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Optimising the degree of data smoothing for
locally adaptive finite element bivariate
smoothing splines
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Abstract

Finite difference and finite element schemes for bivariate thin plate
smoothing splines are described. Nested grid SOR iterative methods
are known to be able to solve these systems efficiently for large data
sets. An iterative Newton procedure for optimising the smoothing pa-
rameter to achieve a prescribed residual sum of squares from the data
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is obtained. It can be added to the SOR iteration with little additional
computational cost and is demonstrated on test data to work for a wide
range of smoothing parameters. An apparently more accurate version
of this procedure, which requires more memory, converges slightly less
quickly than the simpler approximation. The simpler method appears
to be directly compatible with the SOR iterative method. The Newton
method is shown to also work for locally adaptive versions of finite dif-
ference smoothing splines. The roughness penalty can be made locally
adaptive to respect process-based constraints, such as minimum pro-
file curvature, which depends on the local aspect of the fitted surface.
This can be applied to the interpolation of digital elevation models.
The weighted residual sum of squares can be made locally adaptive to
allow for positional error in data, whether arising from actual data er-
ror, or from a finite difference discretisation. This has given rise to an
objective method for optimising the grid resolution to the information
content of the data.
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1 Introduction

Finite difference and finite element discretisations, based on a regular two-
dimensional grid, provide a means of calculating close approximations to
bivariate thin plate smoothing splines fitted to scattered point data. Efficient
methods based on a simple nested grid SOR iteration, in which the solution
is progressively refined on successive finer grids, have been developed by
Inoue [15], Hutchinson [10] and Smith and Wessel [17]. A recent variant on
these methods has been developed by Hegland et al. [9]. All of these methods
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originate from the non-nested grid solution formulated by Briggs [2]. Though
sharp results on rates of convergence for nested grid implementations have yet
to be obtained, the finite difference method developed by Hutchinson [10] has
been shown in practice to have optimal computational cost, in the sense that
it is proportional to the number of grid points. It has been routinely applied
on standard workstations to problems involving millions of data points and
grid points. Such problems are well beyond the means of standard analytic
methods for thin plate smoothing splines.

Data smoothing is usually required to allow for data error and for error
in the bivariate spline model. Objective methods for setting the degree of
smoothing, are difficult to apply for larger data sets. This paper describes
two computationally efficient procedures that can be applied to nested itera-
tive methods to adaptively determine the smoothing parameter, so that the
fitted bivariate spline has a prescribed residual sum of squares from the data.
Both procedures use a Newton iteration scheme that simultaneously updates
the smoothing parameter as the smoothing spline is solved for each grid res-
olution. The methods have similar rates of convergence. They provide a
direct counterpart to the Newton procedure for the univariate polynomial
smoothing spline obtained by Reinsch [16].

Prescribing the residual sum of squares is appropriate when the data er-
rors are known and are known to dominate the errors in the spline model.
When this is not the case, the degree of smoothing is better set by min-
imising the generalised cross validation [3], although this is also difficult for
large data sets. The stochastic trace estimators obtained by Girard [6] and
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Hutchinson [11] provide a means for addressing this problem, but cross vali-
dation methods are not discussed further here. Applications of the minimum
variance trace estimator of Hutchinson [11] to a variety of problems have
been described by Golub and von Matt [7].

A particular advantage of finite difference and finite element formulations
of smoothing splines is that locally adaptive constraints can be applied to
respect known process-based conditions. Such constraints cannot be easily
imposed by existing analytic methods. Locally adaptive constraints can be
applied to the two components defining the smoothing spline, the roughness
penalty and the weighted residual sum of squares. Locally adaptive schemes
impose additional computational cost in updating the equations as the solu-
tion is generated. These could also affect the proposed Newton procedure,
but if the locally adaptive behaviour is fairly stable, its influence on the New-
ton procedure is minimal. This is verified by applying the Newton procedure
to examples that include a locally adaptive roughness penalty and a locally
adaptive weighting of the residual sum of squares.
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2 The basic finite element formulation and
its iterative solution

The data model for which bivariate spline smoothing is appropriate is that
there are N noisy data values given by

where f is an unknown bivariate function, each ¢; is an independent sample
from a zero mean random variable with common variance o2 and each w;
is a known positive constant. Suppose that f is represented by a regular
grid of coefficients, given by a vector u, over a region of the plane containing
the points (z;,vy;). These coefficients may be a regular grid of values of
the unknown function f. More generally they denote coefficients of a finite
element representation of f. In the interests of computational efficiency,
these elements normally have minimal local support, such as that afforded
by bilinear or biquadratic polynomial B-splines, as defined by de Boor [4].
Various locally supported non-conforming finite element and finite difference
schemes have been devised [1].

