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Abstract

Marine Protected Areas (mpas) are an emerging tool for man-
aging marine resources. Many of the benefits associated with mpas
have been widely investigated and the field is an active area of re-
search in theoretical ecology. One benefit of mpas that has remained
largely overlooked is their value as a tool for learning about the pop-
ulation dynamics of a fishery. We investigate the economic optimality
of implementing an mpa, purely for the purpose of obtaining more
informative data about a fish population, thereby allowing a better
management strategy. A stochastic dynamic programming framework
for finding optimal management strategies in this scenario is devel-
oped. A simple example is investigated using this framework, with
the results illustrating that in some situations the knowledge gained
from mpas can be sufficient to make their creation economically op-
timal. This establishes an additional benefit of mpas that should be
considered further by fishery managers.

See http://anziamj.austms.org.au/ojs/index.php/ANZIAMJ/article/view/141
for this article, c© Austral. Mathematical Soc. 2007. Published July 30, 2007. ISSN 1446-
8735
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1 Introduction

The fish in the world’s oceans were long considered an inexhaustible re-
source [9]. Until the advent of the more modern fishing equipment and
techniques of the nineteenth century, this was for the most part an adequate
assumption. However, today, 22% of the world’s fisheries are over exploited
or depleted, and a further 44% are fully to heavily exploited [6, 5]. Currently,
more than 1 billion people worldwide rely on fish for over 30% of their animal
protein intake [5], this fact emphasises the importance of sustainable fisheries
management.
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Efficient fisheries management requires a quantitative understanding of
the underlying population dynamics. Unfortunately, due to the natural vari-
ability of the system and the difficulty in observing the stock, it is difficult to
acquire such an understanding. Generally there will be a number of differ-
ent possible models, each of which suggests a different management strategy,
some of which may be contradictory. For example, the optimal target stock
size for one model may be predicted by an alternative model to cause a pop-
ulation collapse. A compromise must therefore be made and the resulting
management strategy is unlikely to be truly optimal.

Knowledge about the population dynamics can be improved by moni-
toring the change in the population density from year to year. However,
the new data are usually obtained from a small range of population den-
sities [17], often coinciding with that for which historical data are already
available. Consequently little may be learnt.

One method for obtaining informative data is to purposefully manipulate
the population density, either by fishing down the stock or letting it build up.
This is known as active adaptive management, and was initially investigated
by Walters [16], who found that in some situations it is economically optimal
to temporarily reduce fishing in order to learn about the population dynam-
ics. In this case the short term decrease in yield is outweighed by the long
term economic gain, due to the improved management method that becomes
possible.

Fishery managers will generally encounter major political difficulties in
reducing fishing (even for the short term), especially as the justification is in
essence to conduct an experiment on the fishery. On the other hand, fishing
down a stock will provoke criticism from conservation groups, and it may be
difficult to rebuild the stock after information has been gained (as suggested
by the number of over exploited fisheries worldwide). An alternative option,
which we investigate here, is to establish a marine protected area (mpa; an
area where fishing is forbidden) in which higher population densities can be
observed. mpas are an emerging tool in fisheries management [10], with many
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widely discussed benefits [12, 8, 14, 2, 1, for example].

In this article we present a stochastic dynamic programming (sdp) frame-
work for calculating the economic benefit of creating an mpa exclusively for
the purpose of learning about the population dynamics of a fishery. By ap-
plying this framework to a simple scenario, we show that in some instances
the value of the information obtained from an mpa may be sufficient to make
its creation economically optimal. This establishes an additional benefit of
mpas.

2 The management problem

In the scenario that we consider, the fishery is managed by setting a catch
quota, Ct, in each year, t. Finding the optimal catch quota for the current
year is the problem the fishery manager is faced with. We assume that, based
on historical data, n possible models for the population dynamics have been
proposed, and that each model i has some probability σt(i) of being the most
appropriate for the fishery. These n models are difference equations and have
the form

E(Nt+1) = gi(Nt − Ct) , 0 < i ≤ n .

