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Stochastic subgrid modelling for atmospheric
large eddy simulations
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Abstract

Dynamical subgrid scale parameterizations of stochastic backscat-
ter and eddy dissipation have been calculated for typical atmospheric
turbulent flows on the sphere. A methodology based on a stochastic
model representation of the subgrid scale eddies in direct numerical
simulations, and with wide applicability to fluid flows, has been em-
ployed. Large eddy simulations incorporating these subgrid scale pa-
rameterizations are found to have energy spectra that compare closely
with the results of higher resolution direct numerical simulations for
both barotropic and baroclinic turbulent flows.
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1 Introduction

In recent years there has increased interest in developing and employing im-
proved dynamical subgrid scale parameterizations for atmospheric climate
and weather prediction models (Frederiksen et al. [4]). In particular it has
been demonstrated that some of the problems in climate simulations such as
resolution dependence of the kinetic energy spectra may be cured (Frederik-
sen and Davies [2]) or ameliorated [4] by self-consistently determined dynam-
ical subgrid scale parameterizations. It has also been realized that subgrid
scale eddies not only drain enstrophy from the retained scales through an ef-
fective eddy viscosity but also inject enstrophy to the retained scales through
a stochastic backscatter term [2]. In this study we apply a direct stochas-
tic modelling approach to subgrid scale parameterizations (Frederiksen and
Kepert [3]) that has been shown to have similar performance to parameteri-
zations based on renormalized statistical closure theory ([2]; Frederiksen [1];
O’Kane and Frederiksen [5]).

In Section 2 we describe the quasigeostrophic models for atmospheric
flows and turbulence in spherical geometry used in these studies and summa-
rize the spectral equations for the spherical harmonic coefficients. Section 3
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presents a stochastic methodology, with wide applicability, for deriving sub-
grid scale parameterizations of eddy dissipation and stochastic backscatter
from direct numerical simulations (dns). In Sections 4 and 5 we compare
large eddy simulations (les) incorporating the subgrid scale parameteriza-
tions with higher resolution dns for barotropic and baroclinic turbulent flows.
Our conclusions are summarized in Section 6.

2 Quasigeostrophic models

For our studies of stochastic subgrid scale modelling of atmospheric large
eddy simulations we consider barotropic and baroclinic flows and turbulence
on the sphere described by quasigeostrophic equations. The quasigeostrophic
two level model for baroclinic dynamics is discretized by expanding each
of the fields in spherical harmonics with zonal wavenumber m and total
wavenumber n. The spectral form of the two level equations are

∂qjmn
∂t

= i
∑
pq

∑
rs

Amprnqs ζ
j
−pqq

j
−rs−D

j
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)
+fj0(m,n) ,

(1)
where j = 1 is the upper level (typically 250hPa) and j = 2 is the lower level
(typically 750hPa). Here the (reduced) potential vorticity spectral coeffi-
cients are defined by qjmn = ζjmn − (−1)j

(
ζ1mn − ζ2mn

)
FL[n(n + 1)]−1 where

ζjmn are the vorticity spectral coefficients; fj0(m,n) are forcing terms. Also,

D
j
0(m,n) = αj + ν

j
0 [n(n+ 1)]

ρ
+ iωjmn is a generalized complex operator

whose real part describes dissipation and imaginary part describes the fre-
quency ωjmn = −Bm[n(n + 1)]−1 of Rossby waves; ρ is a positive integer
discussed below. These equations are nondimensional; we use the earth’s
radius as a length scale and the inverse of the earth’s angular velocity as a
time scale. The beta effect B, due to differential rotation, takes the value
two with current scalings, but we also consider the case B = 0 . The layer
coupling parameter FL is inversely proportional to the potential temperature
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Figure 1: Kinetic energy spectra e(n) (m2s−2) as functions of total
wavenumber n for (B) dns at T126 (upper results), (C) les at T63
with renormalized dissipation and renormalized noise forcing (middle re-
sults ×10−1) and les at T63 with renormalized net dissipation (lower re-
sults ×10−2), and (D) e(n)± standard deviation.
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difference between the levels. We also allow for a simple representation of
the effects of differential heating through a specification of q̃jmn. This is
the value towards which qjmn is relaxed on a timescale given by κ−1. The
interaction coefficients Amprnqs = −Kmprnqs [q(q+1)]−1, with Kmprnqs explicitly given
by Frederiksen and Kepert [3], describe the non-linear coupling between the
streamfunction and potential vorticity. The barotropic model may be ob-
tained from the baroclinic equations by setting FL = 0 .

