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On limited memory SQP methods for large
scale constrained nonlinear least squares

problems
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Abstract

This paper describes limited memory Sequential Quadratic Pro-
gramming methods (lsqp) for a large scale equality constrained non-
linear least squares problem. By introducing additional variables, the
original problem is transformed into a general equality constrained
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nonlinear programming problem with a simple objective. This is then
solved by a limited memory variation of sqp methods. This overcomes
one of the major drawbacks of the traditional sqp method, where a
large matrix needs to be stored, and combines the best performance
of the Gauss-Newton and Quasi-Newton methods by a suitable choice
of the Lagrangian Hessian approximation. Our numerical tests indi-
cate that the new method is faster than the reduced Hessian (rsqp)
method, and is better able to use additional storage to accelerate con-
vergence. For some problems it approaches the performance of the
full Hessian sqp (fsqp) method adapted for least squares problems
in Schittkowski [9]. However, his method cannot cope with problems
with very many observations.
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1 Introduction

Consider the nonlinear least squares problem

min
x∈Rp

f(x) =
1

2

n∑
i=1

fi(x)2 =
1

2
F (x)T F (x), (1)

where F (x) = [f1(x), · · · , fn(x)]T . Let J(x) denote the Jacobian of F (x) and
S(x) =

∑n
i=1 fi(x)∇2fi(x). Then we have

∇2f(x) = J(x)T J(x) +
n∑

i=1

fi(x)∇2fi(x)

= J(x)T J(x) + S(x).
(2)

A commonly used method for (1) is the Gauss-Newton method. This
method is essentially a Newton method where the calculation of the Hessian
has been simplified by assuming that S(x) is small at the solution and thus
can be neglected. This simplification allows us to calculate the Hessian based
only on first-order derivatives, and yet a q-quadratic rate of convergence of
Newton method can be retained asymptotically as n → ∞. For this result
to hold, it is assumed that the fitting model is correct and a large set of data
are available. However, these assumptions are not always valid. When S(x)
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is not small, a Gauss-Newton method may only have a linear rate of conver-
gence. Thus several modifications of this method have been made in order
to deal with unconstrained least squares problems efficiently. Such alterna-
tive methods involve the Levenberg-Marquart (lm) method by Osborne [8],
nl2sol by Dennis et al. [3], and a hybrid method by Fletcher et al. [4].
However, these methods cannot directly handle parameter constraints. For
the sqp-based method in this study, by adding several variables, the origi-
nal problem is first transformed into a constrained nonlinear programming
problem subject to equality constraints, then an sqp method is used. This
idea first appeared in Schittkowski [9]. Like nl2sol and the hybrid method,
this new method can achieve the best performance of the Gauss-Newton and
Quasi-Newton methods by a suitable choice of the Lagrangian Hessian ap-
proximation. Moreover, this method is attractive when there are additional
constraints on the sum of squares. However, this method cannot cope with
problems with very many observations. This is a typical case. In this paper,
we develop a limited memory sqp method (lsqp). This proposed method
overcomes one of the major drawbacks of the traditional sqp method where
a large matrix needs to be calculated and stored. For better performance,
the special structure of the problem has been fully exploited.

In the next section, a reformulation of the original problem into a nonlin-
ear programming problem is discussed, followed by the development of the
limited memory sqp method (lsqp). Finally, the results of a comparison
study are discussed in Section 4.
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2 The SQP-based method

First we introduce the sqp method, and assume we want to solve the non-
linear minimization problem:

min
x∈Rp

f(x) s.t. c(x) = 0, (3)

where f(x) : Rp → R and c(x) : Rp → Rm are smooth functions, and that the
first derivatives of f(x) and c(x) are available. The sqp method is one of the
most efficient methods for solving (3). The Lagrangian function associated
with problem (3) is

l(x, λ) = f(x) + λT c(x), (4)

where λ ∈ Rm is called the Lagrange multiplier. Let A(x) denote the Jaco-
bian of the constraints c(x). Then, each iteration of this type of method is
characterized by the iterative procedure

2.1 The k-th step of the SQP method

A1 Compute the minimizer dk of the subproblem

min
d∈Rp

∇f(xk)
T d + 1

2
dT Bkd

s.t. c(xk) + A(xk)d = 0,
(5)

where Bk is an approximation to the Lagrangian Hessian ∇2
xl(xk, λk).
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A2 Choose a merit function φk(α) and make a line search along dk such that
φk(αk) − φk(0) is suitably reduced;

A3 Set xk+1 = xk + αkdk, and updateλk and Bk to give λk+1 and Bk+1,
respectively.

