixi is a weight function, and we write x =
(x1, x2) and m = (m1,m2). The orthogonality of the associated Laguerre
polynomials implies that the coefficients formula

cm =
2∏

j=1

βjmj!

Γ(mj + αj + 1)
E

 2∏
j=1

Lαj
mj

(βjXj)

 ,

for each m. We calculate the expected values from the observed data. We
consider only the non-zero data points. If zero data points occur then the
model can be extended to include all data using a mixed distribution.

6 Transformations and corresponding

marginal distributions

To calculate the associated cumulative probabilities we change variables to

t = β1x1 + β2x2 and s =
β1x1

β1x1 + β2x2

,

where t is the weighted total and s is the weighted proportion for the first
month. Equivalently, we can write

β1x1 = st and β2x2 = (1− s)t .



6 Transformations and corresponding marginal distributions E95

The Jacobian determinant for the transformation is calculated as

| det J | =
∣∣∣∣∣det

[
∂x1

∂s
∂x1

∂t
∂x2

∂s
∂x2

∂t

]∣∣∣∣∣ =

∣∣∣∣∣det

[ t
β1

s
β1

−t
β2

(1−s)
β2

]∣∣∣∣∣ =
t

β1β2

and the joint density function ϕ(x), for the random variables X1 and X2,
in (5) is transformed into the new joint density function

ψ(s, t) =
∞∑

m=0

cmL
α1
m1

(st)Lα2
m2

((1− s)t)(st)α1(1− s)α2tα2e−t t

β1β2

(6)

for the random variables

T = β1X1 + β2X2 and S =
β1X1

β1X1 + β2X2

.

Using the formula (1) for the associated Laguerre polynomials, equation (6)
becomes

ψ(s, t) =
∑
m,p

cmk(m, p)s
α1+p1(1− s)α2+p2tα1+α2+p1+p2+1e−t (7)

where

k(m, p) =
2∏

i=1

Γ(αi +mi + 1)(−1)pi

Γ(αi + pi + 1)(mi − pi)!pi!

1

βi

.

It follows that the marginal density h(t) =
∫ 1
0 ψ(s, t)ds for the weighted total

T is given by

h(t) =
∑
m,p

cmk(m, p)t
α1+α2+p1+p2+1e−t

∫ 1

0
sα1+p1(1− s)α2+p2ds

=
∑
m,p

cmk(m, p)t
α1+α2+p1+p2+1e−tB(α1 + p1 + 1, α2 + p2 + 1) ,

where B(·, ·) denotes the standard Beta function1. The cumulative marginal
probability for T is given by

H(τ) =
∫ τ

0
h(t) dt

1B(x, y) =
∫ 1

0
sx−1(1− s)y−1ds
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=
∑
m,p

cmk(m, p)Γ(α1 + α1 + p1 + p2 + 2; τ)Γ(α1 + α1 + p1 + p2 + 2)

×B(α1 + p1 + 1, α2 + p2 + 1) , (8)

where τ ∈ [0,∞), Γ( · ) is the standard Gamma function2 and Γ( · ; τ) is the
incomplete Gamma function3.

7 Simulation of rainfall for two months

Suppose we wish to simulate rainfall for a period of two months; we need
to select a random weighted total and then, for the given weighted total, we
also need to find a random weighted proportion. The weighted two monthly
total t = β1x1 + β2x2 , where x1 and x2 denote rainfall totals in the first
and second months respectively. Since H(τ) ∈ [0, 1] we choose a randomly
generated weighted total τ by generating a random number r ∈ [0, 1] and
then solving the equation H(τ) = r to find τ . This is depicted in Figure 2
for the months July and August. In this case r = 0.376 and τ = 7.8 .

Given a weighted total τ ∈ [0,∞) we wish to find the weighted proportion
for the first month. To do this we must find the conditional cdf for S given
that T = τ . By applying Bayes formula we have

Pr [S < σ | τ ≤ T < τ + ∆τ ] =
Pr [S < σ & τ ≤ T < τ + ∆τ ]

Pr [τ ≤ T < τ + ∆τ ]

=

∫ τ+∆τ
τ [

∫ σ
0 ψ(s, t) ds] dt∫ τ+∆τ

τ

[∫ 1
0 ψ(s, t) ds

]
dt

=

∫ τ+∆τ
τ h(σ; t) dt∫ τ+∆τ

τ h(t) dt

2Γ(a) =
∫∞
0

xa−1e−xdx
3Γ(a; τ) = 1

Γ(a)

∫ τ

0
ta−1e−tdt
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→ h(σ; τ)

h(τ)
as ∆τ → 0 (9)

where h(σ; t) =
∫ σ
0 ψ(s, t) ds and is given by

h(σ; τ) =
∑
m,p

c[+,m] k(m, p) τ
α1+α2+p1+p2+1e−τB(α1 + p1 + 1, α2 + p2 + 1)

×B(α1 + p1 + 1, α2 + p2 + 1;σ) .

