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An Ohmic heating non-local
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Abstract

We study the non-local equation

ut = uxx − ux +
λf(u)

(
∫ 1
0 f(u)dx)2

together with some initial and boundary conditions for the
case where f is the Heaviside function. It is found, for de-
creasing f , that there exist critical values λ∗ and λ∗, so that
for 0 < λ < λ∗ there is a unique steady state solution which
is asymptotically stable and the solution u is global in time.
For λ∗ < λ < λ∗ there exist two steady-states and we study
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their stability, while for λ > λ∗ there is no steady-state.
Also, it is proved that for λ > λ∗ or for λ∗ < λ < λ∗ and ini-
tial data sufficiently large, the solution u “blows up” (in some
sense). Moreover, for increasing f and Neumann boundary
conditions, u is an unbounded solution global in time.
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1 Introduction

One of the important aspects in food processing is heating and ster-
ilization. A variety of methods are available, which aim in heating
the food material to a temperature high enough so that food is ade-
quately sterilized. An increasing in use method, which also permits
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to heat the food quickly and evenly so that the quality of food re-
mains high (the food is not overcooked) is Ohmic heating. This
method was originally developed at erdc, Capenhurst, England
and its physical behaviour is reported in [2, 15, 17]. More precisely,
the food is passed through a conduit, part of which lies between two
electrodes. A high electric current flowing between the electrodes
results, in Ohmic heating of the food which quickly gets hot.

A mathematical model which describes such a process, in the
case where heat convection dominates heat conduction, was consid-
ered by Please, Schwendeman and Hagan [14]. This model consists
of a system of partial differential equations. They also studied the
stability of models allowing for different types of flow. Both homoge-
neous and inhomogeneous cases were examined. (More background
on this type of process can be found in [2, 7, 8, 15, 17, 20].)

Lacey, Tzanetis and Vlamos [12] considered the basic one-dimen-
sional model, again when heat convection dominates heat conduc-
tion, for the simplest case of a plug flow of a homogeneous material
and succeeded in reducing the system examined in [14] to a simple
but non-local hyperbolic equation. Also in [12] was examined the
stability and blow-up of the solutions of the problem, with respect
to the value of the potential difference applied at the electrodes
and for a variety of monotonic (with respect to the temperature)
electrical resistivities.

In [9] we considered velocities for the food so that heat con-
vection and heat conduction coexist and modelling closely parallels
that of [12] we arrived at the non-local parabolic equation:

ut = uxx − ux +
λf(u)

(

∫ 1

0
f(u)dx

)2 , 0 < x < 1 , t > 0 , (1)

where u = u(x, t) represents the dimensionless temperature of the
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food, λ = a V 2, a > 0 (a is a constant, V is the potential difference)
and f(u) is the temperature-dependent electrical resistivity of the
food. The previous equation has arisen after scaling the distance
with the length of the channel, which makes the convective velocity
one. Depending upon the substance undergoing the heating, the
resistivity may be an increasing, a decreasing, or a non-monotonic
function of temperature. For most foods conductivity increases with
temperature so f(u) is decreasing. Note that if one were to consider
an alternative processing technique, one in which there was a flow
in a channel whose walls were the electrodes and across which a
prescribed current flowed, a very similar model would apply. This
model would differ, however, in that conductivity would replace
resistivity f . For this reason in [9] we examined the behaviour of
solutions of equation (1) where f is a strictly positive, Lipschitz
continuous and monotonic function.

In this work, we study equation (1) together with some initial
and boundary conditions for the case of Heaviside function, empha-
sizing in the case where

f(s) = H(1 − s) , s ≥ 0 ; (2)

we also make a comment for f(s) = H(s − 1), s ≥ 0. Here H
denotes the Heaviside function:

H(s) =

{

0 , s < 0 ,
1 , s ≥ 0 .

The particular functional form of f(u) is determined by the physical
problem being considered, since many food materials have resistiv-
ities that vary considerably during the process. The same happens
with ceramic materials in thermistors [3, 4, 5, 10]. In general, the
Heaviside function is a good approximation for a number of phys-
ical quantities [16, 19]. From the mathematical point of view, the
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Heaviside function is neither Lipschitz nor strictly positive, and so
the techniques used in [9] should be modified.