3 Subgrid scale parameterizations

Let q denote the column vector of spectral coefficients qjmn. Then on reducing
the resolution from T (for dns) to R (for les) we write the tendency as
qt = (qt)R + (qt)S where qt = ∂q(t)/∂t. The vector (qt)R represents the
resolved scale tendency and (qt)S represents the subgrid scale tendency. Now,
q consists of a transient part q̂ = q − q̄ and a mean part q̄. Similarly, the
subgrid tendency has both mean and transient parts (qt)S = fm + (q̂t)S ,
where fm and (q̂t)S are the mean and transient parts, respectively. In this
study, the mean part is simply calculated from a high resolution simulation
as the time average of the subgrid tendency.

The subgrid terms are represented by the stochastic equation(
∂q̂(t)

∂t

)
S

= −Ddq̂(t) + f̂b(t) . (2)

Here, Dd is defined as the drain dissipation matrix and f̂b is a random forcing
vector. Frederiksen and Kepert [3] formulated the stochastic model for the
drain dissipation matrix to account for memory effects of turbulent eddies
by analogy with the direct interaction closure approach of Frederiksen and
Davies [2]. Thus, the drain dissipation matrix has the integral form

Dd = −

[∫ t
t0
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〉][∫ t
t0

ds〈q̂(t)q̂†(t0)〉
]−1

. (3)
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Here, angle brackets denote either ensemble or time averaging; in this study,
we consider the latter; also † denotes Hermitian conjugate.

The covariance matrix for the subgrid nonlinear noise Fb = Fb+F†b where

Fb = 〈f̂b(t)q̂†(t)〉 may be obtained from the Lyapunov or balance equation〈(
∂q̂(t)

∂t

)
S

q̂†(t)

〉
+

〈
q̂(t)

(
∂q̂(t)

∂t

)†
S

〉
= −Dd〈q̂(t)q̂†(t)〉− 〈q̂(t)q̂†(t)〉Dd

† + Fb(t) (4)

after computing Dd.

In general the nonlinear noise may be coloured but we find that once it
has been calculated as described above it is sufficient to model it by white
noise in the subsequent les. Thus, the forcing f̂b(t) takes the white noise
form 〈f̂b(t)f̂ †b(t ′)〉 = Fb(t)δ(t−t ′), where δ(t−t ′) is the Dirac delta function.

We also consider a deterministic parameterization where Fb = Fb + F†b is
represented by a backscatter dissipation matrix defined by

Db = −Fb

[
〈q̂(t)q̂†(t)〉

]−1
. (5)

Then we define the net dissipation matrix by

Dn = Dd + Db . (6)

4 Barotropic model results

In this section we consider first the case of barotropic and isotropic tur-
bulence with no mean field, mean forcing or rotation (B = 0) and then
go on to more complex flows in Section 5. We simulate a typical atmo-
spheric isotropic spectrum at the resolution of triangular truncation T126
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Figure 2: Nondimensional subgrid scale parameterizations of (A) eddy drain
viscosity νd(n), (B) eddy backscatter viscosity νb(n), and (C) net eddy
viscosity νn(n) as functions of n.
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which retains 126 wavenumbers and corresponds to 384×192 grid points (in
longitude× latitude). The flow is maintained by random forcing f̂0 with vari-
ance F0 (not shown) and typical bare dissipation D0(m,n) = 1.014 × 10−2

for 2 ≤ n ≤ 21 and D0(m,n) = 1.014 × 10−2 + 2.115 × 10−5n(n+ 1)

for 22 ≤ n ≤ 126 in non-dimensional units. Here, the drag contribution
(1.014× 10−2) corresponds to an e-folding time of 15.6 days, and the Lapla-
cian (ρ = 1) contribution (2.115× 10−5) corresponds to 6.25× 10−4 m2s−1 in
dimensional units.

