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Abstract

A Petrov–Galerkin scheme in a saddle point formulation gives rise
to a non-symmetric saddle point problem. This article considers a
non-symmetric saddle point problem with a penalty parameter. A
mixed finite element method for linear elasticity based on a Petrov–
Galerkin formulation is then analyzed within the framework of the
non-symmetric saddle point problem with penalty. Working with a
biorthogonal system to discretize the pressure equation, we obtain a
robust and efficient numerical scheme for nearly incompressible linear
elasticity using linear finite elements. A numerical example demon-
strates the robustness of the approach. These results are useful to
analyze a Petrov–Galerkin scheme in a saddle point problem.
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1 Introduction and abstract setting

Low order finite elements based on standard displacement formulation ex-
hibit a locking effect when applied to nearly incompressible problems [1, 2].
A standard remedy for the locking effect is to work with mixed methods intro-
ducing some extra variables leading to a saddle point problem [3, 4]. Here we
consider a simple mixed formulation in displacement–pressure form [4], and
apply a Petrov–Galerkin formulation for the pressure equation. The pressure
equation is discretized using different trial and test spaces, where the bases
of the trial and test spaces form a biorthogonal system. This results in a
diagonal mass matrix for the pressure equation, and it is easy to statically
condense out the pressure inverting a diagonal matrix. We proposed this for-
mulation in recent work [5] as an alternative approach to the method based
on primal and dual meshes. However, the mathematical analysis presented in
that study covers only the case of primal and dual meshes. We note that the
method based on primal and dual meshes results in a symmetric saddle point
system, whereas the Petrov–Galerkin formulation for the pressure equation
yields a non-symmetric saddle point system. The novel idea of this article is
to show the well-posedness of this formulation by combining the results on
the non-symmetric saddle point problem [6, 7, 8] and the stability result of
mini-element [9].
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We start with an abstract setting. Let V , W, P and Q be Hilbert spaces
with inner products (·, ·)V , (·, ·)W , (·, ·)P and (·, ·)Q, respectively. Let a(·, ·) :

V × W → R , b1(·, ·) : W × P → R , b2(·, ·) : V × Q → R , and c(·, ·) :

P × Q → R be bilinear forms. We consider a non-symmetric saddle point
problem with penalty: given f ∈W ′ and g ∈ Q ′ , find (u, p) ∈ V ×P so that

a(u,w) + b1(w,p) = f(w) , w ∈W ,

b2(u, q) − t c(p, q) = g(q) , q ∈ Q , (1)

where t is a positive small parameter, and W ′ and Q ′ denote the space of
continuous linear functionals on W and Q, respectively. We are interested
in analyzing the well-posedness of the problem (1) when t → 0 . There are
a number of publications devoted to the analysis of this problem in different
particular forms; for example, when b1(·, ·) and b2(·, ·) are the same, and
V = W and P = Q [3, 4]. The case with t = 0 was analyzed by Nicolaides [6]
and Bernardi et al. [7], whereas the case with V = W , P = Q and t = 1 was
considered by Ciarlet et al. [8]. We show the stability of the problem (1) by
combining the ideas presented by Ciarlet et al. [8] and Bernardi et al. [7]. To
this end, we assume that the bilinear forms a(·, ·), b1(·, ·), b2(·, ·) and c(·, ·)
satisfy

|a(v,w)| ≤ ā‖v‖V‖w‖W , v ∈ V, w ∈W ,

|b1(w,p)| ≤ b̄1‖w‖W‖p‖P , w ∈W, p ∈ P ,
|b2(v, q)| ≤ b̄2‖v‖V‖q‖Q , v ∈ V, q ∈ Q ,
|c(p, q)| ≤ c̄‖p‖P‖q‖Q, p ∈ P , q ∈ Q , (2)

where ā, b̄1, b̄2 and c̄ are continuity constants of the bilinear forms a(·, ·),
b1(·, ·), b2(·, ·) and c(·, ·), respectively, and ‖ · ‖V , ‖ · ‖W , ‖ · ‖P and ‖ · ‖Q are
induced inner products from the associated norms.

