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Abstract

A fractional FitzHugh–Nagumo monodomain model with zero Dirich-
let boundary conditions is presented, generalising the standard mon-
odomain model that describes the propagation of the electrical potential
in heterogeneous cardiac tissue. The model consists of a coupled frac-
tional Riesz space nonlinear reaction-diffusion model and a system of
ordinary differential equations, describing the ionic fluxes as a function
of the membrane potential. We solve this model by decoupling the
space-fractional partial differential equation and the system of ordinary
differential equations at each time step. Thus, this means treating
the fractional Riesz space nonlinear reaction-diffusion model as if the
nonlinear source term is only locally Lipschitz. The fractional Riesz
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space nonlinear reaction-diffusion model is solved using an implicit
numerical method with the shifted Grünwald–Letnikov approximation,
and the stability and convergence are discussed in detail in the context
of the local Lipschitz property. Some numerical examples are given to
show the consistency of our computational approach.
Subject class: 26A33; 35R11; 65M12
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1 Introduction

The computation of electrical wave propagation in the heart is one of the
most important recent applications of mathematical modelling in physiology.
Electrophysiological models of the heart describe how electrical currents flow
through the heart, controlling its contractions, and are used to ascertain the
effects of certain drugs designed to treat, for example, arrhythmia.

Models of the electrophysiology of a single cell are typically systems of or-
dinary differential equations (odes), while models of the propagation of
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the action potential in tissue are typically one or more partial differential
equations (pdes)—the so-called bidomain model. Numerically, the bidomain
equations are challenging and it is therefore common to seek simplifications,
to a so-called monodomain model. In our monodomain model, the propa-
gation of the transmembrane potential Vm (1), is coupled to the system of
ordinary differential equations (2), which describe the cell electrophysiological
dynamics,

∂tVm = −K(−∆)Vm −
1

Cm
Iion , (1)

∂ty = f(Vm,y) , Iion = g(Vm,y) . (2)

Here Iion is the ionic current through a number of different types of ion
channels, y is a vector of ionic fluxes and their associated channel gating
variable described by a suitable ode, g is the nonlinear function that relates
the ionic fluxes to the total ionic current, Cm is the capacitance of the cell
membrane and K is the diffusion tensor. Modern cardiac electrophysiological
models adapt the work of Hodgkin and Huxley [8] to describe the ion flux
dynamics through a variety of ion channels using the idea of transition states
between the differing conformations of the channels. Recently developed ion
channel models have upwards of twenty different variables [6], and with finite
element meshes of the human heart being of the order of millions of elements,
it becomes quickly apparent that electrophysiological modelling of the human
heart can be extremely computationally intensive, especially if the models
are run over many heart beats.

Rather than using one of these complex cell models we illustrate our ideas by
using one of the simplest single cell models, namely the FitzHugh–Nagumo
model [9, 16]. A dimensionless FitzHugh–Nagumo monodomain model is [22]

∂v

∂t
= ∇ · (K∇v) + Iion(v,w) , (3)

∂w

∂t
= av− bw+ c , (4)

Iion =
C2

vamp
(v− vrest)w+

C1

v2amp
(v− vrest)(v− vth)(v− vpeak) , (5)
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where v is a normalized transmembrane potential, vrest and vpeak are the
resting and peak potentials, respectively, with vamp = vpeak − vrest and vth =
vpeak + vrest , and w is a dimensionless time dependent recovery variable. It
is known that this model has travelling wave solutions with an appropriate
choice of parameters and stimulus [18]. The constants a, b, c, C1 and C2
are all non-negative and standard values are 0.13, 0.013, 1, 0.26 and 0.1,
respectively.

Bidomain and monodomain models represent the tissue as a continuum with
space averaged properties. However, the extracellular space in which the
cardiac myocytes are embedded is highly heterogeneous, consisting of ground
substance, blood vessels, connective tissue, collagen and empty space [7].
Recent computational attempts to model this heterogeneity in cardiac tissue
simulations, considered, for example, tissue models with empty spaces [17].
These models better replicated some characteristics of electrical propagation,
such as the effect of excitable cells on wavefront velocity [15]. On the other
hand, their numerical resolution is expensive as they involve extremely fine
spatial discretizations at a subcellular level.