Here we focus our attention on the problem

ut − uxx + ux =
λH(1 − u)

(

∫ 1

0
H(1 − u)dx

)2 , 0 < x < 1 , t > 0 , (3a)

B(u(x, t)) = 0 , x = 0, 1 , t > 0 , (3b)

u(x, 0) = ψ(x) , 0 < x < 1 , (3c)

where B is a boundary operator (see below) and ψ(x) and ψ ′(x) are
bounded with ψ(x) ≥ 0 in [0, 1] (the last requirement is a conse-
quence of the fact that for any ψ(x) the solution u becomes non-
negative throughout 0 < x < 1 at some time t). The fact that
f(u) = H(1 − u) is a decreasing function permit us to use compar-
ison techniques [10, 11], see next section.

This work follows the ideas and techniques (comparison meth-
ods) used in [10, 18]. The presence of the convection term (as in [18])
creates more difficulties and fights against the “blow-up” of the time-
dependent solution. Here, in addition, we examine an asymmetric
case (Dirichlet problem) which is connected with a two-parameter
family of steady-states, resulting in more technical difficulties. Fi-
nally, in contrast to [10, 18, 19], here we give a rigorous analysis of
the existence and uniqueness of the time-dependent solution.

2 Existence and uniqueness

Since H(1−s) is not strictly positive nor Lipschitz continuous the lo-
cal existence of solutions to problem (3) does not follow by standard
Picard type arguments [9]. Therefore we introduce a one-parameter
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family of Lipschitz continuous functions

f ε(s) = g

(

1 − s

ε

)

+ ε , 0 < ε < 1 ,

where g(s) is an increasing and Lipschitz continuous function with
g(s) = 1 for s ≥ 1 and g(s) = 0 for s ≤ −1 . Thus

f ε(s) → H(1 − s) as ε→ 0 for every s ∈
�
.

Let uε be the solution of problem (3) when f(s) has been replaced
by f ε(s), then uε is the unique (classical) solution in ΩTε

= [0, 1] ×
[0, Tε] for some Tε > 0 (we use now the standard Picard type argu-
ments [11, 12]).

Also uε can be written in an integral formulation:

uε(x, t) =

∫ 1

0

G(x− y, t)ψ(y) dy

+ λ

∫ t

0

∫ 1

0

G(x− y, t− s)
f ε(uε(y, s))

(

∫ 1

0
f ε(uε(y, s))dy

)2 dy ds (4)

where G is the Green function for L := ∂
∂t
− ∂2

∂x2 + ∂
∂x

and B, in
0 < t < T = min0<ε<1 Tε.

Hence uε ∈ C1(ΩT ) where ΩT = [0, 1] × [0, T ]; moreover it is
straightforwardly proved that 0 < uε(x, t) ≤ C in ΩT for some pos-
itive constant C. So we can use Ascoli-Arzela theorem to obtain a
convergent subsequence (uη)0<η<1 . By again replacing the parame-
ter η with ε, we have

uε(x, t) → u(x, t) , ε→ 0 ,

uniformly in (x, t) ∈ ΩT , with u ∈ C(ΩT ).
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For clarity let

h(x, t) =
H(1 − u(x, t))

(

∫ 1

0
H(1 − u(y, t)) dy

)2 .

Taking now the limit of (4) as ε → 0 and applying the Lebesque
dominated convergence theorem we have

u(x, t) =

∫ 1

0

G(x− y, t)ψ(y) dy

+ λ

∫ t

0

∫ 1

0

G(x− y, t− s)h(y, s) dy ds . (5)

Let Ω0T be the subset of ΩT where the function h(x, t) is discontin-
uous. Then ut , uxx exist and are continuous in Ω1T = ΩT \ Ω0T ,
while u, ux are continuous in ΩT . Thus u is a classical solution to
problem (3) in Ω1T and a “weak” V 1,0

2 -solution in ΩT . By a “weak”
V 1,0

2 -solution we mean that u satisfies

∫ 1

0

[u ξ]t0 dx−

∫ t

0

∫ 1

0

u ξt dx ds

−

∫ t

0

∫ 1

0

(u ξxx − ux ξ + λh(x, s)ξ) dx ds = 0 , (6)

for any 0 ≤ t ≤ T and ξ ∈ C2(ΩT ) which satisfies the boundary con-
ditions (3b). By standard parabolic theory this solution is unique
provided that ψ ∈ L∞([0, 1]) [1, 13].

Moreover, if v satisfies (6) with an inequality of ≥ (≤) in place
of the equality, then v is called a “weak” upper (lower) solution.
Now if u, u are weak upper and lower solutions respectively to (3)
in ΩT , then one obtains, by using maximum principle, that u ≤ u
in ΩT . Here is where we need f to be a decreasing function [11].
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In the following we use the meaning of solution, upper (lower)-
solution in the sense of the above analysis, that is, instead of (6) we
use (3).