We define UW ⊂W and UV ⊂ V as

UW := {w ∈W : b1(w,p) = 0, p ∈ P} ,
UV := {v ∈ V : b2(v, q) = 0, q ∈ Q} ,
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and assume that

sup
w∈UW

a(v,w)

‖w‖W
≥ α‖v‖V , v ∈ UV ,

sup
v∈UV

a(v,w) > 0 , w ∈ UW\{0} ,

sup
w∈W

b1(w,p)

‖w‖W
≥ β1‖p‖P , p ∈ P ,

sup
v∈V

b2(v, q)

‖v‖V
≥ β2‖q‖Q , q ∈ Q (3)

hold for some constants α,β1, β2 > 0 , where the supremum is taken only
over the non-trivial elements of the underlying sets. In order to show the
existence and uniqueness of the problem (1), we need the following theorem,
which was proved by Nicolaides [6] and Bernardi et al. [7].

Theorem 1 Let assumptions (2) and (3) be satisfied. Then for any f ∈W ′

and g ∈ Q ′, there exists a unique solution (u, p) ∈ V × P to the saddle point
problem of finding (u, p) ∈ V × P so that

a(u,w) + b1(w,p) = f(w) , w ∈W ,

b2(u, q) = g(q) , q ∈ Q , (4)

which satisfies the following stability estimates:

‖u‖V ≤ β−1
2 (1+ α−1ā)‖g‖Q ′ + α−1‖f‖W ′ , ‖p‖P ≤ β−1

1 (‖f‖W ′ + ā‖u‖V) .

(5)

The existence and uniqueness of the problem (1) is then established by the
following theorem. Although we use a non-symmetric formulation in contrast
to Ciarlet et al. [8], the proof of this theorem is similar [8, Theorem 3.2].
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Theorem 2 Let assumptions (2) and (3) be satisfied, and

δ := β−1
1 β

−1
2 ā(1+ α−1ā)tc̄ < 1 . (6)

Then for any f ∈ V ′ and g ∈ Q ′, there exists a unique solution (u, p) ∈ V×P
to the saddle point problem (1) satisfying the following stability estimates:

‖p‖P ≤
1

1− δ
‖p̃‖P , ‖u‖V ≤ ‖ũ‖V +

β2(1+ α−1ā)tc̄

1− δ
‖p̃‖P , (7)

where (ũ, p̃) is the solution to (4) and satisfies the bounds

‖ũ‖V ≤ β−1
2 (1+ α−1ā)‖g‖Q ′ + α−1‖f‖W ′ , ‖p̃‖P ≤ β−1

1 (‖f‖W ′ + ā‖ũ‖V) .

Proof: Letting p0 = 0 ∈ P , we define a sequence {(un, pn)} for n ∈ N by

a(un+1, w) + b1(w,pn+1) = f(w) , w ∈W
b2(un+1, q) = g(q) + tc(pn, q) , q ∈ Q . (8)

The sequence is well-defined from Theorem 1, and for n ∈ N we have

a(un+1 − un, w) + b1(w,pn+1 − pn) = 0 , w ∈W
b2(un+1 − un, q) = tc(pn − pn−1, q) , q ∈ Q . (9)

Theorem 1 yields the existence and uniqueness of the solution of (9) with
the estimates

‖un+1 − un‖V ≤ β−1
2 (1+ α−1ā)tc̄‖pn − pn−1‖P ,

‖pn+1 − pn‖P ≤ β−1
1 ā‖un+1 − un‖V , (10)

and hence

‖pn+1 − pn‖P ≤ β−1
1 β

−1
2 ā(1+ α−1ā)tc̄ ‖pn − pn−1‖P ≤ δn‖p1‖P . (11)
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Now taking n ∈ N and an integer m > n , we have

‖pm − pn‖P ≤
m−1∑
i=n

‖pi+1 − pi‖P ≤
m−1∑
i=n

δi‖p1‖P ≤
δn

1− δ
‖p1‖P , (12)

which shows that {pn} is a Cauchy sequence, and so converges to a p ∈ P .
The stability estimate for p is obtained by taking n = 0 in (12). Using the
first inequality of (10) and the estimate (11), the sequence {un} is shown to
be a Cauchy sequence, and stability estimate for u is obtained similarly as
for p. The uniqueness and other details is to be worked out as in the work
of Ciarlet et al. [8, Theorem 3.2]. ♠

Our primary concern is to find a robust approximation scheme based on
linear finite elements and simplicial triangulation for the nearly incompress-
ible elastic problem. In particular, we are interested in a mixed scheme where
the pressure variable is eliminated and obtain a formulation based only on
the displacement variable.