The solution dk of the quadratic subproblem (5) can be written in a simple
form if we choose a suitable basis for Rp to represent the search direction dk.
For this purpose, we introduce matrices Yk ∈ Rp×m and Zk ∈ Rp×(p−m) such
that [Yk, Zk] is nonsingular and A(xk)Zk = 0. This can be done by computing
a qr decomposition of A(xk)

T . We now express dk as

dk = Ykp
y
k + Zkp

z
k (6)

for some vector py
k ∈ Rm and pz

k ∈ Rp−m. As A(xk)Zk = 0, the linear
constraints in (5) become

c(xk) + A(xk)Ykp
y
k = 0. (7)

If A(xk) has full rank, then A(xk)Yk is nonsingular and

py
k = −[A(xk)Yk]

−1c(xk). (8)

Thus

dk = −Yk[A(xk)Yk]
−1c(xk) + Zkp

z
k. (9)
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Substituting (9) into (5), considering Ykp
y
k as constant, and ignoring constant

terms, we obtain the unconstrained quadratic problem

min
pz

k

[ZT
k ∇f(xk) + ZT

k BkYkp
y
k)]

T pz
k +

1

2
pzT

k (ZT
k BkZk)p

z
k. (10)

If we assume that ZT
k BkZk is positive definite, the solution of (10) is

pz
k = −(ZT

k BkZk)
−1[ZT

k ∇f(xk) + ZT
k BkYkp

y
k]. (11)

This determines the search direction dk of the sqp method.

Let sk = xk+1 − xk and q̂k = ∇xl(xk+1, λk+1) − ∇xl(xk, λk+1). Paral-
lel to the treatment of an unconstrained Quasi-Newton method, one could
updateBk starting from a suitable symmetric positive definite matrix B0 via
a bfgs updateformula

Bk+1 = UBFGS(Bk, sk, q̂k), (12)

where

UBFGS(B, s, y) = B +
yyT

sT y
− BssT B

sT Bs
. (13)

The above formula yields a positive definite Bk+1 provided that Bk is positive
and sT

k q̂k > 0. However the latter condition is not guaranteed by a standard
linear search strategy. A simple modification of Powell [7] gives positive



2 The SQP-based method C907

definite matrices even if the above condition is violated. This is done by
replacing q̂k in (12) with

qk = θkq̂k + (1 − θk)Bksk, (14)

where

θk =

{
1 , if sT

k q̂k ≥ 0.2sT
k Bksk ,

0.8sT
k Bksk

sT
k Bksk−sT

k q̂k
, otherwise.

After we introduce the sqp method for a general optimization prob-
lem (3), we now turn our attention solving problem (1). We follow Schit-
tkowski [9] who suggested transforming problem (1) into a general nonlinear
optimization problem to which the sqp method is applied. We call this
method the fsqp method because it uses the full Hessian approximation.

Introducing z = [z(1), · · · , z(n)]T , we can reformulate (1) as

min
(z,x)

1
2
zT z

s.t. z − F (x) = 0.
(15)

We consider (15) as a general nonlinear programming problem of the form

min
x̄

f̄(x̄)

s.t. c̄(x̄) = 0,
(16)

with x̄ = [zT , xT ]T ∈ Rp+n, f̄(x̄) = 1
2
zT z and c̄(x̄) = z − F (x). It is this

problem that Schittkowski solves by an sqp method.
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Define the Lagrangian function l(x̄, λ) of (16) by

l(x̄, λ) = f̄(x̄) + λT c̄(x̄)
= 1

2
zT z + λT [z − F (x)]

(17)

and let ∇x̄l(x̄, λ) and ∇2
x̄l(x̄, λ) denote the gradients and Hessian matrix of

the Lagrangian function l(x̄, λ) with respect to x̄, respectively. It is easy to
check that

∇x̄l(x̄, λ) =

(
z + λ
−J(x)T λ

)
(18)

and

∇2
x̄l(x̄, λ) =

(
I 0

0 S̃(x)

)
, (19)

where S̃(x) = −∑n
i=1 λ(i)∇2fi(x).

