

# Fast Food: A Source of Exposure to Phthalates and Bisphenol A in a Nationally Representative Sample

Cassandra A. Phillips, Susanna D. Mitro & Ami R. Zota

## Introduction

Certain phthalates and bisphenol A (BPA) are industrial chemicals widely used in consumer products that can adversely impact human health. Diet is hypothesized to be a major source of exposure but little is known about the impact of specific food sources.

- BPA: Bisphenol A is found in polycarbonate, plastic products, and epoxy resin (food can lining)
- DEHP & DINP: Di (2-ethylhexyl) Phthalate & Di-iso-nonyl Phthalate are plasticizers that impart flexibility to polyvinyl chloride (PVC): tubing, plastic gloves, food containers, building material, etc.

#### Exposures are associated with:

- Metabolic disorders and diabetes
- Reduction in couple fecundity<sup>2</sup>
- Allergic diseases, behavioral and neurodevelopment impairment in children <sup>3</sup>
- Increased asthma risk in children <sup>4</sup>

Is Fast Food an Exposure Source?







OBJECTIVE: To test the association between fast food consumption and urinary levels of high molecular weight phthalates (DEHP& DINP) and BPA

## Methods

 National Health and Nutrition Examination Survey (NHANES), 2003-2010 data

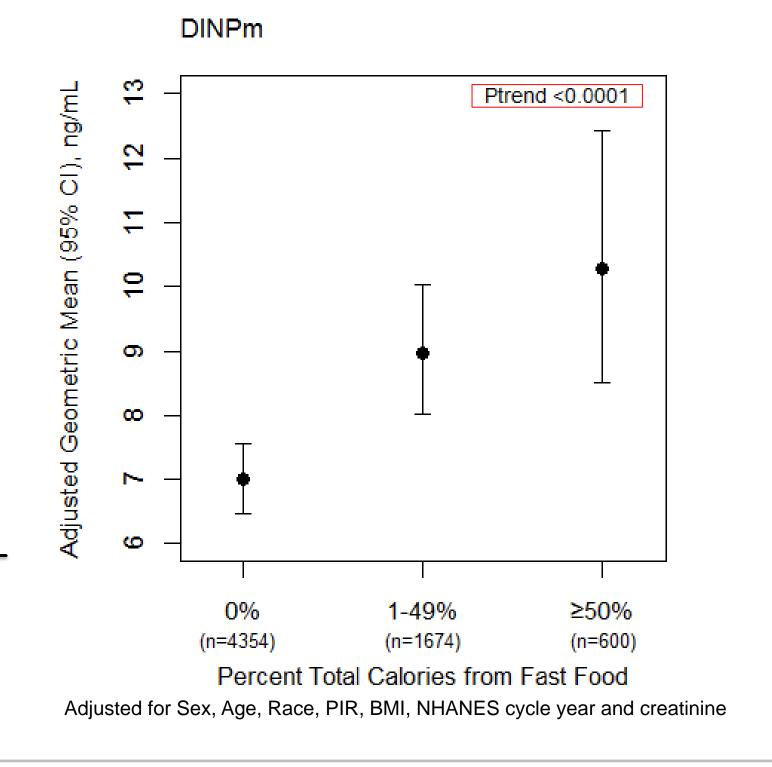
#### NHANES Mobile Exam Center

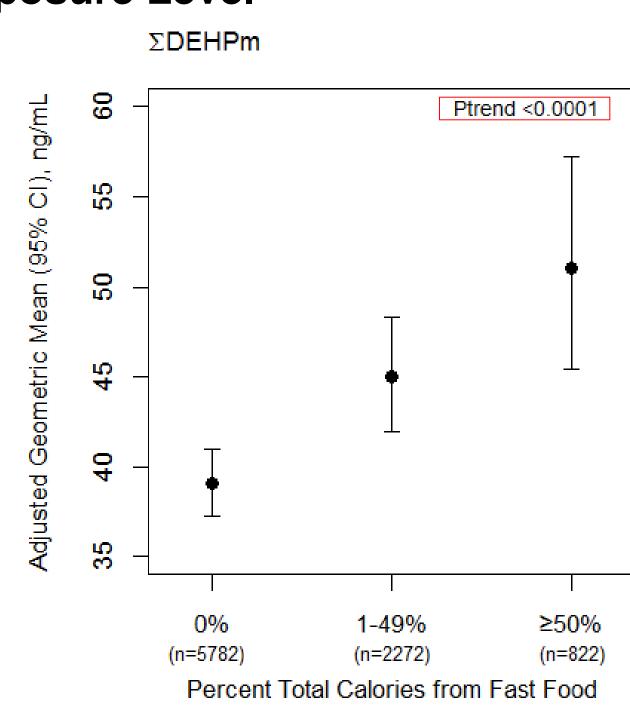
- 24-hour food recall
- Urine sample
- Nationally representative of persons aged 6 to 85 years old
- Exposure: Fast Food (kilocalories) modeled dichotomously (Yes/No); categorically (0%, 1-49% 50%+) total dietary intake
- Outcome: Urinary measures of BPA, DEHP (MEHP, MEHHP, MEOHP, MECPP metb) & DINP (MCOP metb)
- Sample Size BPA n: 8792 **DEHP n: 8876 DINP** n: 6628
- Confounders: age, sex, household poverty-income ratio (PIR), race/ethnicity, body mass index (BMI), NHANES cycle year, urinary creatinine and survey weights.
- Regression Model Analysis in SAS Version 9.3 (SAS Institute, Inc., Cary, NC)