Here the expectation E(·) is over process noise; any form of noise can be
considered. However, we concentrate on normally distributed multiplicative
noise such that

Nt+1 = εgi(Nt − Ct) , ε ∼ N(1, s2) , 0 < i ≤ n . (1)

The probability associated with each of the possible models is updated annu-
ally by the manager using Bayes’ Law. Updating probabilities while taking
both process noise and observational error into account is a complicated pro-
cess, as outlined by Meyer and Millar [11]. It is infeasible to handle this
complexity in an sdp framework, and hence the assumption of a perfectly
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observable population is made. With this assumption and Bayes’ law, the
model probabilities are updated at a time t+1 , using the observed population
density at that time (Nt+1):

σt+1(i) =
σt(i)p(Nt+1 | Nt, i)∑n
i=1 σt(i)p(Nt+1 | Nt, σt)

, (2)

where p(Nt+1 | Nt, i) is the probability of model i producing the observed
population density at time t+1 , given the previous population density (which
is simply the probability of obtaining ε = Nt+1/gi(Nt − Ct)).

Fishery managers should be concerned not only with the catch obtained
this year but also with the catch obtainable in future years—for example, if
all fish are caught today, then there will be no future catches.

The ideal catch quota to set for the current year, C∗T , maximises the
expected long term time discounted yield from the fishery, assuming optimal
choices are made in the future:

Y ∗T = max
CT

[
CT + E

( ∞∑
t=T+1

C∗t δ
t
)]
, 0 < δ < 1 . (3)

Here δ is the time discounting factor, which represents the fact that future
earnings are worth less than present earnings; generally this will be between
0.9 and 1.1

3 Single population stochastic dynamic

program framework

We now outline an sdp framework similar to that by Walters [16], which can
be used to solve the management problem we have introduced; we refer to

1See the work by Clark [4] for more details regarding time discounting.
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this framework as the Single Population Stochastic Dynamic Programming
(sp-sdp) framework.

At the present time, t, a fisheries manager wants to set a catch quota that
maximises Equation (3). This optimal catch will depend on the state of the
system which we summarise in a state vector xt. The state is uniquely defined
by the population density and probabilities associated with the n possible
models, such that xt = [Nt, σt(1), . . . , σt(n − 1)]′ (the nth probability is
redundant as they sum to unity). sdp is based on the observation that
Equation (3) can be written recursively:

Y ∗(xt) = max
Ct

{
Ct + δE [Y ∗(xt+1)]

}
, (4)

where the expectation is over both the possible models and process noise.

The future state of the system (xt+1) depends on the current system
state, the population dynamics and the decision made by the manager. Im-
portantly, the manager’s decision affects both the future population size and
the information gained about the population dynamics (as some population
sizes are more informative than others). Given their uncertain knowledge of
the population dynamics, the manager needs to consider the outcome of a
management decision under each possible model, and to weight these out-
comes according to each model’s probability:

Y ∗(xt) = max
Ct

{
Ct + δ

n∑
i=1

σt(i)E [Y ∗(xt+1 | i)]
}
, (5)

where the expectation is now only over process noise. Y ∗t+1(xt+1 | i) is the
time discounted yield expected if optimal management decisions are made by
the manager (given their uncertainty about the population dynamics) and
model i is the correct model. Note that although we are conditioning on the
true model being model i, this knowledge remains ‘hidden’ from the manager;
it simply dictates how the population density will change and consequently
what will be learnt about the population dynamics.
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The best decision a manager can make, given their uncertainty, is that
which maximises C∗t in Equation (5). However, the actual value of this
decision depends on which model is correct and is therefore the previously
introduced Y ∗t (xt | i). This can also be expressed recursively as

Y ∗(xt | i) = C∗t + δE [Y ∗(xt+1 | i)] . (6)

A sdp solution to this problem is found by beginning with arbitrary
values Y ∗(xτ | i) at some future time, τ , and working backwards. For each
backwards step an optimal catch is found by maximising Equation (5) and
the corresponding value of the optimal catch Y ∗(xt | i) is calculated from
Equation (6) for each of the n possible models. After repeated backwards
steps the optimal solutions and their corresponding values generally become
independent of time, thus providing a solution to the problem.