It seems to be reasonable to proceed now from a quasi-Newton matrix
given by

Bk =

(
I 0

0 B
(2,2)
k

)
, (20)

where B
(2,2)
k ∈ Rp×p denotes a suitable positive definite approximation of

S̃(x). Let d = [dT
z , dT

x ]T . Inserting (20) into (5) gives the equivalent quadratic
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programming subproblem

min
d∈Rn

1
2
dx

T B
(2,2)
k dx + 1

2
dz

T dz + zT
k dz

s.t. dz − J(xk)dx + zk − F (xk) = 0.
(21)

Some simple calculations show that for solving (21) for dx is equivalent to
solving the linear system

[J(xk)
T J(xk) + B

(2,2)
k ]dx + J(xk)

T F (xk) = 0, (22)

which yields the Newton method if B
(2,2)
k = S(xk) and the Gauss-Newton

method if B
(2,2)
k ≡ 0. Thus, this method can be considered as a bridge

between the Newton method and the Gauss-Newton method by a suitable
choice of B

(2,2)
k .

However, it is not guaranteed that the matrix Bk generated by our modi-
fied Powell strategy has the form (20) even if we start from the identity matrix
B0 = I, and updating the projected Hessian in x space only has proved un-
satisfactory by our numerical experiments. Therefore, in most cases one has
to updateand store a full Hessian approximation matrix Bk. This would be
impractical when n is very large.

A method which makes storage demands intermediate between the re-
stricted update (20) and the the full sqp method is the rsqp method sug-
gested in Biegler et al [1]. rsqp, which originally attempts to solve the
problem (3) for very large p, updates only the projected Hessians in the null
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space ZT
k BkZk and in the range space ZT

k BkYk in (11). For more details of
this method see Biegler et al. [1].

For the least squares problem (16), we have ZT
k ∇2

x̄l(x̄k, λk)Yk = J(xk)
T

due to our choices of Yk and Zk by simple elimination of variables. We will
use this exact information in our implementation of rsqp. The rsqp method
works well for some problems in our experiments. However, its performance
is vastly inferior to our lsqp method proposed in the next section.

3 The limited memory SQP (LSQP) method

Like rsqp, lsqp also attempts to solve problem (3) for very large p and
does not need to calculate or store the full Hessian approximate Bk in (5).
At every iterate xk the algorithm stores a small number, say t, of correction
pairs {si, qi}k−1

i=k−t, where sk and qk are defined as in Section 2. These correc-
tion vectors are used to define the limited memory matrix Bk by implicitly
updating a basic matrix Bk,0. Depending on the number of vectors to be
stored the oldest information is discarded and new information is added.

Assume we have Sk = [sk−t, · · · , sk−1], Qk = [qk−t, · · · , qk−1], a diagonal
matrix Dk = diag[sT

k−tyk−t, · · · , sT
k−1yk−1] and the t×t lower triangular matrix

Lk whose lower triangular elements are defined as: (Lk)ij = sT
k−t−1+iqk−t−1+j

for i > j. The following lemma is useful:
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Lemma 1 Let Bk,0 be symmetric and positive definite and assume that the
t pairs {si, qi}k−1

i=k−t satisfy sT
i qi > 0. If Bk is obtained by updating Bk,0 using

the standard bfgs formula (16) applied t times to the pairs {si, qi}k−1
i=k−t ,

then

Bk = Bk,0 − [Bk,0Sk, Qk]H
−1
k

[
ST

k Bk,0

QT
k

]
, (23)

where

Hk =

[
ST

k Bk,0Sk Lk

LT
k −Dk

]
. (24)

Proof: See Byrd et al. [2]. ♠
Note that the matrix Hk in (24) is indefinite. However its inverse can

be computed using the Cholesky factorization of a related matrix. First we
re-order the blocks of (24) and note that

[ −Dk LT
k

Lk ST
k Bk,0Sk

]
=

[
D

1/2
k 0

−LkD
−1/2
k L̄k

] [
−D

1/2
k D

−1/2
k LT

k

0 L̄T
k

]
, (25)

where L̄k is the lower triangular matrix that satisfies

L̄kL̄
T
k = ST

k Bk,0Sk + LkD
−1
k LT

k . (26)
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Note that if Bk,0 is positive definite and sT
i qi > 0, i = k−t, · · · , k−1, then the

right hand side of (26) is positive definite. Therefore, only the Choleski fac-
torization of the t×t symmetric positive definite matrix ST

k Bk,0Sk+LkD
−1
k LT

k

needs to be computed, to implement (23). This is preferable to factorizing
the indefinite 2t × 2t matrix Hk.

It is interesting to note that in our implementation, we do not need to
calculate or store the matrix Bk explicitly, only the product Bkv for an
arbitrary vector v.