Figure 1 (upper results) show the kinetic energy e(n), averaged over m
and averaged over the last 100 days of a 150 day integration with the
barotropic vorticity equation, and the standard deviations about the means.
We regard the T126 dns spectra as the benchmarks against which we com-
pare the les at lower resolution, chosen as T63 (192× 96 grid points), with
dynamical subgrid scale parameterizations. These subgrid scale parameteri-
zations are based on truncating the T126 results back to T63 and are calcu-
lated as described in Section 3. Because there is only one level and because
the barotropic turbulence is isotropic, the matrices D and Fb of Section 2
become scalars D and Fb that depend only on the total wavenumber n. Fig-
ure 2 shows the viscosities νd = Dd[n(n+ 1)]−1, νb = Db[n(n+ 1)]−1 and
νn = Dn[n(n+ 1)]−1 = νd + νb which depend only on the total wavenum-
ber n. These viscosities, and the corresponding dissipations have a cusp
behaviour at the smallest scales. We also note that the net viscosity νn is
the relatively small difference between drain due to the drain viscosity νd
and injection due to the negative backscatter viscosity νb.

Large eddy simulations have been performed at T63 with the renormalized
drain dissipation Dr = Dd + D0 and white noise renormalized forcing f̂r =

f̂b+f̂0 and also with the renormalized net dissipationDrn = Dn+D0 and bare
forcing f̂0. Figure 1 (middle results) show the les kinetic energy spectra e(n),
averaged over the last 100 days of a 150 day simulation withDr and f̂r, as well
as the standard deviations about these spectra. Also shown are the energy
spectra of the dns truncated back to T63. The lower results in Figure 1



5 Baroclinic model results C498

Figure 3: Longitudinally averaged (a) relaxation winds, and (b) time aver-
aged actual winds (ms−1) for Level 1 (solid) and Level 2 (dashed).

are the corresponding findings with Drn and f̂0. Both sets of les results in
Figure 1 are in very good agreement with dns truncated back to T63.

5 Baroclinic model results

Next we consider more realistic atmospheric flows with differential rotation
(B = 2) and large scale mean jets in the baroclinic model.

The following parameters have been chosen for dns, again at T126, with
the baroclinic model to reproduce typical atmospheric spectra. The drag, αj,
has been set to a damping time of 20 days for Level 1 and 5 days for Level 2;
the bare hyperviscosity νj0 = 3.9 × 1032 m8s−1 for both layers; the order of
the Laplacian operator ρ = 4 . The potential vorticity relaxation, q̃j, has
been chosen to correspond to vertically sheared mid-latitude jets in both
hemispheres. The latitudinal profiles of the corresponding zonal wind jets ũj
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are shown in Figure 3(a); the relaxation time, κ−1, is 11.6 days. The layer
coupling constant, FL = 100 in non-dimensional units or 2.5× 10−12 m−2 in
dimensional units, corresponds to a deformation radius of about 500 km.

The model has been integrated to statistical steady state and then further
stepped forward in time for 208 days. Figure 3(b) shows the zonally and time
averaged zonal wind at statistical steady state. The mean flow is dominated
by the mid-latitude jet streams in both hemispheres; the jet streams are
sheared in the vertical. This shear creates baroclinic instability spectrally
peaked in the vicinity of wavenumber 10. Figure 4 shows the Level 1 kinetic
energy, e(n), of the dns truncated back to T63; at smaller scales it follows
an n−3 power law (not shown) as in Figure 1 for the barotropic case.

Again, we use the stochastic modelling approach to calculate the dynam-
ical subgrid scale parameterizations for les at T63. We find that successful
large eddy simulations result from parameterizations that are inhomogeneous
in the vertical, as expected from the vertically sheared relaxation winds
in Figure 3, and homogeneous in the horizontal. This is consistent with
the quasi-diagonal turbulence closure theory [1] and its ability to simulate
the statistics of dns in the presence of mean flow inhomogeneities [5]. The
eddy dissipation and nonlinear noise terms then take the forms Djk(m,n)

and Fjkb (m,n), where j, k = 1, 2 ; that is, they reduce to 2 × 2 matrices at
each wavevector (m,n). As for the barotropic problem of Section 4, the
parameterizations are essentially isotropic at the smallest scales where they
have a cusp. Near the cusp, where the contributions to the parameteriza-
tions are largest, the term n(n + 1) is much larger than FL, and, since the
potential vorticity qjmn = ζjmn − (−1)j

(
ζ1mn − ζ2mn

)
FL[n(n + 1)]−1, the two

levels become uncoupled. This results in the cross terms in the parame-
terizations being much smaller than the diagonal components at T63. For
these reasons we only display the diagonal and isotropized components of the
parameterizations in this paper.

