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Multivariate spatial smoothing using additive
regression splines
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Abstract

We describe additive regression spline models as tools for smooth
interpolation of fields that depend on several variables in a spatially
varying way. Additive regression models can bypass the usual techni-
cal difficulties associated with the curse of dimension. We formulate
the additive regression spline minimisation problem and prove that
this problem is uniquely solvable under suitable conditions on the
data. The resulting additive regression spline may be seen as a special
case of general additive tensor product splines. Moreover, we show
that additive regression splines may be implemented by a relatively
straightforward extension of the methods used in the implementation
of standard thin plate splines. The performance of additive regression
splines is demonstrated on a simulated noisy data set.
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1 Introduction

In many physical situations of interest there arises a need to interpolate data
using multiple predictors. In many cases the interpolated surface required
for application is two or three dimensional. This is often the case in the
environmental sciences, for example, where measured point data are used to
estimate information about the spatial distribution of some environmental
variable. It can also be appropriate to discern how the effects of certain
predictors vary across the spatial extent of the region under consideration.
For example, precipitation is known to be influenced by the shape of the un-
derlying topography. Thus when smoothing precipitation data it is desirable
to include predictors such as elevation and topographic slope and aspect, in
addition to those quantifying the data point locations, to achieve accurate
precipitation surfaces. However, Hutchinson and Sharples [8, 9, 11] showed
that interpolation accuracy is critically dependent on the incorporation of a
spatially varying dependence on these topographic variables.

A common problem that arises when fitting multivariate data is that
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smoothing methods are limited by the fact that estimating a d-variate func-
tion with no constraints on its structure, apart from smoothness, requires
data sets of impractical size for larger values of d, a problem referred to as
the curse of dimension. Given the technical difficulties associated with the
curse of dimension and the fact that the required output is a two or three
dimensional surface, interpolation based on higher dimensional data can be
numerically expensive (if not completely impractical) while aiming to pro-
duce more elaborate dependencies on the predictor variables than actually
needed. It is therefore natural to employ a data fitting method that by-
passes the curse of dimension by identifying only the underlying two or three
dimensional (spatial) dependencies on multiple predictors.

In this paper we describe a data model that satisfies this requirement and
demonstrate how to solve the associated spline optimisation problem. The
resulting additive regression spline is a special case of the more general tensor
product splines [3, 4, 6, 14]. However, unlike tensor product splines, additive
regression splines can be implemented via a relatively simple extension of the
methods used to derive standard thin-plate smoothing splines. This can be
done without appeal to the underpinning reproducing kernel structure that
is usually associated with tensor product splines.

In Section 2 we introduce the additive regression spline model. We also
show that the associated spline optimisation problem is uniquely solvable
under mild assumptions about the data, and that the functional components
of additive regression splines are ordinary thin-plate splines. In Section 3 we
use standard methods to reduce the variational problem to that of solving
a simple linear system and show how the procedure used to derive ordinary
thin-plate splines may be extended to allow the derivation of additive regres-
sion splines. We give an example of the use of additive regression splines in
Section 4.
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2 Additive regression splines

We consider data sets of the form {zi,xi, hi1, . . . , hiN}n
i=1 . Here zi refers to

the dependent variable, xi denotes the spatial location at which zi is recorded
and hi1, . . . , hiN denote the N additional predictors that are to be included
in the data fitting process. We assume that zi, hi1, . . . , hiN ∈ R and xi ∈ Rd .
Typically applications will call for d = 2 or 3, but we do not assume this to
be the case in what follows.

We propose the data model

zi = f0(xi) +
N∑

j=1

hijfj(xi) + εi , i = 1, . . . , n , (1)

that is seen to be a special case of the more general additive tensor product
spline models [6, 14, 15]. The data model can also be simply thought of
as spatially varying linear regression with the constant parameters found in
linear regression models replaced by the multivariate functions f0, . . . , fN .
The functions f0, . . . , fN that accompany the additional predictor variables
will be referred to as the additive components of the model.

The functions f0, . . . , fN may be estimated by minimising

n∑
i=1

[
zi − f0(xi)−

N∑
j=1

hijfj(xi)

]2

+
N∑

j=0

ρjJ
m
d (fj) , (2)

where Jm
d (f) denotes the mth order roughness penalty (seminorm):

Jm
d (f) =

∫
Rd

‖Dmf‖2 dx .

The non-negative smoothing parameters ρ1, . . . , ρN will be assumed to be
known constants. In practice they may be determined by appealing to stan-
dard methods such as minimising the generalised cross validation (gcv) or
generalised maximum likelihood (gml) [5, 13].
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We consider each of the functions fj, j = 0, . . . , N as elements of the
Hilbert–Sobolev space Hm(Rd) [1]. The roughness penalty functional then
defines a canonical decomposition of this space

Hm(Rd) = ker(Jm
d )⊕ ker(Jm

d )⊥ .