In order to implement this procedure we require three further compo-
nents which we now outline in some detail. Firstly, Equations (5) and (6)
need to be solved for each possible state; as the state space is continuous it is
necessary to discretise these in a sensible manner. The state vector xt con-
tains the population density and the probability associated with each model,
xt = [Nt, σt(1), . . . , σt(n− 1)]′ , and is thus n-dimensional as one probability
is superfluous. Each of the dimensions in xt is allowed to take on a discrete
number of values; for the population density these range from 0 to the maxi-
mum attainable, and for the probabilities these range from 0 to 1. Denoting
the number of possible values for the population density and probabilities
by dN and dσ respectively, we note that there are D = dNd

n−1
σ possible

states of the system.

Secondly, some arbitrary terminal values are required: a sensible choice
will result in faster convergence to the solution. We assign the value of the
remaining stock to each state (Y ∗(xτ | i) = Nτ ) ; in effect this is the value of
each state if the remaining fish were harvested.

Lastly, we need to calculate the probability of the system transitioning
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from one state to the next. These probabilities depend on the current pop-
ulation density, the catch taken, the true model and process noise. In our
model the catch is taken before the other processes take place, and hence
we need only obtain probabilities for each post-catch population density and
model. The system generally will not transition nicely from one discretised
state at time t to another at t + 1 . We therefore consider a discrete set of
values from the process noise distribution (we denote the number of possible
values by dε) and interpolate values of Y ∗(xt+1 | i) for the state resulting
from each process noise value.

4 Adding a marine protected area

We now consider the situation where a marine protected area (mpa; an area in
which no fishing is allowed) is introduced to permit the population dynamics
to be observed at higher densities. The motivation for this is that an mpa
may be easier to implement and that a higher population density increase
may be obtainable in an mpa than in the whole population for the same
loss in yield. To make this situation comparable to one without an mpa,
we assume that the data from which the population dynamics are updated
come from a fisheries-independent survey; during the existence of the mpa
this survey monitors only the mpa population.

The population density inside and outside of the mpa must be modelled
separately and migration between the two needs to be taken into account.
The population dynamic models in Equation (1) are assumed to apply equally
to both populations (the catch term is omitted for the protected population),
but migration between the two populations takes place before the popula-
tion densities are incremented by the model. This migration step is crucial:
without it, the same increase in population density would be observed in an
mpa regardless of its size.

We denote the population densities in and outside of the reserve prior to
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migration by R̂t and N̂t, and subsequent to migration by Rt and Nt. The form
of migration derived in Appendix A for an mpa occupying a proportion, α,
of the total area is

Rt = α(R̂t + N̂t) + ((1− α)R̂t − αN̂t) e
−ηB/(α(1−α)) ,

Nt = (1− α)(R̂t + N̂t) + (αN̂t − (1− α)R̂t) e
−ηB/(α(1−α)) ,

where B is the length of the boundary of the mpa and η is a migration
coefficient that gives the rate of movement over the boundary. The strength
of migration will depend on many factors including the layout and size of the
reserve and the species of fish being considered.

To evaluate the economic benefit of implementing an mpa, we consider a
scenario where the mpa exists for some period of time, L, before it is reopened
to fishing. During the existence of the mpa higher population densities are
observed within the mpa, and consequently information about the population
dynamics is gained more rapidly than is possible in the main fishery. The
increased rate of learning comes at a cost as the mpa will result in lower catch
rates2. However, this may be balanced by the improved management strategy
that this additional information provides. Whether this is sufficient to make
creation of the mpa economically optimal is the question we investigate.

Temporary mpas, as considered here, will provide little additional benefit
once a good understanding of the population dynamics has been attained.
However, we do not suggest that real mpas should be implemented temporar-
ily, as they provide many additional benefits not considered here, which may
ensure their long-term benefit, economic or otherwise.