3 Asymptotic behaviour and

“blow-up”

3.1 The mixed problem

Consider the following problem:

ut − uxx + ux =
λH(1 − u)

(

∫ 1

0
H(1 − u)dx

)2 , 0 < x < 1 , t > 0 , (7a)

u(0, t) = ux(1, t) = 0 , t > 0 , (7b)

u(x, 0) = ψ(x) , 0 < x < 1 . (7c)

Equation (7a) is equivalent to

ut − uxx + ux =

{

0 , for u ≥ 1 ,
λ/m2(t) , for u < 1 .

By m(t) we denote the measure of the subset of [0, 1] where u < 1 ,
(m(t) > 0 for t > 0 since u(x, t) is continuous with respect to x and
u(0, t) = 0).

For simplicity we consider 0 ≤ ψ(x) ≤ 1 for x ∈ [0, 1], then
0 ≤ u(x, t) ≤ 1 for (x, t) ∈ ΩT , on using the maximum principle.
Now we have the following:

Lemma 1 If ψ′(x) ≥ 0 then the solution u(x, t) to problem (7) is
increasing with respect to x.
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Proof: We consider the problem

uε
t − uε

xx + uε
x =

λf ε(uε)
(

∫ 1

0
f ε(uε)dx

)2 , 0 < x < 1 , 0 < t < T , (8a)

uε(0, t) = uε
x(1, t) = 0 , 0 < t < T , (8b)

uε(x, 0) = ψ(x) , 0 < x < 1 . (8c)

Differentiating (8a) with respect to x we obtain:

vε
t − vε

xx + vε
x − λIε(t)

(

d

duε
f ε(uε)

)

vε = 0 , 0 < x < 1 , 0 < t ,

where vε = uε
x and Iε(t) =

( ∫ 1

0
f ε(uε)dx

)

−2
. Thus by using the

maximum principle we have vε(x, t) = uε
x(x, t) ≥ 0 for (x, t) ∈ ΩT

and 0 < ε < 1 . Hence

uεk(x, t) ≤ uεk(y, t) , x < y , 0 < t < T ,

where uεκ → u, εκ → 0 as κ→ ∞, κ ∈ � . This implies that u is an
increasing function of x. ♠

Now we distinguish two cases:

1. u < 1 for every x in [0, 1], then equation (7a) becomes

ut = uxx − ux + λ , 0 < x < 1 , t > 0 . (9)

The corresponding steady problem is

w′′ − w′ + λ = 0 , 0 < x < 1 , (10a)

w(0) = w′(1) = 0 . (10b)
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2. u = 1 in a subset of [0, 1], then Lemma 1 implies

ut = uxx − ux +
λ

r2(t)
, 0 < x < r(t) , t > 0 , (11a)

u = 1 , ux = 0 , r(t) ≤ x ≤ 1 , t > 0 , (11b)

u(0, t) = ux(1, t) = 0 , t > 0 , (11c)

u(x, 0) = ψ(x) , 0 < x < 1 , (11d)

where 0 < r = r(t) < 1. The fact that ux(r, t) = 0 follows from
the continuity of ux at x = r (see the previous section). In
this case there exists a one-parameter family of steady states
of the form:

w′′ − w′ +
λ

s2
= 0 , 0 < x < s , (12a)

w(x) = 1 , w′(x) = 0 , s ≤ x ≤ 1 , (12b)

w(0) = w′(1) = 0 , (12c)

where 0 < s < 1 .

The solution to problem (10) is

w1(x;λ) =
λ

e
(1 − ex + xe) (13)

and max[0,1]w1(x) = w1(1) = λ
e
< 1 , so λ < λ∗ = e . On the other

hand, the one-parameter family of problems (12) has the solution:

w2(x; s) =
λ(s)

s2es
(1 − ex + xes) , 0 ≤ x < s ,

w2(x; s) = 1 , w′

2(x; s) = 0 , s ≤ x ≤ 1 .

Since w2(s; s) = 1 we obtain

λ(s) =
s2es

1 − es + ses
. (14)
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The latter implies that

w2(x; s) =
1 − ex + xes

1 − es + ses
, 0 ≤ x < s , (15a)

w2(x; s) = 1 , w′

2(x; s) = 0 , s ≤ x ≤ 1 . (15b)

The function λ(s) is increasing. Indeed

λ′(s) =
sesh(s)

(1 − es + ses)2
> 0 , (16)

where h(s) = 2− 2es + ses + s and h(s) > h(0) = 0 , for 0 < s < 1 .
Moreover,

λ(1−) = lim
s→1−

λ(s) = lim
s→1−

s2es

1 − es + ses
= e = λ∗ ,

λ(0+) = lim
s→0+

λ(s) = lim
s→0+

s2es

1 − es + ses
= lim

s→0+
(2 + s) = 2 = λ∗ .

