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Original Article
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Umbilical cord blood (CB) has emerged as an effective alterna-
tive donor source for hematopoietic stem cell transplantation.
Despite this success, the prolonged duration of immune sup-
pression following CB transplantation and the naiveté of CB
T cells leave patients susceptible to viral infections. Adoptive
transfer of ex vivo-expanded virus-specific T cells from CB is
both feasible and safe. However, the manufacturing process
of these cells is complicated, lengthy, and labor-intensive. We
have now developed a simplified method to manufacture a sin-
gle culture of polyclonal multivirus-specific cytotoxic T cells in
less than 30 days. It eliminates the need for a live virus or trans-
duction with a viral vector, thus making this approach widely
available and GMP-applicable to target multiple viruses. The
use of overlapping PepMixes as a source of antigen stimulation
enable expansion of the repertoire of the T cell product to any
virus of interest and make it available as a third party “off the
shelf” treatment for viral infections following transplantation.

INTRODUCTION
Umbilical cord blood (CB) transplantation (CBT) is emerging as an
attractive alternative donor source for many hematologic malig-
nancies, with outcomes comparable with matched related or unre-
lated bone marrow donors.1–3 CB stem cells are easily procured,
require less stringent histocompatibility/human leukocyte antigen
(HLA) matching criteria, possess a greater likelihood of matching
for minorities,4 and cause fewer incidences of graft versus host disease
(GvHD) compared with adult donor sources.1,3,5 These advantages of
CBT, however, are offset by delayed immune reconstitution,6 making
the recipient vulnerable to viral, bacterial, and fungal infections and
consequent increased infectious disease morbidity and mortality.7–9

Several groups have shown that T cell immune reconstitution
after double or single CBT (with or without serotherapy) is de-
layed,6,10 and this, along with the naiveté of the infused CB T cells,
correlates with an increased risk of viral reactivation or infection

from latent and lytic viruses like cytomegalovirus (CMV), Epstein-
Barr virus (EBV), and adenovirus (Adv) in the post-transplantation
period.7,11,12

Like other latent viruses, BK virus (BKV) is present in most adults (up
to 80%) and reactivates in the immune-compromised host, with rates
as high as 60% in the allogeneic hematopoietic stem cell transplant
(HSCT) setting,13 especially in recipients of CBT.14 Predisposing fac-
tors include myeloablative conditioning, positive pre-transplant
serology, and the use of virus-naive donors such as CB as a stem
cell source.14–16 Hemorrhagic cystitis (HC), a consequence of BKV
infection, increases the median duration of hospitalization, the need
for larger numbers of blood products, and costly pharmacologic treat-
ments that are not always effective and can have unacceptable renal
toxicities.13,17 Although guidelines for surveillance and treatment of
latent viruses like CMV with pharmacologic drugs have been well
established, improvements in BKV therapy are still needed. The
viremic load of BKV has been shown to affect overall survival.
Patients with a high viral load ofR10,000 copies/mL have an overall
survival 1 year after HSCT of 48% compared with 89% in patients
with a low virus burden.18With the increasing use of CB as an accept-
able source of stem cells even for adult patients,19 improvement of
BKV therapies is warranted.

Adoptive T cell therapy using donor-derived ex vivo-expanded T cells
has emerged as an effective strategy in preventing and treating
viral infections.20–23 Simplified methods for rapid production of
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multivirus-specific T cells from seropositive individuals have been
validated and used for prophylaxis and treatment;24–26 however,
this approach has not yet been successfully applied in the CBT setting
because the only CB-derived multivirus-specific T cell approach
currently in the clinic requires manufacturing times of 10+ weeks.27

We and others have shown that it is possible to expand virus-specific
T cells (VSTs) even from seronegative23,28–30 or naive donors such as
CB.27,31 Our previous methodology for the manufacture of trivirus-
specific T cells from CB showed excellent in vitro and in vivo
responses to CMV, EBV, and Adv;23,27,32 however, the process was
complex, using viral vectors and live virus as the source of viral anti-
gens, and because of the challenges associated with manufacturing
these cells, it has not been widely adopted.

Here we developed a good manufacturing practices (GMP)-appli-
cable methodology for the rapid manufacture of CB-derived multivi-
rus-specific T cells that simplifies the manufacturing process, elimi-
nates the need for live virus or viral vectors, and reduces the time
required to produce multivirus-specific T cells (Figure 1). The use
of commercially synthesized viral PepMixes instead of viral vectors
not only reduced the manufacturing time but also simplified the pro-
cess and enabled the introduction of other viral targets (such as BKV)
to ensure that this approach will be more readily adaptable to include
any virus of interest and broadly applicable for clinical use.