We propose a fundamental rethink of the homogenisation approach via the
use of a fractional Fick’s Law [11, 13, 14, 20] and, in particular, we introduce
a fractional FitzHugh–Nagumo monodomain model in which we capture the
spatial heterogeneities and spatial connectivities in the extra-cellular domain
through the use of fractional derivatives. In two dimensions, characterized
by the coordinates (x,y) (i.e., a thin slice of tissue), possible formulations
lead to a fractional model with the same fractional power in both spatial
components, namely

∂v

∂t
= KRαv+ Iion(v,w) , (6)

with (4) and (5), or a model with different fractional powers α1 and α2 in the
x and y directions, respectively, namely

∂v

∂t
= Kx

∂α1v

∂|x|α1
+ Ky

∂α2v

∂|y|α2
+ Iion(v,w) , (7)
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with (4) and (5). Here 1 < α1,α2 6 2 , Kx and Ky are diffusion coefficients
and Rα = (Rαx ,Rαy) = (∂α/∂|x|α, ∂α/∂|y|α) is a sequential Riesz fractional
order operator in space [13]. The space Riesz fractional operators are defined
on the whole space as, for example

∂α1v

∂|x|α1
= −

1

2 cos(πα1/2)

(
∂α1v

∂xα1
+

∂α1v

∂(−x)α1

)
,

where

∂α1v(x,y, t)
∂xα1

=
1

Γ(2− α1)

∂2

∂x2

∫ x
−∞

v(ξ,y, t)
(x− ξ)α1−1

dξ ,

∂α1v(x,y, t)
∂(−x)α1

=
1

Γ(2− α1)

∂2

∂x2

∫+∞
x

v(ξ,y, t)
(ξ− x)α1−1

dξ .

Similar expressions are defined for the space Riesz fractional derivative of
order α2 (1 < α2 6 2) with respect to y.

There are other modelling approaches that could be used to replace (3) with
a fractional model. For example, we could define the operator [∇ · (K∇)]α/2
by subordination [5]. However, this is not the same as using a fractional
Fick’s Law which leads to the formulation (7). The formulation (7) makes
more sense in the context of cardiac electrophysiology. This is because in
the heart, myocyte fibres tend to align in one particular direction and so the
propagation of the electrical wave is different orthogonally, longitudinally and
transversely along the fibres. Nevertheless, the wave has to travel through all
components of heterogeneous tissue.

We choose zero Dirichlet boundary conditions as there are some subtleties with
other types of boundary conditions for fractional models on finite domains [10].
In developing a numerical method for the coupled differential equations, we
previously used a decoupled numerical technique [23, 24, 25]. Our fractional
monodomain equation is solved by operator splitting, in which we first solve
the fractional partial differential equation for v and then the ode for w, at
each time step. In doing this our source term must be viewed as being locally



2 An implicit numerical method C613

Lipschitz and so, in Section 3, we deal with stability and convergence issues
in this context.

An implicit numerical method with a shifted Grünwald–Letnikov approxima-
tion for the space-fractional problem is proposed in Section 2. The stability
and convergence of this approach is discussed in Section 3, under the assump-
tion that the source term is only locally Lipschitz. Some numerical results are
given in Section 4 and discussions and conclusions are presented in Section 5.

2 An implicit numerical method

To develop our numerical method for the coupled fractional monodomain
model, a decoupled numerical technique is used. In order to make our ideas
clear, we assume α1 = α2 = α , but our approach is equally valid in the case
α1 6= α2 . For given vn and wn at t = tn , we solve

∂v

∂t
= Kx

∂αv

∂|x|α
+ Ky

∂αv

∂|y|α
+ Iion(vn,wn),

Iion =
C2

vamp
(vn − vrest)wn +

C1

v2amp
(vn − vrest)(vn − vth)(vn − vpeah) ,

for v = vn+1 at t = tn+1 . Then, forw = wn+1 at t = tn+1 , given vn+1 andwn,
we solve

∂w

∂t
= avn+1 − bw+ c .