Also note that h(1; τ) = h(τ) . The above limit (9) exists for all τ and since
the function G(σ; τ) = h(σ; τ)/h(τ) is non-negative and monotone increasing
with G(0; τ) and G(1; τ) = 1 we define the conditional probability

Pr[S < σ | T = τ ] = lim
∆τ→0

Pr[S < σ | τ ≤ T < τ + ∆τ ]

=
h(σ; τ)

h(τ)

= G(σ; τ) . (10)

Find the weighted proportion σ by generating another random number
r1 ∈ [0, 1] and solving the equation G(σ; τ) = r1 . Finally, the simulated
rainfall total is (x∗1, x

∗
2), where

x∗1 =
τσ

β1

and x∗2 =
τ(1− σ)

β2

.

8 Results for the two dimensional case

Incorporating the ideas and formulas above we generated (using matlab)
some synthetic data for a two monthly period of rainfall at Mawson Lakes.
Table 3 compares the statistics for the generated weighted totals and the
actual weighted totals. Rainfall data was supplied from the Bureau of Me-
teorology. There are 100 generated weighted totals for each two monthly
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Table 3: Statistics of the weighted totals for each two monthly period
Actual Generated Actual Generated P-value
Median Median sd sd

December–January 2.51 2.20 1.48 1.43 0.216
March–April 1.81 1.86 1.40 1.16 0.848

September–October 5.39 4.61 2.23 2.54 0.400

combination. The joint probability density for the two months is modelled
by using a truncated series of associated Laguerre polynomials

ϕ(x) =
M∑

m=0

cm

[
2∏

i=1

Lαi
mi

(βixi)wαi
(βixi)

]
, (11)

with M = 2 . Applying a Mann–Whitney test (details of which can be found
in [5]), in each of the above examples, shows there is not enough evidence to
reject the null hypothesis that the actual and generated totals come from the
same population. This is because each P-value is greater than the significance
level (α = 0.05).

9 A simulated dry or wet event

If we can simulate a dry or wet season, then we can simulate the performance
of a water cycle management system when water supply is low or high. It is
important to understand how the system will behave during extreme periods.
The occurrence of droughts and prolonged periods of high rainfall are of great
interest in catchment planning and management.

To generate a random total, given that we wish to simulate a one in q dry
event, we solve the equation H(τ) = r1/q , where r1 is an random number
in [0, 1] and r1/q will be a random number in [0, 1/q].

To generate a random total, given that we wish to simulate a one in q
wet event, we solve the equation H(τ) = 1− r1/q , where H(τ) will be in the
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interval [1 − 1/q, 1]. Once τ has been generated a weighted proportion can
be generated from G(σ; τ) = r2 , where r2 is a random number in [0, 1].

10 Extension to n months

The method in Section 6 is extended to n months with the following joint
probability density function,

ϕ(x) =
∞∑

m=0

cm

[
n∏

i=1

Lαi
mi

(βixi)wαi
(βixi)

]
(12)

where wαi
(βixi) = (βixi)

αie−βixi is a weight function, and m = (m1, . . . ,mn)
and x = (x1, . . . , xn) .

We have to make the change of variables such that

t = β1x1 + · · ·+ βnxn , s1 =
β1x1

β1x1 + β2x2

,

s2 =
β1x1 + β2x2

β1x1 + β2x2 + β3x3

, . . . , sn−1 =
β1x1 + · · ·+ βn−1xn−1

β1x1 + · · ·+ βnxn

, (13)

where n is the number of months. Equivalently the above equations are

βixi =

{
t
∏n−1

j=1 sj , for i = 1 ,
t(1− si−1)

∏n−1
j=1 sj , for i = 2, . . . , n .