2It has been argued that in some situations mpas may result in an increased yield [12,
7, 8].
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5 The full stochastic dynamic programming

framework

The previously described sp-sdp framework applies after the mpa is reopened
to fishing. sdp can also be used during the mpa period, although the states
and transitions will be different, as there are two populations with migration.
Here we present an sdp framework that gives the value of the system at the
start of the mpa period, which we refer to as the mpa-sdp framework. By
comparing the value of the system both with and without an mpa, it is
possible to determine the economic benefit of implementing an mpa.

The state of a system with an mpa includes an additional dimension—the
population density inside the mpa. The new state vector is yt, which now
consists of n + 1 elements. At the start of the mpa period the population
density is homogenous, and hence a straightforward mapping exists from the
states x0 to y0: the population densities inside and outside of the mpa are
simply equal to the original population density. At the end of the reserve
period (time L) the reserve is re-opened to fishing. We assume a homogenous
mixing of fish; this assumption is justifiable as economic theory suggests
that the re-opened mpa would be selectively targeted until the population
densities were again equal. Under this assumption the overall population
density of the fishery is simply αRL + (1− α)NL .

Since sdp works backwards, the period of time without an mpa must be
considered first (t > L). During this period the sp-sdp framework applies
and can be used to obtain values for Y ∗L (xL | i). Using the relationship
between xL and yL just discussed, we can therefore interpolate the values
of Y ∗L (yL | i).

Using Y ∗L (yL | i) and updated transitional probabilities for the two-
population model, sdp can be applied for the period during which the mpa
exists. The terminal values are now meaningful. Hence the procedure should
not be repeated until convergence is reached; this corresponds to a perma-
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nent mpa. Instead, L backwards steps are performed—this corresponds to
the duration of the mpa. The values (Y ∗(y0 | i)) obtained can be compared
with those obtained from the sp-sdp framework to evaluate the economic
optimality of implementing an mpa of a particular size and duration.

6 Simple application

We now consider a simple example where there are two possible models for
the fishery. The two models we consider are a Ricker and a Beverton–Holt
model (described in further detail in Appendix B). Both are common models
for population dynamics and are derived from different biological principles.

The parameters for the two models have been selected so that the models
provide similar dynamics at a population size between the optimal population
size corresponding to each model, as illustrated in Figure 1. This figure also
shows the expected yield as a function of the target stock size (the stock
remaining after the catch is taken each year). A simple management strategy
would select a catch each year so that a population density corresponding
to the peak of the expected yield curve (around 0.55) is maintained. The
trouble with such a strategy is that data obtained in the future will do little
to differentiate between these two models as they are very similar at this
population density. We expect that changing the population density to learn
more about the population dynamics may be advantageous.

The mpa-sdp framework was applied to this example using a discretisa-
tion of [dN , dσ, dε] = [50, 40, 20]; the resulting calculation took approximately
10 seconds on a current computer. Figure 2 shows the increase in value due
to the introduction of an mpa occupying 5% of the fishery for five time steps.
This increase is relative to the expected value if the manager does not take
into account the effect that their choices have on learning. The increase in
value is highest where initial uncertainty is high, as it is here that there is
the most to be gained. The benefit of the mpa is reduced for high initial pop-
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Figure 1: The simple scenario to which the mpa-sdp framework was ap-
plied. The two plausible models are a Ricker model (parameters [r,K] =
[1, 1]) and a Beverton Holt model (parameters [r,K] = [2, 1.9981]). The
black dotted line shows the expected yearly yield as a function of the target
stock size if equal probability is placed on both models. A simple manage-
ment strategy would set a target stock corresponding to the maximum of
this curve (around 0.55). Data obtained from this region, however, will not
help resolve the true model.
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Figure 2: The increased value due to the introduction of an mpa occupying
5% of the fishery for five time steps with a migration coefficient of 0.01.
This increase is relative to the value obtained if a fishery manager does not
take into account the effect that their choice has on the information gained.
The highest increase (around 1.5%) is observed when the highest uncertainty
about the true model exists and the initial population density is low.
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ulation densities, as it prevents the initial harvesting of a significant portion
of the excess population.