RESULTS
VSTs Specific for BKVCanBe Expanded fromCBandRecognize

Multiple Viral Antigens

Given the increasing clinical demand for BKV-specific T cells for CBT
recipients and to establish that BKV-specific T cells can be generated
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Figure 1. Manufacturing Strategy

(A and B) The old methodology using EBV LCLs as anti-

gen-presenting cells (A) and the new rapid production

method using autologous PHA blasts and genetically

modified K562s feeder cells (B).

from CB, we first tested the ability to generate
BKV-specific T cells using our old methodology
(Figure 1). The differences between the old and
new method are outlined in Figure 1.

CB BKV VSTs were expanded from five different
CB units. T cells were stimulated once with
PepMix-pulsed dendritic cells (DCs), followed
by twostimulationswithPepMix-pulsed lympho-
blastoid cell lines (LCLs). After three stimulations
in the presence of interleukin-7 (IL-7), IL-15, or
IL-2, T cells expanded amedian of 15-fold (range,
6–24) by day 26 of culture (Figure 2A).

Expanded CB-derived T cells showed specificity
to BK antigens by interferon g (IFN-g) enzyme-

linked immunospot (ELISPOT), recognizing both Large T (median,
369.5 spot-forming cells [SFCs]; range, 210–478.7; *p = 0.0015) and
VP1 (median, 58 SFCs; range, 10–212; **p = 0.0915) compared
with the negative control, Actin (Figure 2B). Final VST products
were largely comprised of CD3+ T cells (mean, 89.5% ± 8.9%) (Fig-
ure 2C), with both CD4+ (mean, 42.4% ± 8.18%) and CD8+ (mean,
45.8% ± 2.5%) populations. DCs, B cells, and LCLs were not present
in the final culture. Natural killer cells (CD3�CD56+) were detectable
at low levels (mean, 5.17% of lymphocytes ± 2.96%). Intracellular
cytokine staining of final VST products following stimulation with
both BKV PepMixes showed consistent IFN-g cytokine production
(Figure 2D).

Rapid Generation of Multivirus-Specific T Cells in a Single

Culture

Our original manufacturing strategy to generate tri-VSTs utilized
EBV-LCLs as antigen-presenting cells (APCs).However, the approach
took upward of 2–3 months because of the manufacture of EBV LCLs
followed by three weekly stimulations with APC either transduced
with an Ad5f35pp65 vector27 or viral PepMixes. To reduce the
manufacturing time, we tested a more rapid approach to manufacture
VSTs by pulsing mature DCs with six viral PepMixes from three vi-
ruses, CMV, adenovirus, and EBV, for the first stimulation and using
autologous irradiated phytohemagglutinin (PHA) blasts as stimula-
tors and modified K562 as feeder cells to provide costimulation for
subsequent stimulations (Figure 1). After three stimulations, CB units
(n = 4) had a median 14-fold expansion after the third stimulation
(Figure 3A). Given that only a fraction of cells were used for each
stimulation, when extrapolated, a mean of 1.47 � 108 (range, 0.67–
3.17 � 108) VSTs could be generated from the 20% fraction of a CB
unit (Figure 3B), with a manufacturing time of only 28 days (7 days
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for generation andmatureDCs and 3weeks for T cell expansion). This
reduced the manufacturing time by almost 50%, with the old method
requiring a minimum of 71 days.27 There was no difference in speci-
ficity for each of the three viruses by IFN-g ELISPOT assay when
comparing autologous LCLs or PHA-b with gmK562 cells as APCs
(Figure 3C). Expansion in G-rex culture devices maintained or even
improved the antigen recognition of all three viruses (Figure 3D),
ensuring large-scale production of the multi-VSTs for clinical use.
When tested for cytolytic potential in chromium release cytotoxicity
assays, expanded T cells demonstrated specific killing of at least one
virus when target cells (PHA blasts) were pulsed with CMV, EBV,
and Adv (Figures 3E and 3F).

VSTs Specific for BKV, CMV, Adv, and EBV Can Be Rapidly

Produced in a Single Culture

After successfully generating trivirus-specific VSTs in a single culture
using the rapid production method, we next sought to evaluate
whether BKV antigens could be added to generate a four-virus prod-
uct in a single culture. Using the rapid approach, we pulsed mature
DCs with eight viral PepMixes derived from four viruses, used autol-
ogous irradiated PHA blasts as stimulators, and modified gmK562
cells as feeder cells. After three stimulations, nine CB units had a
median 14-fold expansion after the third stimulation (Figure 4A).
Extrapolating to include the entire T cell population at each expan-
sion, a median 1.47 � 108 (67.5–317) VSTs could be expanded
from the 20% CB fraction (Figure 4B) while retaining the same
manufacturing time of 28 days as described above. The rapidly man-
ufactured tetra-VST products specifically recognized BKV Large T
and VP1 proteins (median, 145 (0–498) SFCs/1 � 105 cells) by
IFN-g ELISPOT and showed specificity for the three other viruses

A B

DC

Figure 2. Expansion and Specificity of BKV-VSTs

Dendritic cells were generated from CBMCs isolated from

three cord bloods, and mature DCs were stimulated with

BKV PepMixes, Large T, and VP-1 and then stimulated

with irradiated EBV LCLs in the presence of IL-7 and IL-15.