We cast our analysis as a two dimensional fractional Riesz space nonlinear
reaction-diffusion model

∂u

∂t
= Kx

∂αu

∂|x|α
+ Ky

∂αu

∂|y|α
+ f(u, x,y, t) , (8)

where 1 < α 6 2 and 0 < Kx , 0 < Ky are diffusion coefficients, and
f(u, x,y, t) is locally Lipschitz continuous. We use initial conditions

u(x,y, 0) = ψ(x,y) , 0 6 x 6 Dx , 0 6 y 6 Dy , (9)
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and zero Dirichlet boundary conditions

u(0,y, t) = u(Dx,y, t) = u(x, 0, t) = u(x,Dy, t) = 0 , (10)

where the (x,y) domain is [0,Dx, 0,Dy] . Baeumer et al. [1, 2] showed how to
solve nonlinear reaction-diffusion equations of type (8) by an operator splitting
method when the abstract function f is only locally Lipschitz [1, 2, 21].
Remark 1. We say that f : X→ X is globally Lipschitz continuous if for some
L > 0 , we have ‖f(u) − f(v)‖ 6 L ‖u− v‖ for all u, v ∈ X , and is locally
Lipschitz continuous, if the latter holds for ‖u‖ , ‖v‖ 6M with L = L(M) for
any M > 0 [1, 2].

We assume that for all k = 1, 2, . . . ,N , ‖u(x,y, tk)‖, ‖v(x,y, tk)‖ 6Mk for
constant Mk > 0 , and

‖f(u(x,y, tk) − f(v(x,y, tk))‖ 6 Lk‖u(x,y, tk) − v(x,y, tk)‖ ,

for all (x,y) ∈ [0,Dx, 0,Dy] , where we define Lk = L(Mk) and Lmax =
max06k6N Lk .

For the numerical simulation of equation (8) over the time interval [0, T ] , for
integer m1 and m2, let hx = Dx/m1 , hy = Dy/m2 and τ = T/N be the space
and time grid sizes, respectively; xi = ihx for i = 0, 1, . . . ,m1 ; yj = jhy for
j = 0, 1, . . . ,m2 . Define uni,j as the numerical approximation of u(x,y, t) at
x = xi , y = yj , t = tn . The initial conditions are u0i,j = ψ(xi,yj) .

We use the shifted Grünwald–Letnikov scheme on the finite domain [12, 26]
to discretise the Riesz fractional derivatives as

∂αu

∂xα

∣∣
(xi,yj,tn)

=
1

(hx)α

i+1∑
l=0

g(l)α u(xi−l+1,yj, tn) +O(hx) , (11)

∂αu

∂(−x)α

∣∣
(xi,yj,tn)

=
1

(hx)α

m1−i+1∑
l=0

g(l)α u(xi+l−1,yj, tn) +O(hx) . (12)
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A similar result holds in the y direction. Here g(0)α1 = 1 and

g(l)α = (−1)l
(
α

l

)
= −g(l−1)α

α− l+ 1

l
. (13)

Lemma 2. [26, Lemma 3.3, p. 1768] The coefficients g(l)α , l = 1, 2, . . . ,
satisfy

• g(0)α = 1 , g(1)α = −α < 0 , and g(l)α > 0 when l 6= 1 ;

•
∑∞

l=0 g
(l)
α = 0 , and

∑n
l=0 g

(l)
α < 0 for n = 1, 2, . . . .

Lemma 3 (discrete Gronwall inequality). [26, Lemma 3.4, p. 1768] Suppose
that fk > 0 and ηk > 0 for k = 0, 1, 2, . . . , and

ηk+1 6 (1+ C0τ)ηk + τfk for k = 0, 1, 2, . . . ,
η0 = 0 ,

where C0 > 0 is constant, then ηk+1 6 eC0tk
k∑
j=0

τfj .