We also observe that

w′

1(0;λ) =
λ

e
(e− 1) , 0 < λ < λ∗ = e ,

w′

2(0; 1−) = lim
s→1−

w′

2(0; s) = e− 1 , lim
s→0+

w′

2(0; s) = ∞ ,

since λ(s) → e as s→ 1−. Finally we obtain the response diagram
of Figure 1.

3.1.1 Stability

We now study the stability of steady-states to problem (7) for 0 <
λ ≤ λ∗ = e by using comparison methods.

In the case where 0 < ψ(x) ≤ w1(x) the function

z(x, t) =
b(t)

e
(1 − ex + xe) , 0 ≤ x ≤ 1 , t > 0 ,



3 Asymptotic behaviour and “blow-up” E125

0 λ

e-1

||w w=oo|| λ)(0;

∗ eλ == 2λ ∗

Figure 1: The non-local response diagram to problems (11)
and (12).
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is a lower solution to (7) for 0 < λ ≤ λ∗ provided that b(t) satisfies

db

dt
= ḃ(t) = λ− b(t) > 0 , t > 0 , 0 ≤ b(0) = b0 ≤ λ , (17)

or
b(t) = λ+ (b0 − λ)e−t .

Then z(x, t) ≤ u(x, t) ≤ w1(x) for 0 ≤ x ≤ 1 and b(t) → λ− as
t→ ∞ , whence z(x, t) → w1(x) as t→ ∞ uniformly in x. The same
result holds for u, that is, u(x, t) → w1(x)− as t → ∞ uniformly
in x.

If now w1(x) ≤ ψ(x) ≤ 1 then the function

U(x, t) = w2(x; r) =

{

1−ex+xer

1−er+rer , 0 ≤ x < r = r(t) ,

1 , r ≤ x ≤ 1 ,
(18)

for 0 < t < t1 and

U(x, t) = w1(x;α(t)) =
α(t)

e
(1 − ex + xe) , 0 ≤ x ≤ 1 , t ≥ t1 ,

(19)
where r(t1) = 1 and α(t1) = e, is an upper solution to problem (7).
The former holds as long as

Ur(x; r) =
er(x− r + rex − xer)

(1 − er + rer)2
< 0 for 0 < x < r = r(t) ,

and

ṙ(t) = h(r) ≡
[λ(r) − λ](1 − er + rer)2

r4e2r
, 0 < t < t1 , r(0) = r0 ,

(20)
where r0 > 0 so that λ(r0) > λ and U(x, 0) = w2(x; r0) ≥ ψ(x) .
Problem (20) has a unique solution, since the same holds for its
equivalent transcendental equation for r(t):

∫ r(t)

r0

σ4e2σ dσ

[λ(σ) − λ](1 − eσ + σeσ)2
= t , 0 < t < t1 . (21)
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Note that the function

G(ξ) =

∫ ξ

r0

σ4e2σ dσ

[λ(σ) − λ](1 − eσ + σeσ)2

is a C1-diffeomorphism from [r0, 1] to [0, T ] with

T =

∫ 1

r0

σ4e2σ dσ

[λ(σ) − λ](1 − eσ + σeσ)2
<∞ ,

see [6]. We also require that

α̇(t) = λ− α(t) , t > t1 , α(t1) = e , (22)

or equivalently

α(t) = λ+ (e− λ)et1−t → λ+ as t→ ∞ .

Thus w1(x) ≤ u(x, t) ≤ U(x, t) for (x, t) ∈ [0, 1] × [0,∞) and
u(x, t) → w1(x) as t → ∞ uniformly in x. Finally we obtain that
for 0 < λ ≤ λ∗ = 2 the unique steady state w1(x) is asymptotically
stable for all 0 < ψ(x) ≤ 1 .

For the case 2 = λ∗ < λ < λ∗ = e , we have two steady solutions
w1(x), w2(x) := w2(x; s) (for λ = λ∗, w1(x) = w2(x)). Following the
same steps as above, we prove that w1(x) is asymptotically stable
and attracts solutions with initial condition 0 < ψ(x) < w2(x) .