Using {φν}M
ν=1 to denote the basis of ker(Jm

d ) we define the n×M matrix T
by Tiν = φν(xi) . It is also convenient to define the diagonal matrices Hj =
diag(h1j, h2j, . . . , hnj) with H0 = I .

As mentioned in the introduction, establishing the unique existence of a
minimiser of (2) will have bearing on the nature of the functions f0, . . . , fN .
However, before doing so we recast the minimisation problem in a more
abstract setting; this will allow us to appeal to the elegant spline existence
theorems of Atteia [2].

The natural space in which f = (f0, . . . , fN) resides is the Hilbert–Sobolev
space X = Hm(Rd) × · · · ×Hm(Rd) = Hm(Rd)N+1 . We will also make use
of the Hilbert space Y = L2(Rd)N+1 .

Furthermore, we define the continuous, linear surjections u : X → Y and
v : X → Rn by

u : f 7→ (Dmf0, . . . , D
mfN) and v : f 7→ (v1(f), . . . , vn(f)) ,

where

vi(f) = f0(xi) +
N∑

j=1

hijfj(xi)

for each i = 1, . . . , n .

We also define the auxiliary Hilbert space W = Y × Rn and mapping
` : X → W by

` : f 7→ (u(f), v(f)) .
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Since each ρj ≥ 0 , Y inherits a natural inner product from L2(Rd) by

〈(f0, . . . , fN), (g0, . . . , gN)〉Y =
N∑

j=0

ρj〈fj, gj〉L2(Rd) .

W then inherits an inner product from Y and Rn

〈(f1, z1), (f2, z2)〉W = 〈f1, f2〉Y + 〈z1, z2〉Rn .

It follows that finding functions fj that minimise (2) amounts to finding
f ∈ X such that

‖`(f)− (θY , z)‖W = min{‖`(g)− (θY , z)‖W : g ∈ X} , (3)

where z = (z1, . . . , zn) describes the dependent data values and θY denotes
the zero element in Y .

A function f ∈ X satisfying (3) will be called an additive regression spline.

The existence and uniqueness of additive regression splines may now be
established as a special case of the abstract results found in [2].

Theorem 1 If the matrix [H0T : H1T : · · · : HNT ] is of full rank then for
each z ∈ Rn there is a unique f ∈ X such that

‖`(f)− (θY , z)‖W = min{‖`(g)− (θY , z)‖W : g ∈ X} .

Proof: Using the definitions of u and v it is possible to show that v(ker(u)) is
closed in Rn. Atteia [2, Lemma 1.1] proves that this is the case if and only
if u(ker(v)) is closed in Y . If g ∈ X ∩ ker(u) , then

gj =
M∑

ν=1

djνφν ,
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whereas if g ∈ ker(v) , then

g0(xi) +
N∑

j=1

hijgj(xi) = 0 , for each i = 1, . . . , n .

Hence g ∈ ker(u) ∩ ker(v) if and only if, for all i = 1, . . . , n ,

gj =
M∑

ν=1

djνφν and
M∑

ν=1

(
d0ν +

N∑
j=1

hijdjν

)
φν(xi) = 0 .

However,

M∑
ν=1

(
d0ν +

N∑
j=1

hijdjν

)
φν(xi) =

M∑
ν=1

N∑
j=0

djν [HjT ]iν ,

and so if [H0T : H1T : · · · : HNT ] is of full rank we conclude that each
djν = 0 , which is to say that ker(u) ∩ ker(v) = {θX} where θX denotes the
zero element of X.

The theorem now follows as a consequence of [2, Theorem 2.1]. ♠

Having established the unique existence of additive regression splines we
have the following important corollary.

Corollary 2 If f = (f0, . . . , fN) is the minimiser of (2) then each fj is an
ordinary thin-plate smoothing spline and thus has representation

fj(x) =
M∑

ν=1

aνjφν(x) +
n∑

i=1

bijEm(x,xi) , j = 0, . . . , N ,

where {φν} is a basis for ker(Jm
d ), the polynomials of total degree less than m,

and Em is the reproducing kernel function for the space ker(Jm
d )⊥.
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Proof: Consider the problem of finding gj minimising ‖`(g) − (θY , z)‖W

with g0, g1, . . . , gj−1, gj+1, . . . , gN arbitrary fixed functions. This amounts to
finding gj minimising ‖z̄−gj(x)‖2