Using the shifted Grünwald–Letnikov scheme, we obtain the discrete form
of (8)

u(xi,yj, tn) = u(xi,yj, tn−1)

+ r
(1)
i,j

[
i+1∑
l=0

g(l)α u(xi−l+1,yj, tn) +
m1−i+1∑
l=0

g(l)α u(xi+l−1,yj, tn)

]

+ r
(2)
i,j

[
j+1∑
l=0

g(l)α u(xi,yj−l+1, tn) +
m2−j+1∑
l=0

g(l)α u(xi,yj+l−1, tn)

]
+ τf[u(xi,yj, tn−1), xi,yj, tn−1] + Ri,j,n , (14)

where f[u(xi,yj, tn−1), xi,yj, tn−1] ≡ fn−1i,j , cα = 1/[2 cos(πα/2)] , r(1)i,j =

[τKx(xi,yj)cα]/hαx , r
(2)
i,j = [τKy(xi,yj)cα]/hαy , and |Ri,j,n| 6 C∗(τ2+τhx+τhy)

for constant C∗.
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The implicit numerical method is

uni,j − r
(1)
i,j

[
i+1∑
l=0

g(l)α u
n
i−l+1,j +

m1−i+1∑
l=0

g(l)α u
n
i+l−1,j

]

− r
(2)
i,j

[
j+1∑
l=0

g(l)α u
n
i,j−l+1 +

m2−j+1∑
l=0

g(l)α u
n
i,j+l−1

]
= un−1i,j + τfn−1i,j , (15)

with

u0i,j = ψi,j = ψ(xi,yj) , (16)
un0,j = unm1,j = u

n
i,0 = u

n
i,m2

= 0 . (17)

Or, in matrix form

A(n)u(n) = b(n) , (18)

where u(n) = (un1,1,un1,2, . . . ,un1,m2−1
,un2,1, . . . ,unm1−1,m2−1

) , b(n) is a (m1 −
1)(m2 − 1) dimensional column vector that includes the known initial and
boundary values, the known source term values and the previous n layer
known values, and the coefficient matrix A(n) is a (m1 − 1)(m2 − 1)× (m1 −
1)(m2 − 1) known matrix.

Gauss–Seidel iteration technique [19] is used to solve the implicit difference
scheme (15)–(17) or (18).

3 Stability and convergence

We first prove the stability of (15)–(17). Let ũni,j be the approximate solution
of (15)–(17) and εni,j = uni,j − ũni,j denote the corresponding error with En =
(εn1,1, εn2,1, . . . , εnm1−1,m2−1

) . Assuming

|εni0,j0 | = max
16i6m1−1,16j6m2−1

|εni,j| = ‖En‖∞ ,

we have the following theorem.
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Theorem 4. The implicit numerical method (15)–(17) is unconditionally
stable, and

‖En‖∞ 6 C‖E0‖∞ for n = 0, 1, 2, . . . ,N , (19)

where C is a positive number independent of hx, hy and τ.

Proof: According to (15)–(17), the error εni,j satisfies

εni,j − r
(1)
i,j

[
i+1∑
l=0

g(l)α ε
n
i−l+1,j +

m1−i+1∑
l=0

g(l)α ε
n
i+l−1,j

]

− r
(2)
i,j

[
j+1∑
l=0

g(l)α ε
n
i,j−l+1 +

m2−j+1∑
l=0

g(l)α ε
n
i,j+l−1

]
= εn−1i,j + τf(un−1i,j , xi,yj, tn−1) − τf(ũn−1i,j , xi,yj, tn−1) . (20)

From Lemma 2 and (20),

‖En‖∞ 6

∣∣∣∣∣εni0,j0 − r(1)i0,j0
[
i+1∑
l=0

g(l)α ε
n
i0−l+1,j0 +

m1−i0+1∑
l=0

g(l)α ε
n
i0+l−1,j

]