Now we take w2(x) < ψ(x) ≤ 1 and prove that, for t > 0,

z(x, t) =







1 − ex + xer

1 − er + rer
, 0 ≤ x < r = r(t) ,

1 , r ≤ x ≤ 1 ,

is a lower solution to (7) as long as r(t) satisfies

ṙ(t) = h(r) ≡
[λ(r) − λ](1 − er + rer)2

r4e2r
, t > 0, r(0) = r0,

(23)
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where 0 < r0 < s, so that z(x, 0) = w2(x; r0) < ψ(x).

The previous problem is equivalent to the transcendental equa-
tion for r(t)

∫ r0

r(t)

σ4e2σ dσ

[λ− λ(σ)](1 − eσ + σeσ)2
=

∫ r0

r(t)

dσ

g(σ)
= t (24)

where g(σ) = −h(σ) and t takes its maximum T ∗ when r(t) becomes
zero. Here

T ∗ =

∫ r0

0

dσ

g(σ)
<∞

(the latter holds since g(0) = 4/(λ− 2) , λ > 2 , is bounded). This
implies that u(x, t) → 1− as t → t∗− ≤ T ∗ for every x ∈ (0, 1]
and ux(0, t) → ∞ as t → t∗− , since z(x, t) ≤ u(x, t) . Hence for
λ∗ < λ ≤ λ∗ the maximum steady state w2(x) is unstable; more
precisely the solution u(x, t) to (7) “blows up” in the sense that
u becomes 1 in (0, 1] at a finite time (this could be an indication
that the mathematical model fails to describe the physical problem).

3.1.2 “Blow-up” for λ > λ � = e

We now prove that the solution u(x, t) “blows up” for λ > λ∗ =
e . Therefore we consider the function

z(x, t) =
α(t)

e
(1 − ex + xe) , 0 ≤ x ≤ 1 , 0 < t < t1 ,

where 0 ≤ α(t) ≤ e satisfies

α̇(t) = λ− α(t) > 0 , t > 0 , α(0) = 0 ,

and α(t1) = e (t1 = lnλ − ln(λ− e) < ∞) . Assuming that u
“exists” (u < 1 somewhere in [0, 1]) for t = t1 we consider z for
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t ≥ t1 ,

z(x, t) =







1 − ex + xer

1 − er + rer
, 0 ≤ x < r = r(t) ,

1 , r ≤ x ≤ 1 ,

t > t1 ,

where r(t1) = 1 .

The function z is a lower solution to (7) provided that r(t) sat-
isfies:

ṙ(t) = h(r) ≡
[λ(r) − λ](1 − er + rer)2

r4e2r
, t > t1 , r(t1) = 1 .

(25)
Problem (25) is equivalent to the transcendental equation for r(t)

t1 +

∫ 1

r(t)

dσ

g(σ)
= t1 +

∫ 1

r(t)

σ4e2σ dσ

[λ− λ(σ)](1 − eσ + σeσ)2
= t .

Again there exists a

T ∗

1 =

∫ 1

0

dσ

g(σ)
+ t1 <∞ ,

such that r(T ∗

1 ) = 0 . Thus u(x, t) → 1 as t → t∗1− ≤ T ∗

1 < ∞ for
every x ∈ (0, 1] and ux(0, t) → ∞ as t→ t∗1−, that is, u “blows up”
in finite time t∗1 .

3.2 The Dirichlet problem

Now we consider the problem

ut − uxx + ux =
λH(1 − u)

(

∫ 1

0
H(1 − u)dx

)2 , 0 < x < 1 , t > 0 , (26a)

u(0, t) = u(1, t) = 0 , t > 0 , (26b)

u(x, 0) = ψ(x) , 0 < x < 1 . (26c)
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This problem is asymmetric due to the convection term. More pre-
cisely equation (26a) is written:

ut − uxx + ux =

{

0 , for u ≥ 1 ,
λ/n2(t) , for u < 1 ,

denoting with n(t) the measure of the subset of [0, 1] where u < 1 .

On taking initial data 0 ≤ ψ(x) ≤ 1 we obtain by the maximum
principle that 0 ≤ u(x, t) ≤ 1 .

Again we distinguish two cases:

1. u < 1 for every x in [0, 1], then equation (26a) becomes

ut = uxx − ux + λ , 0 < x < 1 , t > 0 , (27)

while the corresponding steady problem is

w′′ − w′ + λ = 0 , 0 < x < 1 , (28a)

w(0) = w(1) = 0 . (28b)

2. u = 1 in a subset of [0, 1], then there exist 0 < s1 ≤ s2 < 1
such that the corresponding steady problem has the form

w′′ − w′ +
λ

(1 + s1 − s2)2
= 0 ,

for 0 < x < s1 or s2 < x < 1 , (29a)

w(x) = 1 , s1 ≤ x ≤ s2 , (29b)

w(0) = w(1) = 0 . (29c)

Our purpose now is to find the response diagram to problems (28)
and (29). The solution to (28) is w1(x) = λ

e−1
(1 − ex + xe− x) . It
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is easily seen that at x0 = ln(e−1) the solution w1 takes its (unique)
maximum

w1(x0) = λ

[

2 − e + (e− 1) ln(e− 1)

e− 1

]

.