## Results

- Majority of participants had <u>detectable levels</u> of chemicals: Phthalates >97% and BPA >90%
- 35% had consumed fast food in the last 24 hours

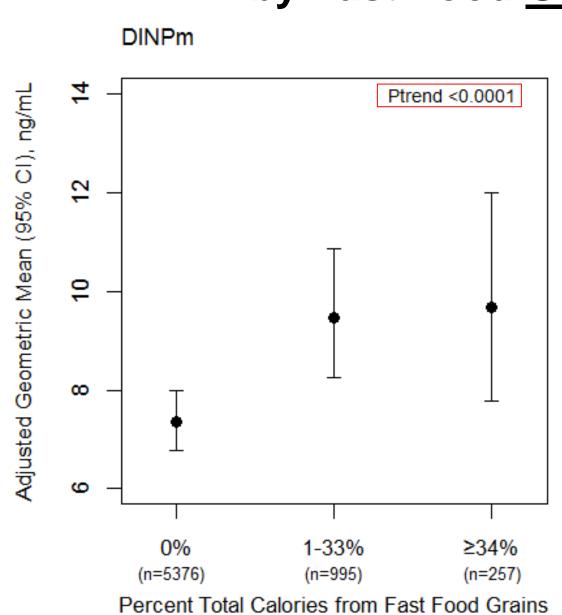
#### Main Analysis:

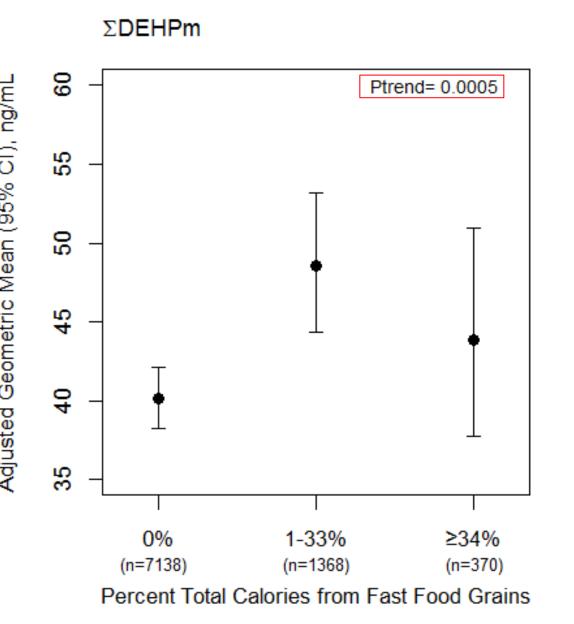

# **Percent Change in Chemical Concentration**


by Fast Food Exposure Level, NHANES 2003-2010

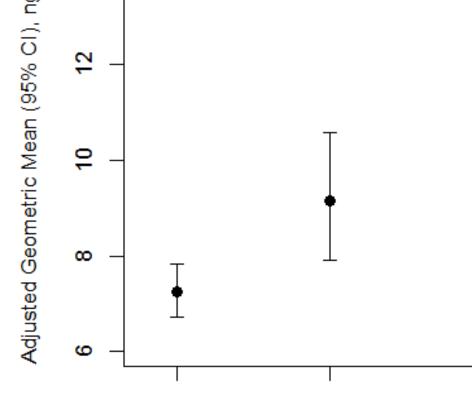
|                                                                                      | Adjusted <sup>1</sup> BPA<br>Percent Change (95%CI) | Adjusted¹ ∑DEHPm<br>Percent Change (95%CI) | Adjusted <sup>1</sup> DINPm<br>Percent Change (95%CI) |
|--------------------------------------------------------------------------------------|-----------------------------------------------------|--------------------------------------------|-------------------------------------------------------|
| Crude Consumption                                                                    |                                                     |                                            |                                                       |
| Did Not Eat Fast Food                                                                | ref-                                                | ref-                                       | ref-                                                  |
| Ate Fast Food                                                                        | 2.4 (-2.6,7.6)                                      | 18.6** (10.4,27.5)                         | 32.2** (20.0,45.5)                                    |
| Fast Food as % of Total Calories                                                     |                                                     |                                            |                                                       |
| 0% Fast Food                                                                         | ref-                                                | ref-                                       | ref-                                                  |
| 1-49% Fast Food                                                                      | 0.3 (-5.3,6.1)                                      | 15.1* (6.8,24.1)                           | 28.0** (16.1,41.1)                                    |
| 50-100% Fast Food                                                                    | 10.6 (-0.8,23.4)                                    | 30.6** (16.9,45.8)                         | 46.8** (24.6,72.8)                                    |
| <sup>1</sup> Adjusted for Sex, Age, Race, PIR, BMI, NHANES cycle year and creatinine |                                                     |                                            |                                                       |
| * p<0.01; ** p<0.0001                                                                |                                                     |                                            |                                                       |