Let Ω ⊂ Rd with d ∈ {2, 3}, L2(Ω) be the space of square-integrable func-
tions defined on Ω with the inner product and norm being denoted by (·, ·)0
and ‖ · ‖0, respectively, and L20(Ω) := {p ∈ L2(Ω) :

∫
Ω
pdx = 0}. The

space H10(Ω) consists of functions in H1(Ω) which vanish on the boundary
in the sense of traces. To write the weak or variational formulation of the
boundary value problem, we introduce the space V := [H10(Ω)]d of displace-
ments with inner product (·, ·)1 and norm ‖ · ‖1 defined in the standard way;
that is, (u, v)1 :=

∑d
i=1(ui, vi)1, with the norm being induced by this in-

ner product. A mixed formulation of the linear elastic problem is given by
introducing pressure as an extra variable leading to penalized Stokes equa-
tions [4]. Defining p := λ div u , a mixed variational formulation of linear
elastic problem is: given ` ∈ [L2(Ω)]d, find (u, p) ∈ V × L20(Ω) such that

A(u, v) + B(v, p) = `(v), v ∈ V ,

B(u, q) −
1

λ
C(p, q) = 0 , q ∈ L20(Ω) , (13)
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where A(u, v) := 2µ
∫
Ω

ε(u) : ε(v)dx , B(v, q) :=
∫
Ω

div vqdx , C(p, q) :=∫
Ω
pqdx and `(v) :=

∫
Ω

f·vdx . Here, λ and µ are Lamé parameters, ε(u) is
the strain of the displacement defined as ε(u) = 1

2
(∇u + [∇u]T ) and f is the

prescribed body force. The existence and uniqueness of the solution of the
problem (13) is shown by a standard theory of saddle point problems [3, 4].

2 Finite element discretization

We consider a quasi-uniform triangulation Th of the polygonal or polyhedral
domain Ω, where Th consists of simplices, either triangles or tetrahedra.
Making use of the standard linear finite element space Sh defined on the
triangulation Th,

Sh :=
{
v ∈ H1(Ω) : v|T ∈ P1(T), T ∈ Th

}
,

and the space of bubble functions

Bh :=

{
bT ∈ H1(T) : bT |∂T

= 0 and

∫
T

bT dx > 0 , T ∈ Th
}
,

we introduce our finite element space for the displacement as Vh = (Sh ⊕
Bh)

d ∩ V . The bubble function on an element T is most often defined as
bT (x) = cb

∏d+1
i=1 λT i(x), where λT i(x) are the barycentric coordinates of the

element T associated with vertices xT i of T , i = 1, . . . , d+1 . The constant cb
is computed in such a way that the value of the bubble function at the
barycenter of T is one. Let N be the number of nodes in the finite element
mesh, and {φ1, . . . , φN} be the finite element basis of Sh. Starting with the
basis of Sh, we construct a dual space Qh spanned by the basis {µ1, . . . , µN}

so that the basis functions of Sh and Qh satisfy biorthogonality:∫
Ω

µi φj dx = cjδij , cj 6= 0, 1 ≤ i, j ≤ N , (14)
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where δij is the Kronecker symbol, and cj a scaling factor, which is chosen
so that

∫
T
µi dx =

∫
T
φi dx . Hence, the sets of basis functions of Sh and Qh

form a biorthogonal system. The basis functions of Qh is constructed locally
on the reference element T̂ so that basis functions of Sh andQh have the same
support [5]. We also need a subspace of Sh and a subspace of Qh having zero
average on Ω defined as

S0h :=

{
vh ∈ Sh :

∫
Ω

vh dx = 0

}
, Q0h :=

{
qh ∈ Qh :

∫
Ω

qh dx = 0

}
.