Since w1(x0) < 1 , we deduce that

λ <
e− 1

2 − e+ (e− 1) ln(e− 1)
= λ∗ ' 8.11019739 .

On the other hand, the two-parameter solution to (29) is

w2(x; s1, s2) =































λ(1 − ex + xes1)

(1 + s1 − s2)2es1

, 0 ≤ x < s1 ,

1 , s1 ≤ x ≤ s2 ,

λ(e− es2 − ex + xes2)

(1 + s1 − s2)2es2

, s2 < x ≤ 1 .

However w2(s1; s1, s2) = 1 , so the first branch implies

λ(s1, s2) =
(1 + s1 − s2)

2es1

1 + (s1 − 1)es1

, (30)

while the third branch gives

λ(s1, s2) =
(1 + s1 − s2)

2es2

e + (s2 − 2)es2

. (31)

The relations (30) and (31) imply

e−s1 + s1 − 1 = e1−s2 + s2 − 2 , (32)

provided that s1 6= 0 , s2 6= 1 .

It is easily proved that s1 → 0+ as s2 → 1− , s1 → x0− as
s2 → x0+ and vice versa.
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From (32) we obtain F (s1, s2) = e1−s2 + s2 − 1 − e−s1 − s1 = 0
for (s1, s2) ∈ (0, x0) × (x0, 1) . Also ∂F (s1, s2)/∂s2 = 1− e1−s2 6= 0 ,
then from the implicit function theorem we get s2 = φ(s1) for all
(s1, s2) ∈ (0, x0) × (x0, 1) and

φ′(s1) =
1 − e−s1

1 − e1−s2

< 0 . (33)

Now we examine the monotonicity of λ. By using (33) we have

∂

∂s1
λ(s1, s2) =

(1 + s1 − φ(s1))
2

(e−s1 + s1 − 1)2(e1−s2 − 1)

[

2(e−s1 + s1 − 1)

− (1 − e−s1)(e1−s2 − 1)
]

= K(s1, s2)Λ(s1, s2) ,

where

K(s1, s2) =
(1 + s1 − φ(s1))

2

(e−s1 + s1 − 1)2(e1−s2 − 1)
> 0 ,

and

Λ(s1, s2) = 2(e−s1 + s1 − 1) − (1 − e−s1)(e1−s2 − 1)

= e−s1 + s1 − 2 + s2 + e−2s1 + s1e
−s1 − s2e

−s1 .

The function Λ(s1, s2) takes its minimum at the two points
(0, x0) and (0, 1) . But only the point (0, 1) satisfies the restric-
tion (32). So Λ(s1, s2) > Λ(0, 1) = 0 in (0, x0) × (x0, 1) . Finally we
have

∂

∂s2

λ(s1, s2) > 0 and
∂

∂s2

λ(s1, s2) =
∂

∂s2

λ(s1, s2)
1

φ′(s1)
< 0

for (s1, s2) ∈ (0, x0) × (x0, 1) . We also have

lim
s1→x0

λ(s1, s2) =
e− 1

1 + (e− 1)[ln(e− 1) − 1]
= λ∗
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and

lim
s1→0

λ(s1, s2) = lim
s1→0

2(1 + s1 − φ(s1))(1 − φ′(s1))

1 − e−s1

.

After some calculations we finally obtain

lim
s1→0

λ(s1, s2) = 4 lim
s1→0

1 − φ′(s1)

e−s1

= 8 = λ∗

(we have used that lims→0 φ
′(s) = −1).

In addition we take

w′

1(0;λ) =
λ(e− 2)

e− 1
for 0 < λ ≤ λ∗ ,

w′

2(0; x0, x0) = w′

2(0;λ∗) =
λ∗(e− 2)

e− 1
,

w′

2(0; 0, 1) = w′

2(0;λ∗) = lim
s1→0

es1 − 1

1 + s1es1 − es1

= ∞ .

From the above analysis we obtain the response diagram of Figure 2.

3.2.1 Stability

We now study the stability of steady-states for 0 < λ ≤ λ∗ =
8.11019739 . Firstly we consider 0 < λ ≤ λ∗ = 8 , then w1(x) is the
unique steady solution.