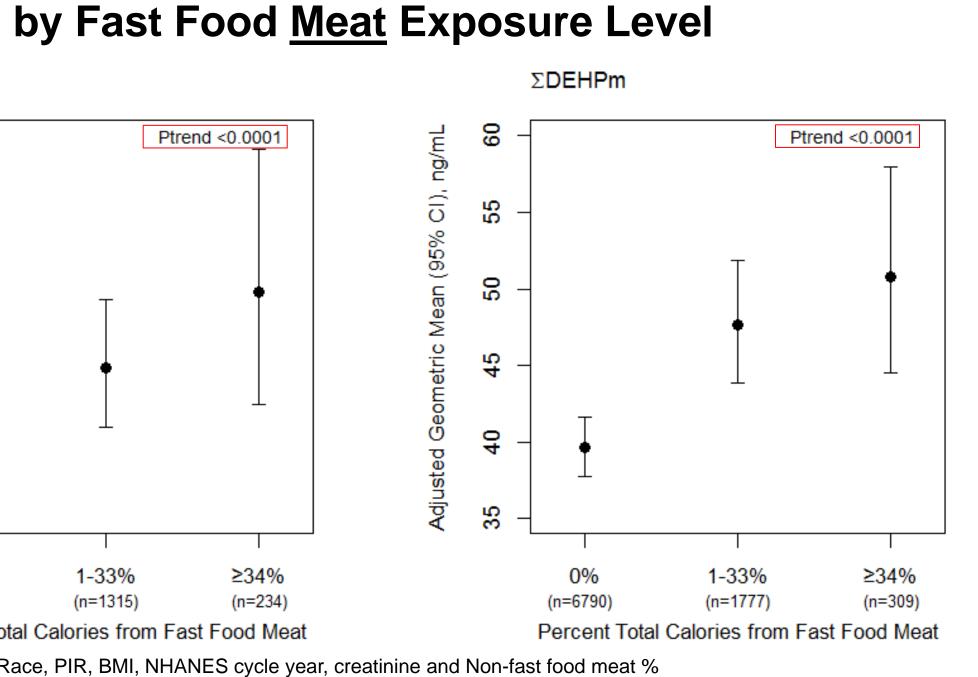
#### **Adjusted Geometric Means Phthalate Concentration** by Fast Food Exposure Level


**Adjusted Geometric Means Phthalate Concentration** 







Sub-Analysis: In adjusted regression analysis of food groups - meat and grains were associated with elevated phthalate levels


#### **Adjusted Geometric Mean Phthalate Concentration** by Fast Food Grain Exposure Level











#### Adjusted for Sex, Age, Race, PIR, BMI, NHANES cycle year, creatinine and Non-fast food meat %

Percent Total Calories from Fast Food Meat

# Conclusions

Fast food is not a potential source of exposure for BPA

Adjusted for Sex, Age, Race, PIR, BMI, NHANES cycle year, creatinine and Non-fast food grain %

- Fast food is a significant route of exposure for high molecular weight phthalates (DEHP and DINP)
- Positive dose-response effect exists between fast food and DEHP and DINP (p<0.0001)
- Meat and grains are the drivers of this association between fast food and DEHP and DINP

### Implications:

- Further research to investigate which components of the fast food industry (production and storage, cooking process, packaging, etc.) contribute to this association
- Greater policy awareness of phthalate substitution given evidence of the stronger DINP associations, a DEHP replacement phthalate

#### References

- 1. Bergaman A, Heindel JJ, Jobling S, Kidd KA, Zoeller RT. State of the science endocrine disrupting chemicals 2012. World Health Organization & United Nations Environment Programme. Available at: http://unep.org/pdf/9789241505031\_eng.pdf. Accessed 8 July 2014.
- 2. Buck Louis GM et al. Urinary bisphenol A, phthalates, and couple fecundity. Fertil Steril 2014; 101(5): 1359-66 3. Braun JM, Sathyanarayana S, Hauser R. Phthalate exposure and children's health. CO-Pediatrics. 2013; 25: 247-
- 4. Bornehag CG, Sundell J, Weschler C J, et al. The association between asthma and allergic symptoms in children and phthalates in house dust: a nested case-control study. Environ Health Perspect. 2004; 112(14): 1393–1397.

#### Acknowledgements:

- Department of Environmental and Occupational Health, MISPH
- National Institute of Environmental Health Sciences R00ES019881

Milken Institute School

For further information contact:

Cassandra Phillips - cap40@gwu.edu

of Public Health THE GEORGE WASHINGTON UNIVERSITY