The first equation in (13) is discretized using a Galerkin formulation, and
the second equation is discretized using a Petrov–Galerkin formulation. The
Petrov–Galerkin formulation is chosen so that the pressure solution is taken
from Sh, whereas the test functions are taken from Qh. Hence the discrete
formulation of variational equation (13) is written as: find (uh, ph) ∈ Vh×S0h
such that

A(uh, vh) + B1(vh, ph) = `(vh) , vh ∈ Vh ,

B2(uh, qh) −
1

λ
C(ph, qh) = 0 , qh ∈ Q0h , (15)

where the bilinear forms B1(·, ·) : Vh × S0h → R and B2(·, ·) : Vh ×Q0h → R
have different domains of definition but are defined exactly as the bilinear
form B(·, ·) in (13). The goal of choosing the Petrov–Galerkin formulation
for the pressure is to obtain a diagonal matrix corresponding to the bilin-
ear form C(·, ·) so that the degree of freedom corresponding to the pressure
variable is eliminated easily.

We show the existence and uniqueness of the solution of the mixed for-
mulation (15) using Theorem 2.

The continuity of the bilinear form A(·, ·) on Vh×Vh , of B1(·, ·) on Vh×
S0h , and B2(·, ·) on Vh×Q0h and of C(·, ·) on S0h×Q0h is straightforward. By
using the Korn’s inequality, it is standard that the ellipticity of the bilinear
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form A(·, ·) holds on Vh ×Vh . It remains to show that the uniform inf-sup
condition holds for the bilinear form B1(·, ·) on Vh×S0h , and for the bilinear
form B2(·, ·) on Vh ×Q0h . As the bilinear form B1(·, ·) on Vh × S0h satisfies
the inf-sup condition uniformly with respect to the mesh size [9], we turn our
attention to prove a uniform inf-sup condition for B2(·, ·) on Vh×Q0h . That
means we have to show the existence of a constant β > 0 independent of the
mesh-size such that

sup
vh∈Vh

B2(vh, qh)

‖vh‖1
≥ β‖qh‖0 , qh ∈ Q0h . (16)

To this end, we define an operator Ih : Q0h → S0h mapping every element
µh =

∑n
i=1 ciµi of Q0h to the element φh =

∑n
i=1 ciφi of S0h . Using that∫

T
φi dx =

∫
T
µi dx , 1 ≤ i ≤ d + 1 , we have

∫
T
φh dx =

∫
T
Ihφh dx , and

hence the operator is well-defined.

For the reference triangle or reference tetrahedron, using Gauss divergence
theorem, we have the following identity for any bubble function bT ∈ Bh∫

T

∇bTµi dx = (d+ 2)

∫
T

∇bTφi dx . (17)

Using (17), we show the following properties of the operator Ih.

Lemma 3 Given vh ∈ Vh , we construct an element ṽh ∈ Vh so that there
exists a constant c > 0 with

‖ṽh‖1 ≤ c‖vh‖1, B2(ṽh, qh) = B2(vh, Ihqh), qh ∈ Q0h , (18)

and there exist two constants c1 > 0 and c2 > 0 with

c1‖qh‖0 ≤ ‖Ihqh‖0 ≤ c2‖qh‖0 . (19)
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Proof: We start with

B2(vh, qh − Ihqh) =

∫
Ω

div vh (qh − Ihqh)dx =
∑
T∈Th

∫
T

div vh (qh − Ihqh)dx

for vh ∈ Vh and qh ∈ Q0h . Let vh = sh + bh with sh ∈ Sdh , and bh ∈ Bdh .
Then

B2(vh, qh − Ihqh) =
∑
T∈Th

∫
T

div sh (qh − Ihqh)dx+

∫
T

div bh (qh − Ihqh)dx .

Using that div sh is constant in each element T , the first integral in the right
side of the above equation is zero, and hence

B2(vh, qh − Ihqh) = B2(bh, qh − Ihqh) .