Using such representations, the vector of function values f(x;,y;) may
be written as Pu where P is a sparse N x M matrix and M is the total
number of grid coefficients. When B-spline representations are used, each
row of P has one, two or three non-zero entries, depending respectively on
whether f is represented by piece-wise constants, or bilinear or biquadratic
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polynomial B-splines. An approximation to a thin plate smoothing spline fit
to the data in equation (1) may then be determined by finding the vector u
that minimises

W (Pu — 2)|* + M’ Au (2)

where 2z = (z1,...,2y)7, W = diag(wy,... ,wy), A is a sparse symmet-
ric positive semi-definite matrix corresponding to the total curvature of the
function f, and A is a positive smoothing parameter.

Differentiating expression (2) with respect to the vector u gives rise to a
sparse, positive definite, system of equations for u given by

(PTVP + ) A)u=P'Vz (3)

where V' = W~2 For a given value of the smoothing parameter A, this
system can be solved in a nested grid iteration, proceeding from a suitably
coarse initial grid to successively finer grids, using SOR or conjugate gradient
iteration at each grid resolution. The SOR method has been adopted here
because of its simplicity and suitability for adaptive enhancement. Though
it is difficult to determine the optimal relaxation parameter for the SOR
method analytically [8], a relaxation parameter of 1.6 has been found in
practise to provide significant acceleration of convergence across a range of
smoothing parameters. Provided the starting grid is chosen to be sufficiently
coarse, 30 SOR iterations at each grid resolution are normally sufficient to
ensure convergence [10]. This implies that the computational cost for the
procedure is optimal, in the sense that it is essentially proportional to the final
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number of grid points, since iteration on the final grid resolution dominates
the computation.

Computational efficiency can be enhanced by using parallel vector oper-
ations on each row of the grid of coefficients in u. Vector operations may
be applied to all contributions to the basic SOR step by all grid coefficients
in v that are not in the current row, as well as grid coefficients in the same
row that lie ahead of the SOR iteration. If A corresponds to the usual 13
point stencil associated with the biharmonic equation [2], then 10 of these
13 values can be accounted for using vector operations. The same vector
strategy can be applied to the contributions from the matrix PTV P.

Computer memory requirements in solving equation (3) may be min-
imised by noting that the matrix A need not be stored, as its entries are
normally known. The memory requirements of the matrix P7V P depend on
the order of the finite element or finite difference scheme used to represent
the function f. If a piece-wise constant finite difference scheme is used, then
PTV P is in fact a diagonal matrix, which can be stored in an array with the
same number of entries as the vector w.

Higher order finite elements require significant additional storage. These
memory costs can be avoided if the data points are stored off-line, in the same
sequential order that the corresponding grid coefficients are accessed in the
SOR iteration. This entails the additional computational cost of recalculation
of the matrix PTV P and the vector PTV z. Since the number of data points
is usually much less than the number of grid points, the extra cost can be
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small compared to that of the basic SOR iteration.

3 Optimising the residual sum of squares

Two Newton procedures for optimising the weighted residual sum of squares
are described. These depend on differentiating with respect to the smoothing
parameter A the weighted residual sum of squares, given by

R=|WPu—-W|? =u"PTVPu—2u"P'V2+ 2"V (4)
Using the chain rule gives

dR _dR du __ pdu
D d D (5)

where

v=P'VPu— P'Vz=P'V(Pu-2). (6)

Differentiating equation (3) implicitly with respect to A and re-using equa-
tion (3) gives
du

(PTV P + AA)a = —Au=v/\ (7)
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Setting A\ = e’ then gives

>du B
g

Thus du/df satisfies the same system of equations as u, but with the data

vector z replaced by the vector Pu — z. Moreover, from equations (5, 8) it
follows that

(PTVP 4+ \A v. (8)

dR

do

Thus a simple Newton scheme can be used to achieve a prescribed weighted
residual sum of squares S with increments in 6 given by

dR

A0 =(S—R)/—. 10

(5- R/ (10)

This scheme ensures the positivity of A and also permits A\ to take on a

large range of values. It must be adapted to the nested grid SOR iterative

scheme employed here. Equation (5) is valid for any value of u, but if u is

an approximate solution to equation (3), then equations (7, 8, 9) also hold

approximately.

207 (PTV P 4+ \A) . (9)

If Gauss-Seidel iteration, is used to update u, then each scalar equation
in (3) holds temporarily as each grid value in the vector u is updated. Ap-
plying implicit differentiation with respect to A to this equation yields each
corresponding scalar equation in (8). It is therefore valid to update values of
du/df using the same Gauss- Seidel procedure.
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3.1 First Newton scheme

It remains to investigate options for efficient approximate solution of equa-
tions (8, 9). The first option is to subject equation (8) to the same SOR
iterative scheme used to solve for u. This should give accurate results, but
at the expense of allocating memory to store the vector du/df. However, it
is not expensive computationally, as the equation coefficients and the entries
in the vectors PV Pu and PTVz, which make up the right hand side of
equation (8), are all available as part of the SOR iteration on w.