− r
(2)
i0,j0

[
j0+1∑
l=0

g(l)α ε
n
i0,j0−l+1 +

m2−j0+1∑
l=0

g(l)α ε
n
i0,0+l−1

]∣∣∣∣∣
=
∣∣εn−1i0,j0 + τf(u

n−1
i,j , xi,yj, tn−1) − τf(ũn−1i,j , xi,yj, tn−1)

∣∣
6 (1+ τLn−1)‖En−1‖∞
6

n−1∏
k=0

(1+ τLk)‖E0‖∞
6 (1+ τLmax)

n‖E0‖∞
6 enτLmax‖E0‖∞
6 eLmaxT‖E0‖∞ = C‖E0‖∞ .

♠
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Now we consider the convergence of the implicit numerical method.

Theorem 5. Assume that the continuous problem (8)–(10) has a smooth solu-
tion u(xi,yj, tn) and uni,j is the solution of the implicit numerical method (15)–
(17) at mesh point (xi,yj, tn) . Then there is a positive constant C independent
of hx, hy and τ, such that for all i, j and n

|u(xi,yj, tn) − uni,j| 6 C(τ+ hx + hy) .

Proof: Define ηni,j = u(xi,yj, tn)−uni,j and Yn = (ηn1,1,ηn2,1, . . . ,ηnm1−1,m2−1
) .

Then

ηni,j − r
(1)
i,j

[
i+1∑
l=0

g(l)α η
n
i−l+1,j +

m1−i+1∑
l=0

g(l)α η
n
i+l−1,j

]

− r
(2)
i,j

[
j+1∑
l=0

g(l)α η
n
i,j−l+1 +

m2−j+1∑
l=0

g(l)α η
n
i,j+l−1

]
(21)

= ηn−1i,j + τf[u(xi,yj, tn−1), xi,yj, tn−1] − τf(uni,j, xi,yj, tn−1) + Ri,j,n .
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Using Lemma 2, (21) and the discrete Gronwall inequality from Lemma 3,

‖Yn‖∞ 6

∣∣∣∣∣ηni0,j0 − r(1)i0,j0
[
i+1∑
l=0

g(l)α η
n
i0−l+1,j0 +

m1−i0+1∑
l=0

g(l)α η
n
i0+l−1,j

]

− r
(2)
i0,j0

[
j0+1∑
l=0

g(l)α η
n
i0,j0−l+1 +

m2−j0+1∑
l=0

g(l)α η
n
i0,j0+l−1

]∣∣∣∣∣
=
∣∣ηn−1i0,j0 + τf[u(xi0 ,yj0 , tn−1), xi0 ,yj0 , tn−1] − τf(u

n−1
i0,j0 , xi0 ,yj0 , tn−1)

+ Ri0,j0,n|

6 (1+ τLn−1)‖Yn−1‖∞ + C∗(τ2 + τhx + τhy)

6 (1+ τLmax)‖Yn−1‖∞ + C∗(τ2 + τhx + τhy)

6 (1+ τLmax)
n‖Y0‖∞ +

n−1∑
k=0

(1+ τLmax)
kC∗(τ2 + τhx + τhy)

6 (1+ τLmax)
nnτC∗(τ+ hx + hy)

6 enτLmaxTC∗(τ+ hx + hy)

= C(τ+ hx + hy) .