Figure 3 shows the increase relative to the expected value if the manager
is freely permitted to vary the population density in order to learn about the
population dynamics. In this situation an mpa is significantly less beneficial.
In order to obtain an increase in value it is necessary to have a very small
migration factor, such that tiny mpas yield high population increases. Note
that the benefit of the mpa increases with the initial population density.
Because of the small size of the mpa, its effect on the initial harvest of the
excess is negligible and is outweighed by the rapid information gain occurring
from the start, due to the elevated population density in the mpa.

The increases observed in these figures seem relatively small (the largest
increase is about 1.5%). However, they must be considered relative to the
maximum possible increase. The maximum possible increase from a sim-
ple management strategy is easily found for our application by considering
Figure 1. A simple management strategy corresponds to the peak of the ex-
pected yield curve in the lower panel. If perfect information were to become
available, the new expected yield would correspond to one of the model peaks
with equal probability. The difference between these yields is the maximum
increase attainable by gaining new information and is commonly referred
to as the Expected Value of Perfect Information [17]; in our example the
expected value of perfect information is an increase of only 8%.

7 Concluding comments

We have presented a framework for calculating the economic value of creating
a reserve for the purpose of learning about the population dynamics of a
fishery. Using this framework it is possible to illustrate a new and previously
unconsidered economic value of mpas.
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Figure 3: The increased value due to the introduction of an mpa occupying
1% of the fishery for ten time steps with a migration coefficient of 0.0001.
This increase is relative to the value obtained if a fishery manager is permitted
to manipulate the population density to gain informative data. Note that
for clarity the population density axis has been reversed relative to Figure 2.
The highest increase (around 0.75%) is observed when the highest uncertainty
about the true model exists and the initial population density is high.
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This framework poses challenging computational issues, particularly as
the number of possible models increases. If the uncertainty occurs in a param-
eter of a model such that it too must be discretised, this may be particularly
problematic. Careful consideration needs to be given to the discretisation of
the parameters describing the state of the system; this is crucial for retaining
acceptable computational performance.

There are several important simplifications inherent in the scenario we
have outlined. One of the most important is that the population densities
have been considered to be perfectly observable, but clearly this is not the
case. Unfortunately, calculating the probabilities assigned to various mod-
els becomes complicated if both process noise and observational error are
taken into account; developing an sdp framework that does this would be a
formidable challenge. Furthermore, the population in the mpa may be more
difficult to observe reliably due its smaller size and migration (an additional
source of process noise which needs to be factored out).

The other major concern is the way in which the population dynamics are
split for the two areas in the mpa-sdp. In reality, the population dynamics
in any two areas will differ to some extent, and hence extrapolating results
from the mpa to the whole fishery may result in incorrect management,
depending on the variability of the population dynamics. This is particularly
problematic as real mpas are often selected for special attributes and may
not be representative of the whole fishery.

Despite these limitations our model illustrates that it can be economi-
cally optimal to create a temporary mpa, solely for the purpose of learning
about population dynamics. The economic benefit of creating an mpa is par-
ticularly pronounced if the species have a low migration factor or if active
adaptive management (manipulating the population density to obtain infor-
mative data) is not possible. This provides an additional economic benefit of
mpas which on its own is sufficient to make an mpa economically optimal.
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A Migration

Migration can be considered a result of random movement, acting as diffu-
sion, which will result in net movement from high to low population densi-
ties. Walters [15] implemented a continuous numerical scheme for modelling
migration; a much simpler estimate will be presented here. Migration is con-
sidered over a period where the other processes that affect the population
density are negligible. This may be the case, for example, with a species for
which the juvenile fish relocate to find a new habitat over a short period of
time and there is little adult movement.