(A) Fold expansion of cytotoxic T lymphocytes (CTLs) after

weekly stimulations and hypothetical cell counts after each

stimulation. (B) ELISPOT assay demonstrating the antigen

specificity of expanded CTLs to large T and VP1 after the

third stimulation. (C) The surface marker phenotype of

BKV-VSTs at week 3 (n = 3, mean) showed both CD4+

T cells and CD8+ T cells and absence of B and natural killer

(NK) cells. (D) Intracellular cytokine staining of BKV-VSTs

following restimulation with BKV PepMix, Large T, and VP1

showing polyfunctionality, producing IFN-g.

as well with median SFCs/1 � 105 cells as fol-
lows: CMVpp65 and IE1 (157 [6.5–363], Adv-
hexon and Penton (331 [14–508], and
EBVLMP2 and EBNA1 (79 [2–370]); p = 0.014
(Figure 4C). Moreover, there was no statistical
difference in the specificity (p = 0.2) of the
VSTs for each of the four viruses generated using
the old method versus the rapid manufacture

approach. The VSTs recognized each of the four viruses similarly
by both methods (correlation coefficient r = 0.763, p = 0.0032) (Fig-
ure 4D). Of the nine multi-VSTs produced, 11% recognized one virus,
22% recognized two viruses, 33% were specific to three viruses, and
33% were specific to all four viruses (Figure 5).

All of the final rapid VST products were largely comprised of T cells
(Figure 4E; Figure S1), with both CD4+ and CD8+ populations.
DCs, B cells, and gmK562 cells were not present in the final culture.
Natural killer cells were detectable at low levels (median, 0.2%
[0%–6.23%]) in the lymphocyte gate. Intracellular cytokine staining
of final VST products for BKV, Adv, CMV, and EBV in response to
viral PepMixes showed consistent polyfunctionality, with both
INF-g and tumor necrosis factor alpha (TNF-a) cytokine production
compared with Actin, with both CD4+ and CD8+ responses (Fig-
ure 4E; Figure S2).

DISCUSSION
Here we describe a robust and simplified GMP-applicable
manufacturing strategy for the generation of VSTs derived from CB
that eliminates the need for live virus and viral vectors as the source
of viral antigens.27 We have shown previously that VSTs can be
primed in vitro from CB27 and that CB-derived T cells targeting
CMV, EBV, and Adv can be manufactured using a GMP-applicable
approach from the 20% fraction of CB units and administered to
high-risk patients after CB transplantation28 (NCT00880789 and
NCT01923766). This process, however, was relatively complex, which
limited its widespread clinical use. To overcome these limitations,
overlapping peptide pools (PepMixes) recognizing the full-length
proteins of each of the target viruses were used to replace the viral

www.moleculartherapy.org

Molecular Therapy: Methods & Clinical Development Vol. 5 June 2017 15

http://www.moleculartherapy.org


vector and antigens expressed by the EBV LCL. As APCs, DCs, PHA
blasts, and HLA-negative gmK562 cells modified to co-express CD80,
CD83, CD86, and 4-1BBL were used.33 This dramatically reduced the
manufacturing time in the laboratory from more than 70 days to
approximately 30 days while still effectively stimulating and expand-
ing T cells specific for multiple viral antigens in numbers sufficient for
clinical use. Further, because this new strategy does not employ a viral

vector, it allows the easy and rapid introduction of additional viral
antigens; in this case, BKV antigens. Moreover, because the time-
to-freeze was reduced by 50%, T cells are now available for infusion
early after CBT (around day 30), when CBT recipients are most
vulnerable to viral infections.8 Despite the shortened time to manu-
facture, the rapid multivirus VSTs maintained their antigen speci-
ficity, polyfunctionality, and cytolytic activity in vitro.