We see that for any x, y and t, if hx, hy and τ approach zero such that
(ihx, jhy,nτ) → (x,y, t) , then uni,j approaches u(x,y, t) . This proves that uni,j
converges to u(xi,yj, tn) as hx, hy and τ tend to zero. ♠

4 Numerical results

In this section, some numerical results are presented to confirm our theoretical
analysis from Section 3. Firstly, the implicit numerical method introduced
in Section 2, is employed to simulate a two dimensional fractional FitzHugh–
Nagumo monodomain model [4].
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Example 6. The FitzHugh–Nagumo monodomain model [4] is

∂u

∂t
= Kx

∂α1u

∂|x|α1
+ Ky

∂α2u

∂|y|α2
+ u(1− u)(u− a) − v , (22)

∂v

∂t
= ε(βu− γv− δ) , (23)

where a = 0.1 , ε = 0.01 , β = 0.5 , γ = 1 , δ = 0 , which is known to generate
stable patterns in the system in the form of re-entrant spiral waves. The
trivial state (u, v) = (0, 0) was perturbed by setting the lower left quarter of
the domain to u = 1 and the upper half to v = 0.1 , which allows the initial
condition to curve and rotate clockwise generating the spiral pattern. For
Dx = 2.5 and Dy = 2.5 , this leads to the initial conditions

u(x,y, 0) =


1.0 , 0 < x 6 1.25 , 0 < y < 1.25 ,
0.0 , 1.25 6 x < 2.5 , 0 < y < 1.25 ,
0.0 , 0 < x 6 1.25 , 1.25 6 y < 2.5 ,
0.0 , 1.25 6 x < 2.5 , 1.25 6 y < 2.5 ,

(24)

v(x,y, 0) =


0.0 , 0 < x 6 1.25 , 0 < y < 1.25 ,
0.0 , 1.25 6 x < 2.5 , 0 < y < 1.25 ,
0.1 , 0 < x 6 1.25 , 1.25 6 y < 2.5 ,
0.1 , 1.25 6 x < 2.5 , 1.25 6 y < 2.5 ,

(25)

with zero Dirichlet boundary conditions

u(0,y, t) = u(2.5,y, t) = 0 , u(x, 0, t) = u(x, 2.5, t) = 0 . (26)

The domain is discretised using m1,2 = 256 points in each spatial coordinate,
with a time step τ = 0.1 .

Spiral waves of the stable rotating solution in the Fitzhugh–Nagumo mode,
α1 = α2 = 2 , with Kx = Ky = 10−4 and Kx = Ky = 10−5 are shown
in Figure 1, whereas the behaviour of the Riesz space fractional Fitzhugh–
Nagumo model with α1 = α2 = 1.7 , α1 = α2 = 1.5 and Kx = Ky = 10−4

is shown in Figure 2. We see that the width of the excitation wavefront is
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Figure 1: Spiral waves in the Fitzhugh–Nagumo model at t = 1000 with
α1 = α2 = 2 : (a) Kx = Ky = 10−4 ; (b) Kx = Ky = 10−5 .

markedly reduced for decreasing fractional power, as is the wavelength of the
system, with the domain able to accommodate a larger number of wavefronts
with smaller fractional powers.

We emphasise that reducing the fractional power is not equivalent to a
decreased diffusion coefficient in the pure diffusion case. This is clearly
observed by comparing Figure 1(b) and Figure 2(b).

For anisotropic diffusion ratios Kx = 10−4 , Ky/Kx = 0.25 < 1 and Ky = 10−4 ,
Kx/Ky = 0.25 < 1 , wave propagation at t = 1000 in the space Riesz fractional
Fitzhugh–Nagumo model with zero Dirichlet boundary conditions is shown
in Figure 3. The spiral wave now follows an elliptical pattern. Anisotropic
fractional ratios α1 = 2 , α2/α1 = 0.825 < 1 and α2 = 2 , α1/α2 = 0.825 < 1
exert a contrasting effect on the curvature of the solutions, see Figure 4,
reflecting a distinct super-diffusion scale in each of the spatial dimensions of
the system.
Example 7. To demonstrate the effectiveness of our numerical method’s
terms of convergence, we now present an example that exhibits an exact
solution. Consider the two dimensional fractional Riesz space nonlinear
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Figure 2: Spiral waves in the Fitzhugh–Nagumo model at t = 1000 with
Kx = Ky = 10