For this change of variables the absolute value of the Jacobian determinant

| det J | = tn−1
n∏

i=1

1

βi

n−1∏
i=2

si−1
i . (14)

Consequently the joint density function ϕ(x) in (12), for the random variables
X1, . . . , Xn , transforms into the new joint density ψ(s1, . . . , sn, t),

ψ(s1, . . . , sn−1, t) =
∞∑

m=0

cm
n∏

i=1

Lαi
mi

(πi)wαi
(πi)

n−1∏
j=1

t
sj

j+1

βj

. (15)
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for the random variables S1, . . . , Sn−1 and T . We define

π1 = s1 · · · sn−1t ,

π2 = (1− s1)s2 · · · sn−1t ,

π3 = (1− s2)s3 · · · sn−1t ,
...

πn = (1− sn−1)t .

Given the joint density function in (15) we find, using the method described
in Section 6, the cumulative marginal probability distribution for the random
variable T and the conditional cumulative marginal probability distribution
for Sn−1 given T = τ , Sn−2 given T = τ and Sn−1 = σn−1 and so on. These
are

H(τ) =
∑
m,p

cmk(m, p)
n−1∏
i=1

B

i+ i∑
j=1

(αj + pj), αi+1 + pi+1 + 1


×Γ

n+
n∑

j=1

(αj + pj)

 Γ

n+
n∑

j=1

(αj + pj); τ


and

G(σn−1; τ) =
∑
m,p

cmk(m, p)bn−1(σn−1; p)τ
(n−1)+

∑n

i=1
(αi+pi)e−τ

G(σn−2; τ, σn−1) =
∑
m,p

cmk(m, p)bn−2(σn−2; p)τ
(n−1)+

∑n

i=1
(αi+pi)e−τ

×σ
n−2+

∑n−1

j=1
(αj+pj)

n−1 (1− σn−1)
αn+pn

...

G(σ1; τ, σn−1, . . . , σ2) =
∑
m,p

cmk(m, p)b1(σ1; p)τ
(n−1)+

∑n

i=1
(αi+pi)e−τ

×σ
n−2+

∑n−1

j=1
(αj+pj)

n−1 (1− σn−1)
αn+pn

× · · · × σα1+α2+p1+p2+1
2 (1− σ2)

α3+p3 ,
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where

k(m, p) =
n∏

i=1

Γ(αi +mi + 1)(−1)pi

Γ(αi + pi + 1)(mi − pi)!pi!

1

βi

,

and

bh(σh; p) = B

h+
h∑

j=1

(αj + pj) , αh+1 + ph+1 + 1;σh


×

h∏
i=1

B

i+ i∑
j=1

(αj + pj), αi+1 + pi+1 + 1

 ;

B( · , · ;σ) is the incomplete Beta function.4

10.1 Simulation of rainfall for n months

In order to simulate rainfall we must firstly generate a random number r ∈
[0, 1] and solve NT (τ) = r . Given τ , our random weighted total, we then
generate a succession of random numbers r1, r2, . . . , rn−1 ∈ [0, 1] and solve
equations using the conditional cumulative densities in sequence, that is

NSn−1(σn−1; τ) = r1 , NSn−2(σn−2; τ, σn−1) = r2 ,

. . . , NS1(σ1; τ, σn−1, . . . , σ2) = rn−1 .

This paper has shown theoretically how to generate any number of monthly
rainfall totals for a particular location. In practice this method is difficult to
implement for more than three months because the numerical calculations
become large. A multistage procedure overcomes these limitations and still
retains the characteristics of the original probability distribution. Details can
be found in Rosenberg [7].

4B(x, y; a) = 1
B(x,y)

∫ a

0
ux−1(1− u)y−1du .
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11 Conclusions and further work

We have applied our work to generate synthetic rainfall data for Mawson
Lakes in South Australia. The aim of the Mawson Lakes water management
project is to build a model of the water supply system in the Mawson Lakes
catchment area. Wastewater and stormwater can be treated to provide a
valuable resource in an urban environment with a large population and lim-
ited water supplies. Management of the resource is essential for efficient
reuse.

Our methods generates simulated synthetic rainfall data which can be
used as an input into the water cycle management system to simulate the
consequent behaviour of the system for a given season. Our method allows
us to match the statistics of the original data.

Our initial simulations are quite promising. The ideas can be extended
to more than two variables and we can generate synthetic rainfall data for
a range of different situations. In particular the engineers at Mawson Lakes
are interested in simulating the effects of a one in ten dry season. They will
find only 11 different realisations by looking through 114 years of records
but we can generate a large number of equally likely events that have not yet
necessarily occurred.
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