Again we prove, for 0 ≤ ψ(x) < w1(x) , that

z(x, t) =
b(t)

e− 1
(1 − ex + xe− x), 0 ≤ x ≤ 1 , t > 0 ,

is a lower solution to (26) provided that 0 ≤ b(t) ≤ λ and b(t) sat-
isfies

db

dt
= ḃ(t) = λ− b(t) > 0 , t > 0 , b(0) = b0 ≥ 0 , (34)
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0 ∗λ

w=oo (0; λ)||

λ∗

/(e-1)(e-2)∗λ

λ

||w

Figure 2: The non-local response diagram to problems (28)
and (29); λ∗ = 8 , λ∗ = 8.11019739 .
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or equivalently b(t) = λ+(b0−λ)e−t → λ− . Hence u(x, t) → w1(x)
as t→ ∞ uniformly in x.

For w1(x) < ψ(x) ≤ 1 , our prospective comparison function
U(x, t) is

U(x, t) = w2(x; r1, r2) =



























1 + xer1 − ex

1 + r1er1 − er1

, 0 ≤ x < r1 ,

1 , r1 ≤ x ≤ r2 ,

e + xer2 − er2 − ex

e + (r2 − 2)er2

, r2 < x ≤ 1 ,

(35)
where r1 and r2 are functions of t, 0 < t < t1, and

U(x, t) = w1(x;α(t)) =
α(t)

e− 1
(1− ex + xe− x) , 0 ≤ x ≤ 1 , (36)

for t ≥ t1 . Also the functions r1 and r2 with 0 < r1(t) < r2(t) < 1
satisfy relation (32). Both relation (32) and problem

ṙ1(t) = h(r1) ≡
[λ(r1, φ(r1)) − λ] (1 − er1 + r1e

r1)2

r12e2r1(1 + r1 − φ(r1))2
, 0 < t < t1 ,

(37a)

r1(0) = r̂0 , (37b)

(r̂0: λ(r̂0, φ(r̂0)) > λ and U(x, 0) = w2(x; r̂0, φ(r̂0)) ≥ ψ(x)) imply
that U(x, t) is an upper solution to problem (26).

The existence and uniqueness of (37) is derived using similar
arguments to the mixed problem.

For t > t1 we require α(t) to satisfy

α̇(t) = λ− α(t) < 0 , t > t1 , α(t1) = λ∗ , (38)
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or equivalently α(t) = λ + (λ∗ − λ)et1−t → λ+ as t → ∞ . Thus,
it is proved that u(x, t) → w1(x)+ as t → ∞ uniformly in x. So
u(x, t) is a global in time solution for 0 < λ ≤ λ∗ and w1(x;λ) is
asymptotically stable for all 0 < ψ(x) < 1 .

In the case where λ∗ < λ < λ∗ , if we consider initial data
0 ≤ ψ(x) < w1(x) , then using similar arguments as above we prove
that u(x, t) → w1(x)− as t → ∞ uniformly in x. While for initial
data w1(x) < ψ(x) < w2(x) := w2(x; s1, s2) we construct an upper
solution similar to this defined by (35), (36). Hence, in this case,
w1(x) is asymptotically stable.

If now w2(x) < ψ(x) , then we construct a lower solution z(x, t)
of the form:

z(x, t) = w2(x; r1, r2) =



























1 + xer1 − ex

1 + r1er1 − er1

, 0 ≤ x < r1 ,

1 , r1 ≤ x ≤ r2 ,

e+ xer2 − er2 − ex

e+ (r2 − 2)er2

, r2 < x ≤ 1 ,

where 0 < r1(t) ≤ r2(t) < 1 satisfy restriction (32). Moreover r1(t)
is the unique solution to the problem

ṙ1(t) = h(r1) ≡
[λ(r1, φ(r1)) − λ](1 − er1 + r1e

r1)2

r12e2r1(1 + r1 − φ(r1))2
, t > 0 ,

(39a)

r1(0) = r̂0 , (39b)

(0 < r̂0 < s1: z(x, 0) = w2(x; r̂0, φ(r̂0)) < ψ(x)). Using the tran-
scendental equation for r1(t)

∫ r̂0

r1(t)

dσ

g(σ)
= t , t > 0 , (40)
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(g(σ) = −h(σ) > 0) which is equivalent to problem (39) we prove

the existence of T ∗ =
∫ r̂0

0
dσ

g(σ)
< ∞ , such that r1(T

∗) = 0 (or

equivalently r2(T
∗) = 1). Whence u(x, t) → 1 as t → t∗− ≤ T ∗ <

∞ for every x ∈ (0, 1) and |ux(ξ, t)| → ∞ as t → t∗− for ξ = 0, 1,
that is u(x, t) “blows up” in finite time. This implies that the greater
steady-state w2(x) is unstable.