Rn+ρjJ
m
d (gj) where z̄ describes the appropri-

ately amended data. From this it is clear, following the usual arguments [15],
that gj is a standard thin-plate smoothing spline with corresponding repre-
sentation. Now since the functions gl, l 6= j , are arbitrary, it follows from
the uniqueness of additive regression splines that gj = fj . ♠

3 Implementation

Since the component functions fj are ordinary thin-plate splines we may
write the model (1) in vector form as

z =
N∑

j=0

HjTaj + HjKbj + ε ,

where z = (z1, . . . , zn)′ and ε = (ε1, . . . , εn)′ . Here K is a conditionally
positive definite, symmetric n × n matrix with entries Kik = Em(xi,xk) .
The matrix K is conditionally positive definite if b′Kb > 0 for all non-
zero b, satisfying T ′b = 0 , [15]. The vectors aj and bj are (a1j, . . . , aMj)

′

and (b1j, . . . , bnj)
′ , respectively. Moreover, we have T ′bj = 0 for all j =

0, . . . , N [15].

Rewriting (2) the functions f0, . . . , fN are estimated by minimising∥∥∥∥∥z−
N∑

j=0

(HjTaj + HjKbj)

∥∥∥∥∥
2

+
N∑

j=0

ρjb
T
j Kbj (4)

with respect to aj and bj, with each ρj held constant.

We suppose for the moment that each Hj is invertible. We will see in
what follows that this assumption may be removed, though we will require
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that at least one Hj is invertible. However, this requirement can be fulfilled
without any loss of generality; in particular, H0 = I is invertible. Following
our assumption then, we define

dj = H−1
j bj , j = 0, . . . , N .

Defining the auxiliary matrices Sj = HjT and Mj = HjKHj for j =
1, . . . , N , we may write (4) as∥∥∥∥∥z−

N∑
j=0

(Sjaj + Mjdj)

∥∥∥∥∥
2

+
N∑

j=0

ρjd
T
j Mjdj . (5)

Note also that since T ′bj = 0 for all j = 0, . . . , N ,

S ′
jdj = T ′HjH

−1
j bj = 0 .

Lemma 3 Suppose T has full rank, T ′d = 0 and K is conditionally positive
definite as defined above. If

‖v − Ta− Sb−Kd‖2 + ρd′Kd

is a minimum with respect to the vectors a, b and d then S ′d = 0 .

Proof: The matrix T admits a QR-decomposition,

T = [Q1 : Q2]

[
R
0

]
.

It follows from the orthogonality of [Q1 : Q2] that, for the expression in
question to be a minimum, a must satisfy

Ra = Q′
1(v + Sb + Kd) ,
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where b and d are the minimisers of

‖Q′
2v −Q′

2Sb−QT
2 Kd‖2 + ρd′Kd .

Now since T ′d = 0 we must have d = Q2γ for some γ and since K is
conditionally positive definite B = Q′

2KQ2 is positive definite. Letting w =
Q′

2v , differentiating with respect to b and γ and using the non-singularity
of B we have

S ′Q2(Bγ + Q′
2Sb−w) = 0 , (6)

(B + ρI)γ + Q′
2Sb−w = 0 . (7)

Multiplying (7) on the left by S ′Q2 and subtracting the resulting equation
from (6) we find that S ′Q2γ = 0 , which is to say that S ′d = 0 . ♠

For each l,m = 1, . . . , N with l 6= m let

v = z−
∑

j 6=l,j 6=m

Sjaj −
∑
j 6=l

Mjdj .

Then we may write (5) as

‖v − Slal −Mldl − Smam‖2 +
N∑

j=0

ρjd
′
jMjd

j .

To infer the unique existence of additive regression splines we assumed that
T is of full rank, hence minimising (5) with respect to al,dl, am and invoking
Lemma 3, we have

S ′
mdl = 0 , for all 0 ≤ m, l ≤ N .

Therefore, if S = [S0 : S1 : · · · : SN ] then S ′dl = 0 for all 0 ≤ l ≤ N .
Moreover, if

S = [Q1 : Q2]

[
R
0

]
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is the QR-decomposition of S, we have for all 0 ≤ l ≤ N that dl = Q2ξl for
some ξl.

Utilising the QR-decomposition further, minimising (5) is seen to be
equivalent to minimising∥∥∥∥∥Q′

1z−Rα−
N∑

j=0

Q′
1MjQ2ξj

∥∥∥∥∥
2

+

∥∥∥∥∥Q′
2z−

N∑
j=0

Q′
2MjQ2ξj

∥∥∥∥∥
2

+
N∑

j=0

ρjξ
′
jQ

′
2MjQ2ξj ,

where we have set α = (a0, . . . , aN)′ . Letting w = Q′
2z and Bj = Q′

2MjQ2

we are therefore required to minimise∥∥∥∥∥w −
N∑

j=0

Bjξj

∥∥∥∥∥
2

+
N∑

j=0

ρjξ
′
jBjξj , (8)

with α given by

Rα = Q′
1z−

N∑
j=0

Q′
1MjQ2ξj .