3.2 Second Newton scheme

The simplest alternative is to approximately solve equation (9) directly by
replacing (PTV P + XA) by its diagonal elements. This is equivalent to dif-
ferentiating the basic Gauss-Seidel step in the solution of u while treating all
other elements of u as constant. Since the diagonal elements of (PTV P+ \A)
are positive, this maintains the positivity of the derivative with respect to
in equation (9), so that the increments Af in the Newton iteration have the
correct sign. This estimate is likely to be accurate if A is relatively small and
the matrix (PTV P + \A) is diagonally dominant. This is indeed the case if
there is little data smoothing and piece-wise constants are used to represent
the function f, in which case PTV P is diagonal. This approximation has
been used effectively in the method described by Hutchinson [10].
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4 Locally adaptive roughness penalties

Many locally adaptive roughness penalties are possible. Two that have direct
relevance to digital elevation modelling are described. A common criticism
of minimum curvature interpolation is that it cannot match sharp changes
in gradients, particularly at peaks. The first locally adaptive penalty sim-
ply modifies the curvature roughness penalty by removing, or significantly
reducing, the finite difference or finite element contribution to the roughness
penalty at each peak. This can be readily implemented in an iterative finite
difference framework.

The second, perhaps more generic, roughness penalty is profile curvature
in the downslope direction. Minimising profile curvature should be reason-
ably consistent with fluvial landforming processes, and certainly consistent
with normal river profiles. Departures from linear profiles due to strong
underlying controls, such as rock outcrops, cliffs and waterfalls, can be ac-
counted for in the interpolation process if these features are sampled by data
points. This penalty has been posed by Hutchinson [12], and preliminary
implementations are encouraging. The penalty is based on minimising the
integral of the square of

2 2 2 2

% = COSQ(Q)Z—:UJ; + 2 cos(a) sin(a)dcf“];y ill—yé (11)

where « is the local aspect angle. Aspect is defined at each grid point as the
direction of steepest slope. This penalty is stable enough to support the iter-
ative interpolation process provided the aspect angle is suitably stable as the

+ sin?(a)
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iteration proceeds. At peaks, where the aspect angle is not defined, there is
no penalty, in accord with the first locally adaptive penalty described above.
Other breakpoints in the land surface, such as cliffs, can be similarly accom-
modated. This penalty is also readily defined in terms of finite differences of
the grid coefficients, although optimal strategies are still under development.

5 Locally adaptive weighting of the residual
sum of squares

If a finite difference interpolation strategy is employed, data points are nor-
mally allocated to the nearest grid point. This introduces a small positional
error in the data which may be interpreted as a vertical error in the point
placed at the grid point. This is illustrated in Figure 1 where the data point
A on a sloping terrain surface is allocated to the centre of the grid cell of
width h, leading to a horizontal displacement d, which gives rise to a vertical
error z.

The size of this vertical error depends on the slope s of the grid cell,
and the magnitude of the horizontal displacement d. If it is assumed that
each data point is placed randomly within its associated grid cell, then the
standard deviation of the corresponding vertical error is readily shown to be

w=h.s/\V12. (12)
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z = d x slope

h

FIGURE 1: Vertical error of a horizontally displaced data point.
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The amount of data smoothing can then be determined in a locally adaptive
manner by weighting the data points, as in equation (2), according to these
standard deviations, and determining the smoothing parameter so that

WPy — Wlz|2 = N (13)

where N is the number of data points. This matches the expected value of
the weighted residual sum of squares from the true terrain surface. Provided
the slopes of the surface are sufficiently stable as the iteration proceeds, this
can be achieved using either of the Newton procedures described above. This
has been implemented in the ANUDEM elevation gridding procedure [13]. It
can be extended to the case where the data points have significant positional
error, provided the variance of this error is known.

A significant byproduct of this approach is an objective procedure for op-
timising grid resolution to the information content of the source data. As the
nested grid iteration proceeds from coarse to fine resolution by successively
halving the grid spacing, the slopes of the fitted grid at the data points tend
to steadily increase in magnitude. At coarse resolutions several data points
may be allocated to single grid cells, leading to averaging of the data points
and oversmoothing of the fitted surface in comparison to the true terrain sur-
face. Eventually the resolution is sufficiently fine for there to be little or no
data averaging, and the slopes of the fitted surface stabilise. At this stage, all
information has been extracted from the source data. This can be detected
by plotting the root mean square slope of the grid across all data points as
a function of grid resolution, as shown in Figure 2 of Hutchinson [12].
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6 Examples

6.1 Example 1

The first example demonstrates the efficacy of the proposed Newton pro-
cedure applied to data obtained from Franke’s principal test function [5].
One hundred data points were randomly selected from this function on the
unit square. Three noisy data sets were created by adding to these points
samples of Gaussian noise with standard deviations of 1/128, 1/16 and 1/2
respectively. These data sets were submitted to analytic bivariate thin plate
spline smoothing using the ANUSPLIN package [14], with the amount of data
smoothing determined by minimising the generalised cross validation. The
results of these analyses are shown in Table 1. Note the agreement between
the standard deviation of the data noise and the estimated standard devia-
tions of data noise in the first and last columns of this table respectively.