In a small period of time, only individuals in the proximity of the bound-
ary between the reserve and the exploited population are likely to cross the
boundary. The population dynamics due to migration during the migratory
period in the reserve are

dR =

(
wBγ

1− α
N − wBγ

α
R

)
dt ,

where for convenience R and N are the population sizes (not densities),
respectively inside and outside the mpa. The first term gives the migration
into the mpa and the second term the migration out of it. B is the length
of the boundary and w is the distance from the boundary within which fish
have to be in order to cross it. Effectively, therefore, wBN/(1 − α) is the
number of fish that could cross the boundary; this is multiplied by γ—the
rate at which an individual fish crosses the boundary—yielding migration
into the mpa. The second term represents migration out of the mpa and has
a similar interpretation. Making use of T as the total population size, this
simplifies to

dR =
ηB

α(1− α)
(Tα−R) dt ,

where η = wγ , a quantity we will refer to as the migration coefficient. With
the assumption that the remaining population dynamics, birth and death,
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are negligible during the period of migration, T will be constant and the
above is easily solved to yield the population sizes after a migratory step of
length one:

R = αT + (R̂− αT ) e−ηB/(α(1−α)) ,

N = (1− α)T + (N̂ − (1− α)T ) e−ηB/(α(1−α)) .

Here R̂ and N̂ are the population sizes at the beginning of the migratory
step and R and N are the population sizes at the end of this process. It is
easy to show that for this model the mpa shape that minimizes migration is
a circle; this gives the lowest boundary to area ratio. For a circular mpa of
radius r the boundary length is B = 2πr . If the length unit is set such that
the total habitat has area 1 we obtain r =

√
α/π and thus B = 2

√
απ .

The migration coefficient η needs to be based on biological estimates of w
and γ. Alternatively, if an mpa of size α̂ is believed to show negligible increase
in density, then a bound on η is

η ≥ log(1/ε)
√
α̂(1− α̂)

2
√
π

. (7)

This ensures that for reserves less than α̂ in size or greater than 1− α̂ , the
factor e−ηB/(α(1−α)) will be less than ε.

This is a fairly simple approximation of the migration process. However,
it exhibits all the qualitative features that are expected, and as such it is
appropriate for the investigation conducted here.

B Fishery models

The two common population models utilised in our example are derived from
different ecological considerations [3, 13]. They both have two parameters:
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one parameter, K, is the carrying capacity—the population density in the
absence of fishing—and a parameter r, which is the growth rate at low den-
sities.

The first of these is the Ricker model:

E(Nt+1) = Nte
r(1−Nt/K) .

The second model is a Beverton–Holt model:

E(Nt+1) =
rNt

1 + (r − 1)Nt/K
.

The Ricker model displays over compensatory density dependence, in that
for large enough population sizes an increase in population size in one year
results in a decrease in total recruitment the following year (note the eventual
down-turn in the dot-dashed curve in the upper panel of Figure 1). In con-
trast, the Beverton–Holt model displays compensatory density dependence
where an increase in population size in one year results in a smaller increase
in recruitment the following year. The two models lead to different predic-
tions about maximum sustainable yield and have differing consequences for
population dynamics.

The two models are derived under different assumptions about competi-
tion and predation. For example, over compensatory dynamics can arise if
adults that recruited in one year cannibalise young that recruit the next year.
Alternatively, the over compensatory Ricker model can be derived under an
assumption of ’scramble’ competition among recruits. Here, many individ-
uals share a critical, limiting resource such as food. The more individuals
that are present, the less resource each obtains. If individuals do not receive
enough resource, they face increased mortality. The end result of which is
that a large recruitment pulse may be counter productive and could lead to
large scale recruitment failure. In contrast, compensatory dynamics would
occur if the competition were of a ‘contest’ nature. In contest competition
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a limited number of individuals are able to secure all of the resource they
require, but additional individuals face acute resource scarcity, which gives
the asymptotic behaviour shown in the solid curve in the upper panel of
Figure 1.

Acknowledgement: We thank the two anonymous referees for their com-
ments.
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