Differentiating (8) with respect to ξm gives

B′
mBmξm + ρmBmξm −B′

mw +
∑
j 6=m

B′
mBjξj = 0 .

Since Bm is symmetric and invertible, this reduces to

ρmξm +
N∑

j=0

Bjξj = w
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for any 0 ≤ m ≤ N . Subtracting the equation with m = l from the equation
with m = 0 gives

ρ0ξ0 = ρlξl , for all 0 ≤ l ≤ N .

If we let θj = ρ0/ρj then we have reduced the problem to solving the
system (

ρ0I +
N∑

j=0

θjBj

)
ξ0 = w , (9)

ξj = θjξ0 , j = 1, 2, . . . , N . (10)

Moreover, ξj = θjξ0 implies dj = θjd0 , and bj = Hjdj implies bj = θjHjd0 ,
j = 1, . . . , N , and so we may have equivalently endeavoured to minimise∥∥∥∥∥z−

N∑
j=0

(HjTaj + θjHjKHjd0)

∥∥∥∥∥
2

+ ρ0

N∑
j=0

θjd
′
0HjKHjd0 .

Equivalently, we should minimise

‖z− Sα−Kd0‖2 + ρ0d0Kd0 (11)

where S = [H0T : H1T : · · · : HNT ] and K =
∑N

j=0 θjHjKHj .

It is well known that the minimiser of the expression (11) can be derived
using the standard methods for deriving ordinary thin plate splines, once
the matrices S and K have been properly accounted for. It should also be
noted that the standard methods for implementing thin-plate splines make
no use of the inverses of the matrices involved and so our assumption about
the invertibility of the matrices Hj is redundant.
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(a) (b)

Figure 1: (a) Contour plot of f(x, y) = sin(πx) + y cos(πx) and locations
of the 100 data points. (b) Contour plot of fitted additive regression spline.

4 Example

We conclude with an example of the use of additive regression splines. We
use 100 simulated data points derived from the function

f(x, y) = sin(πx) + y cos(πx) . (12)

The independent data values {xi, yi} are chosen at random with 0 ≤ xi ≤ 2
and −1 ≤ yi ≤ 1 . The dependent data values are derived by evaluating (12)
at each of the independent data locations and perturbing the result by adding
a number randomly chosen from U(−1

2
, 1

2
) . Figure 1a shows a contour plot of

the true function defined by (12) as well as the locations of the data points.

The minimum generalised cross validation additive regression spline for
the simulated data was derived using appropriate extensions of anusplin
version 4.2 [10]. anusplin provides summary statistics including an estimate
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of 0.27 for the standard deviation of the noise associated with the data. This
is in good agreement with the theoretical error standard deviation of 1/

√
12 '

0.29 . The additive regression spline contours can be seen in Figure 1b. The
component functions of the additive regression spline were calculated on a
regular grid and are shown, along with their 95% model confidence intervals
and their true counterparts in Figures 2a and 2b.The confidence intervals
were derived by anusplin using the methodology described by [7]. This
is based on the Bayesian analysis devised by Wahba [12]. The confidence
intervals show reasonable coverage of the true spline component functions,
with larger confidence intervals where the actual errors are larger.

5 Conclusion

The additive regression model appears to be a practical option for analysing
spatially varying effects of several predictors on observed phenomena. It is
attractive from the point of view of overcoming curse of dimension prob-
lems associated with the analysis of noisy multivariate data. Moreover its
implementation is a straightforward extension of standard thin plate spline
methodology. Bayesian standard error estimates associated with minimum
gcv additive regression models also appear to be reasonable.

A straightforward extension of the additive regression spline model is
to incorporate parametric transformations of the predictor variables. The
parameters defining these transformations can be optimised by minimising
gcv. A second extension, applied in the precipitation analysis of Hutchinson
and Sharples [11], is to permit short range correlation in the noise term in
equation (1). This is often a very reasonable assumption for observed physical
phenomena. Short range correlation structure can also be specified by one or
two parameters that appear to be best optimised by minimising gml rather
than gcv [16].
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Figure 2: (a) Plot of zeroth additive spline component and 95% model
confidence intervals compared with sin(πx) . (b) Plot of first additive spline
component and 95% model confidence intervals compared with cos(πx) .
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