The subgrid scale parameterizations Djjn, Djjd , and Fjjb are shown in Fig-
ure 5. The dashed red lines in Figures 5(a) and 5(b) represent the net
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Figure 4: Kinetic energy spectra e(n) (m2s−2) at Level 1 as functions of
total wavenumber (n) for les at T63 (solid red); for dns at T126 truncated
back to T63 (dashed blue); and dns e(n)± standard deviation (dotted black).
The top results are for les with bare dissipation; the middle results (×10−1)
are for les with deterministic renormalized net dissipation; the bottom re-
sults (×10−2) are for les with renormalized drain dissipation and stochastic
backscatter.
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dissipation parameters Dn and the solid blue lines the drain dissipations Dd.
We find that the parameters Dn are roughly of the same size across the two
levels. The corresponding parameters Fb are shown in Figures 5(c) and 5(d).
The forcing variance F11b is over an order of magnitude greater than F22b . Note
that the mean forcing, fm, is insignificant in magnitude because the baroclinic
injection is fully resolved at resolution T63.

We performed les at T63 for three different specifications of the dissi-
pation. Firstly, the same bare dissipation (and forcing) as used for the dns
has been used. Secondly, the renormalized net dissipation, which is the sum
of the net eddy dissipation and the bare dissipation, has been employed. Fi-
nally, les with renormalized drain dissipation, which is the sum of the eddy
drain dissipation and the bare dissipation, and stochastic backscatter has
been performed. The Level 1 kinetic energy spectra e(n) of the three les
are depicted in Figure 4. The top curves show the les with bare parameters;
note that the tail of the les kinetic energy spectrum lifts due to insufficient
drain of potential enstrophy. The middle curves show the les with the de-
terministic renormalized net dissipation and the bottom curves show the les
with renormalized drain dissipation and stochastic backscatter (parameters
shown in Figure 5). Both parameterizations perform very well, with les in
excellent agreement with higher resolution dns at T126. Very similar agree-
ment is obtained for the Level 2 kinetic energy and for the potential energy
(not shown).

6 Conclusions

We have implemented a stochastic method for deriving dynamical subgrid
scale parameterizations of eddy dissipation and stochastic backscatter, needed
for les, from higher resolution dns. For both barotropic and baroclinic tur-
bulent flows, les at triangular truncation T63, and with eddy drain dissipa-
tion and stochastic backscatter parameterizations, have been compared with
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Figure 5: Eddy dissipation and stochastic backscatter coefficients
(a) Re(D11), (b) Re(D22), (c) Re(F11b ), and (d) Re(F22b ) as functions of to-
tal wavenumber n at T63. Eddy drain dissipation Re(Djjd) and stochas-

tic backscatter Re(Fjjb) are shown in solid blue line and net eddy dissipa-
tion Re(Djjn) in dashed red.
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higher resolution dns. As well, les have been carried out with a determinis-
tic net eddy dissipation. In our studies, with and without differential rotation
and with and without large scale jets, we found that both formulations of
les perform very well in reproducing the spectra of dns. This is in contrast
to les employing the original bare dissipation formulation, used for the dns,
for which the tail of the les kinetic energy spectrum lifts due to insufficient
dissipation at the lower resolution. The direct stochastic modelling method
for subgrid scale parameterizations has the advantages of simplicity and wide
applicability to turbulent fluid flows without the need for complex closures.
It has similar performance to approaches based on closures including over-
coming the long standing problems with ad hoc dissipation operators [2]. We
plan in future to use the stochastic modelling technique to develop subgrid
scale parameterizations for inhomogeneous turbulent flows in more complex
atmospheric and oceanic models.
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