A piece-wise constant finite difference iterative bivariate smoothing spline,
as described above, was applied to these data sets with root mean square
residuals from the data points prescribed to be 0.0036, 0.043 and 0.41 re-
spectively, each augmented by the variance of the locally adaptive discretisa-
tion error, as given by equation (12). Grids with spacings of 0.01 were fitted
across the unit square. For each data set, there were five nested grids, with
successive grid spacings from 0.16 to 0.01.

The number of iterations for each grid resolution was set to 40 and the
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TABLE 1: Summary statistics of minimum GCV thin plate smoothing spline
analyses of data perturbed from Franke’s principal test function.

Standard | Smoothing | Signal | Square Root | Root Mean | Estimated

deviation | parameter of cev square standard

Gaussian residual | deviation of
noise noise
0.0078 0.751E-04 | 73.8 0.014 0.0036 0.0070
0.0625 0.956E-03 | 36.3 0.067 0.043 0.0535
0.5000 0.616E-01 7.2 0.445 0.41 0.428

smoothing parameter was updated every second iteration, using the two New-
ton procedures described above. The second more approximate Newton pro-
cedure in fact performed slightly better than the first. Root mean square
residuals for both procedures converged to within three figure accuracy of
the prescribed values after about 20 iterations at each grid level. Compar-
isons of minimum and maximum values for the analytic analyses and the
finite difference analyses are given in Table 2. Differences between the an-
alytic values and the finite difference values are slightly larger for the data
sets with the larger noise levels.
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TABLE 2: Comparison of maximum and minimum of analytic and finite
difference splines fitted to noisy bivariate data.

Root Mean Analytic thin plate spline | Finite diff. thin plate spline
square residual | Minimum Maximum Minimum Maximum
0.0036 0.01 1.21 0.02 1.20
0.043 -0.03 1.17 -0.01 1.15
0.41 -0.21 1.22 -0.13 1.19

6.2 Example 2

This example shows the application of the second locally adaptive roughness
penalty described above. The source data consisted of elevation contours
extending across a 2km x 2km square region, as shown in Figure 2(a). A
40 m resolution grid (with 50x 50 points) was fitted to this data using a second
order finite difference approximation, and minimising profile curvature in the
downslope direction. Stability in the aspect of the grid during the iterative
solution was ensured by adding to the profile curvature penalty 1/10 th of the
standard total curvature penalty. The result is shown in Figure 2(b). The
relatively coarse grid used in this preliminary study has removed some of the
detail in the data, but plausible trends above and below the data contours
have been fitted, particularly in the long ridge extending from the bottom of
the figure. The broad structure in the data contours has also been sensibly
extended between the data contours.
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(a)
FiGurE 2: Locally adaptive, finite difference thin plate spline analysis of
contour elevation data: (a) Contour data; (b) Contours of fitted grid.
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7 Discussion and conclusion

The nested grid formulation of bivariate thin plate smoothing splines has
been shown to be an effective method for analysing noisy bivariate data.
The Newton procedure for optimising the smoothing parameter to achieve
a prescribed root mean square residual from the data has also been shown
to work for a wide range of smoothing parameters. The simplest version of
this method, which uses the diagonal elements of the spline equation coeffi-
cients to estimate the derivative of the residual sum of squares with respect
to the smoothing parameter, performed slightly better than the apparently
closer approximation which iteratively solves the full set of equations for the
derivative.

The simpler approximation appears to be directly compatible with the
SOR iterative method. It is therefore the recommended procedure, although
further investigation of the relative merits of these two procedures is war-
ranted. Using the fuller approximation gives more stable behaviour, specif-
ically, smaller Newton increments in the smoothing parameter, with fewer
changes in sign, but, as implemented here, it converges a little more slowly.

Locally adaptive formulations of finite difference splines using nested grid
SOR iteration have also been shown to be effective in allowing for positional
error in the data and in implementing locally adaptive roughness penalties
to respect known process based constraints. The locally adaptive strategies
have been demonstrated to be sufficiently stable to allow optimisation of
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the residual sum of squares using the Newton scheme described. Further
investigation of these locally adaptive strategies is anticipated.
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