−4 : (a) α1 = α2 = 1.7 ; (b) α1 = α2 = 1.5 .
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Figure 3: Spiral waves in the Fitzhugh–Nagumo model at t = 1000 with
α1 = α2 = 2 : (a) Kx = 10−4 , Kx/Ky = 0.25 ; (b) Ky = 10−4 , Kx/Ky = 0.25 .
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Figure 4: Spiral waves in the Fitzhugh–Nagumo model at t = 1000 with
Kx = Ky = 10

−4 : (a) α1 = 2 , α2/α1 = 0.825 ; (b) α2 = 2 , α1/α2 = 0.825 .

reaction-diffusion model

∂u

∂t
= K

(
∂αu

∂|x|α
+
∂αu

∂|y|α

)
+ f(u, x,y, t) , (27)

with initial condition u(x,y, 0) = 0 and zero Dirichlet boundary conditions,
where

f(u, x,y, t) = −
Kt1+α

2 cos(απ/2)

[
y2(1− y)2

(
2
[
x2−α + (1− x)2−α

]
Γ(3− α)

−
12
[
x3−α + (1− x)3−α

]
Γ(4− α)

+
24
[
x4−α + (1− x)4−α

]
Γ(5− α)

)

+ x2(1− x)2

(
2
[
y2−α + (1− y)2−α

]
Γ(3− α)

−
12
[
y3−α + (1− y)3−α

]
Γ(4− α)

+
24
[
y4−α + (1− y)4−α

]
Γ(5− α)

)]
+ (1+ α)tαx2(1− x)2y2(1− y)2

and 1 < α 6 2 , (x,y) ∈ [0, 1]× [0, 1] .



5 Discussion and Conclusions C624

Table 1: Maximum error behavior for the implicit numerical method (15)–(17)
with τ = 0.01 as the grid size is reduced in Example 7 at time T = 1.0 .

hx = hy = h ‖Yn‖∞
1/8 7.7× 10−5
1/16 1.1× 10−5
1/32 8.6× 10−6

The exact solution of the above problem is u(x,y, t) = t1+αx2(1−x)2y2(1−y)2 ,
which is verified by substituting directly into (8). From Table 1 it is seen that
our implicit numerical method is in good agreement with the exact solution
and has a convergence rate in agreement with Theorem 4.

5 Discussion and Conclusions

In cardiac electrophysiology, the action potential duration (apd), defined as
the difference between repolarisation and activation times, is an important
biomarker of proarrhyhmic risk. An important mechanism of an intact heart
is the shortening of apd during propagation of the electrical wave in tissue.
An important experimental study was performed by Badie and Bursac [3] in
neonatal rat cell cultures, in which an isotropic monolayer of cells were grown
in a circular dish and, after stimulation at the centre, large changes were
recorded in the distribution of apd from the centre to the edge. Standard
monodomain models cannot replicate this change in apd as a function of the
distance from the stimulation at the centre of the dish. Consequently, Bueno-
Orovioy et al. [5] performed a comprehensive study comparing experimental
data and a fractional monodomain model based on the fractional Laplacian.

We proposed a new monodomain formulation aimed at capturing the hetero-
geneity and complex connectivity patterns of tissue via a fractional FitzHugh–
Nagumo monodomain model. The model consists of a coupled fractional
Riesz space nonlinear reaction-diffusion model and an ordinary differential
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equation. We used a decoupling technique and an implicit numerical method
to solve the two dimensional problem, with Dirichlet boundary conditions,
and the stability and convergence properties were analysed in detail. Al-
though the source term is not globally Lipschitz continuous, the solution
of the discrete numerical method still yields bounds on the solution of the
continuous problem and the solution of the numerical method converges to the
unique solution of the continuous problem as the time and space steps tend
to zero [1, 2, 21]. The numerical results demonstrate the effectiveness of this
approach and suggest that such models can have very different dynamics to
the standard monodomain models and, as such, represent a powerful modeling
approach for understanding the many aspects of electrophysiological dynamics
in heterogeneous cardiac tissue, as well as other areas. We hope to study
the consequences of this new approach to cardiac electrophysiology in future
work.
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