As qh ∈ Q0h , we write qh =
∑N
i=1 qiµi and obtain

B2(bh, qh) =

N∑
i=1

qi

∫
Si

div bh µi dx ,

and B2(bh, Ihqh) =

N∑
i=1

qi

∫
Si

div bhφi dx ,

where Si denotes the support of φi or µi. Since bh belongs to the space of
bubble functions, restricted to an element T , it is written as bh = aTbT for
some constant vector aT . Now we decompose the integrals inside both sums
into each element

B2(bh, qh) =

N∑
i=1

qi
∑
T⊂Si

aT ·
∫
T

∇bT µi dx ,

B2(bh, Ihqh) =

N∑
i=1

qi
∑
T⊂Si

aT ·
∫
T

∇bT φi dx ,
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and use the property of a bubble function (17) to get

B2(bh, qh) = (d+ 2)B2(bh, Ihqh) .

Hence defining ṽh := sh + 1
d+2

bh , and noting that sh and bh are linearly
independent the first condition (18) is proved. The second condition (19)
follows by using the fact that ‖Ihqh‖20, ‖qh‖20 and

∑N
i=1 q

2
ih
2
i are equivalent,

where hi is the local mesh-size at the ith node of Th. ♠
A consequence of the above lemma is the following theorem.

Theorem 4 The finite element pair (Vh, Q
0
h) satisfies the inf-sup condi-

tion (16).

Proof: Let qh ∈ Q0h , and Ihqh ∈ S0h . Since the pair (Vh, S
0
h) satisfies the

inf-sup condition, we can find an element vh ∈ Vh satisfying

B2(vh, Ihqh) ≥ c‖Ihqh‖20 and ‖vh‖1 ≤ c‖Ihqh‖0.

Hence, using the properties (18) and (19) of the interpolation operator Ih,
we can find an element ṽh ∈ Vh with

B2(ṽh, qh) = B2(vh, Ihqh) ≥ c‖Ihqh‖20 ≥ c‖qh‖20 ,

and
‖ṽh‖1 ≤ c‖vh‖1 ≤ c‖Ihqh‖0 ≤ c‖qh‖0 .

♠

Thanks to Theorems 2 and 4, the following corollary holds [6, 7, 3, 10].

Corollary 5 The discrete problem (15) has exactly one solution (uh, ph) ∈
Vh × S0h , and there exists a constant c independent of Lamé parameter λ
such that

‖uh‖1 + ‖ph‖0 ≤ c‖f‖0 .
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Furthermore, if (u, p) is the solution to the problem (13), we have the fol-
lowing error estimate uniform with respect to λ:

‖u − uh‖1 + ‖p − ph‖0 ≤ c1 inf
vh∈Vh

‖u − vh‖1 + c2 inf
qh∈S0

h

‖p − qh‖0 ,

where the constants c1 and c2 are independent of the mesh size.

Using the standard approximation properties of the spaces Vh and S0h, we see
that the approximation to the displacement converges to the exact solution
with O(h) in H1-norm.

3 Numerical results

This section illustrates the performance of the formulation discussed in the
preceding sections in a numerical example [11] showing a comparison of
different formulations using L2- and H1-norms. Here, the exact solution
u = (u1, u2) is

u1(x, y) := sin (2πy) (−1+ cos (2πx)) +
sin (πx) sin (πy)

1+ λ
,

u2(x, y) := sin (2πx) (1− cos (2πy)) +
sin (πx) sin (πy)

1+ λ

with λ = 2499666.644443238 and µ = 500.0333355557037 (the correspond-
ing Poisson ratio and Young’s modulus are ν = 0.4999 and E = 1500) so that
a nearly incompressible response is obtained. We compute the solution by
takingΩ as a unit square, where the right hand side and the Dirichlet bound-
ary conditions are computed by using the exact solution. We have shown the
discretization errors with respect to the number of elements in Figure 1. As is
seen from Figure 1, the standard approach locks completely, whereas we get
very good numerical approximations with our approach and mini-element.
However, our formulation is more efficient as we reduce the problem to the
displacement-based formulation by inverting a diagonal matrix.
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Figure 1: Error plot versus number of elements, L2-norm (left) andH1-norm
(right).
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