After the new iterate xk+1 is generated, we obtain Sk+1 by deleting sk−t

from Sk and adding the new displacement sk. The matrix Qk+1 is updated
in the same fashion. This describes the general step when k > t. For the
first few iterations, when k ≤ t, we need only replace t by k in the formulae
above. The first t search directions are the same as those given by a standard
bfgs updateformula.

It is true that some computation and storage requirement of the above
procedure for Bkv and vTBkv can be reduced if Bk,0 is sparse. A simple
choice of Bk,0 is

Bk,0 = σkI, (27)

where σk is the Oren-Luenberger scaling factor σk =
sT
k−1qk−1

sT
k−1sk−1

. For Bk,0 is

derived as follows: Note that at the solution x∗ of (16), we have by the
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Karush-Kuhn-Tucker condition

λ∗ = −F (x∗). (28)

Hence from the structure of the Hessian ∇2
x̄l(x̄, λ) in (19), we choose Bk,0 by

Bk,0 =

(
I 0
0 ‖ Fk ‖ I

)
. (29)

A more professional choice of Bk,0 seems to be

Bk,0 =

(
I 0

0 B
(2,2)
k−1

)
, (30)

where B
(2,2)
k−1 is the last quasi-Newton approximation to the right bottom

corner of S̃(x) in (19) at xk−1. However, in this case we have to compute and

store B
(2,2)
k at each step. In order to save some computation of B

(2,2)
k , one

could update it every l iterations, where l is a preset parameter. By setting
l = ∞ means that we updateit at each step. Our numerical tests show that
l = p performs well.

In our above discussion, the information saved in previous iterations is
accumulated to construct the Hessian matrix for the current iteration. How-
ever, the information far away from the current point could affect the accu-
racy of the Hessian approximation if it is dominated by inappropriate terms.
Hence a procedure, which is similar to the restart procedure in Powell [6] for
unconstrained problems, is included.
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3.1 The restart procedure

R1 at the k-th iteration,

| ∇x̄l(x̄k+1, λk+1)
T∇x̄l(x̄k, λk) |> 0.2 ‖ ∇x̄l(x̄k+1, λk+1) ‖2

2 . (31)

R2 the number of consecutive iterations is larger than p;

If either of the above two conditions holds, then restarting is required. This
means that we delete all stored pairs {si, qi}k−1

i=k−t, and that dk should then
be set to a scaled steepest-descent direction via the basic matrix Bk,0 in (29).

It is now easy to take extra nonlinear constraints into account for the
above procedure. If nonlinear constraints h(x) = 0 are added to problem (1),
where h(x) : Rp → Rm are continuous functions, then the following trans-
formed problem is to be solved by the lsqp method:

min
(z,x)

1
2
zT z

s.t. z − F (x) = 0
h(x) = 0.

(32)

4 Numerical Results

The proposed nonlinear least squares algorithm was implemented and tested
on a Sun Ultra Sparc 5 Workstation, using Matlab 4.2. We have used
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the 21 test problems. In our experiments

max{‖ ZT
k ∇x̄f̄(x̄k) ‖∞, ‖ c̄(x̄k) ‖∞} ≤ 10−8

is used as one of the termination criteria. If an iteration terminates after
satisfying this criterion, the result is classified as successful, otherwise as a
failure. Failures were also caused by excessive numbers of iterations (≥ 100)
and excessive numbers of line search steps (≥ 10).

We found that lsqp performs better if we increase the storage require-
ment number t. However, if t increases beyond the number of variables p,
only marginal improvement was observed. To test the choice of the basic ma-
trix Bk,0 at each iteration, we have run the four choices (28), (29), (30) and a

modification of (30) which updates B
(2,2)
k every p iterations. Our numerical

results show that the choices (29) and the modification of (30) are best in
terms of function and Jacobian calls. It is interesting that both choices are
cheap.

Compared with other methods, we found that the fsqp method usually
requires fewer function and Jacobian calls. But for some problems the lsqp
method approaches the performance of the fsqp method. In order to obtain
a fair comparison with the rsqp method we specify t = p. Therefore, the
amount of storage required by lsqp and rsqp are the same. The numerical
tests show that the numbers of function and gradient evaluations required by
lsqp are less than those of rsqp for test problems where both algorithms
converged, and lsqp performs better than rsqp as far as efficiency is con-
cerned. Moreover, we observe that lsqp has displayed a higher degree of
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robustness. For the total number of 21 test problems, rsqp had more failure
terminations than lsqp (11 versus 2). More details can be found in Li [5].
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