3.2.2 “Blow-up” for λ > λ �

We now examine the case where λ > λ∗. We prove that u(x, t)
“blows up” in finite time. Therefore we consider the comparison
function

z(x, t) =
α(t)

e− 1
(1 − ex + xe− x) , 0 ≤ x ≤ 1 , 0 < t < t1 ,

with 0 ≤ α(t) ≤ λ∗ . The function z(x, t) is a lower solution to
problem (26) provided α(t) satisfies:

α̇(t) = λ− α(t) > 0 , 0 < t < t1 , α(0) = 0 , (41)

where t1 is such that α(t1) = λ∗ (t1 = lnλ− ln(λ− λ∗) <∞ , since
λ > λ∗). If, on the other hand, u(x, t) “exists” (u < 1) at t = t1
then we can define z for t > t1 so that

z(x, t) =



























1 − ex + xer1

1 − er1 + r1er1

, 0 ≤ x < r1 ,

1 , r1 ≤ x ≤ r2 ,

e+ xer2 − er2 − ex

e+ (r2 − 2)er2

, r2 < x ≤ 1 ,

where 0 < r1(t) ≤ r2(t) < 1 satisfy (32).
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The function z is a lower solution to problem (26) provided that
r1(t) with 0 < r1(t) < 1 , satisfies the problem

ṙ1(t) = h(r1) =
[λ(r1, φ(r1)) − λ](1 − er1 + r1e

r1)2

r12e2r1(1 + r1 − φ(r1))2
, t ≥ t1 ,

(42a)

r1(t1) = x0 . (42b)

Again we prove that there exists

T ∗

1 =

∫ x0

0

dσ

g(σ)
+ t1 <∞ ,

where

g(σ) =
σ2e2σ(1 + σ − φ(σ))2

[λ− λ(σ, φ(σ))](1 − eσ + σeσ)2

such that r1(T
∗

1 ) = 0 (or equivalently r2(T
∗

1 ) = 1).

The latter implies that u(x, t) → 1 as t → t∗1− ≤ T ∗

1 uniformly
in x ∈ (0, 1) and |ux(ξ, t)| → ∞ as t→ t∗1−, where ξ = 0, 1 .

In the last part of this work we consider the case where f(s) =
H(s− 1) . Now the problem is non-trivial only if u ≥ 1 in a subset
of [0, 1] . In order to ensure this we assume that the boundary
conditions are of Neumann type and ψ(x) ≥ 1 ; then by using the
maximum principle we obtain that u ≥ 1 for x ∈ [0, 1] and t > 0 .
Thus the problem becomes

ut − uxx + ux = λ , 0 < x < 1 , t > 0 , (43a)

ux(0, 1) = ux(1, t) = 0 , t > 0 , (43b)

u(x, 0) = ψ(x) , 0 < x < 1 . (43c)

It is known from the classical parabolic theory that problem (43) has
a unique solution. Denoting by M(t) = max[0,1] u(·, t) , from (43a)
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we get dM/dt = Ṁ(t) ≤ λ , or equivalently M(t) ≤ λt + M(0) for
t > 0 . The latter implies that the solution u(x, t) exists for all times
t > 0 but it is unbounded, since the corresponding steady problem
has no solutions.

For the case of general increasing f and for some type of bound-
ary conditions, the global existence of solution u is proved, by using
an eigenfunction expansion method, see [9].

4 Conclusions

We have studied the behaviour of the non-local parabolic equation

ut = uxx − ux +
λf(u)

(
∫ 1

0
f(u) dx)2

with certain initial and boundary conditions where f is the Heav-
iside function. In the case where f(u) = H(1 − u) , so f(u) is de-
creasing, comparison techniques can be applied. Two problems with
different types of boundary conditions are studied. In both problems
there exist λ∗ and λ∗ such that for λ > λ∗ or for 0 < λ∗ < λ < λ∗

and sufficiently “warm” initial conditions the solution “blows up”
in the sense that it becomes 1 at a finite time except for the points
assigned zero boundary conditions. Regarding the original physi-
cal problem, this means that the food (or the substance undergoing
the heating) loses all resistivity at temperature u = 1, that is the
heating ceases across the channel after finite time.

Acknowledgements: the authors thank the referees for several
fruitful remarks.
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