A

FE

C

B

D

Figure 3. Comparison of Virus-Specific T Cells thatWere Expanded Using Irradiated Autologous LCLs at a Ratio of 4:1 for theOldMethod or PHABlastswith

gmK562 at a Ratio of 1:1:4 for the New Method

(A) Fold expansion of CTLs after weekly stimulations and hypothetical cell counts after each stimulation. (B) Shown is the multivirus specificity as determined by IFN-g

ELISPOT assay. Each bar represents the mean of SFCs for four cell lines in response to stimulation with the respective viral PepMix or irrelevant PepMix (Actin) or positive

control (SEB, data not shown). (C) IFN-g ELISPOT responses of VST products produced by both methods showing no statistical difference in the recognition of the three

viruses by the VSTs. (D) IFN-g ELISPOT responses of VST products showing improved specificity when expanded in gas-permeable chambers compared with expansion in

24-well plates. (E and F) 1Cr release 4 hr after co-incubation of representative trivirus VSTs with PHA blasts pulsed with CMVpp65 and CMVie1 PepMix (CMV target), Adv-

hexon and Adv-Penton (Adv target), PepMix (Adv-hexon target), and EBVbzlf1 and EBVlpm2 (EBV target). The data are the percentage of lysis of targets by representative

VST products at E/T of 40:1, 20:1, 10:1, and 5:1.
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(A) Fold expansion of four-virus VSTs after weekly stimulations. (B) Hypothetical cell counts after each stimulation extrapolated from cells plated and harvested and fold

expansion. (C) Shown is themultivirus specificity of VSTsmanufactured by the rapid method as determined by IFN-g ELISPOT assay. Each bar represents the mean SFCs for

nine cell lines in response to stimulation with respective viral PepMix or irrelevant PepMix (Actin) or positive control (SEB, data not shown). (D) IFN-g ELISPOT responses of

VST products produced by both methods showing no statistical difference in the recognition of the VSTs by the four viruses. (E and F) Surface phenotyping of rapidly

produced multivirus VSTs at week 3 (n = 9, error bars show SD) showed CD4+ T cells and CD8+ cells and memory responses as shown in (F).
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Since the initial report by Sun et al.29 showing the feasibility of ex-
panding CB-derived VSTs ex vivo, many groups have used various
methods for priming CB-derived DCs.34,35 The report by Sun
et al.29 using EBV lysate as a stimulator to pulse CB-derived DCs
was a proof of principle for expanding virus-specific polyfunctional
CD45RO+ T cells.29 The use of G-rex culture devices has overcome
the limitation of expanding sufficient cells for clinical application;
we have shown here that multivirus-specific T cells can be generated
in numbers sufficient for multiple cell doses that appear more potent
than those grown in flasks.36 Using our original manufacturing
strategy, CB-derived T cells were infused to nine patients after CBT
in doses of 5 � 10e6/m2 to 2.5 � 10e7/m2 with no infusion-related
toxicities or GvHD within the first 45 days after VST infusion.23,26,28

Within 2 weeks of VST infusion, patients had detectable VSTs in their
peripheral blood that persisted up to 1 year, suggesting that tri-VSTs
from CB were safe and effective.26,28

Our new manufacturing strategy further addressed the limitations of
some of this prior work. The use of genetically modified K562s as arti-
ficial APCs provides the added co-stimulation with CD80, CD83, and
CD86 that is usually reduced in CB DCs. The ability to use cytokines
like IL-12 and TNF-a provided a more natural priming environment,
and the ability to generate polyclonal cells with an ability to recognize
multiple antigens minimizes viral escape to enhance the ability of CB-
derived VSTs to produce anti-viral effects in vivo.

Although the strategy to develop a single culture of multi-VSTs is not
novel per se, the clinical need for rapid manufacture of CB-derived
multi-VSTs is highly significant and well established.25 The ability
to rapidly expand polyclonal CD4+ and CD8+ T cells from the 20%
fraction in numbers feasible for multiple doses makes it an attractive
option for both adult and larger pediatric recipients of CBT, where the
number of nucleated cells is a limiting factor.

Despite the faster approach, our method does have some limita-
tions. The time to freeze for the rapidly produced VSTs is still three
times longer than that required for multi-VSTs derived from sero-
positive donors. The cost of manufacturing also needs to be evalu-

ated when considering scaling up GMP strategies to make them
widely available. Although the cost of GMP-grade overlapping
peptides is high, it is comparable with, if not less, than the cost of
GMP-grade adenoviral vectors, which must undergo significant
testing before release.

The possibility of antigen competition cannot be completely
excluded but appears to be less than what is observed in similar
multi-VSTs products derived from CMV-positive donors where
there is skewing to a CMV-specific T cell response. Further, studies
evaluating the persistence of rapid manufacture CB-derived multi-
VSTs and their ability to mediate virus-specific killing in vivo are
warranted.

Finally, given the large number of global inventories of frozen CB
units, the development of CB-derived VST products also provides a
novel platform for third-party use when adult donors are not readily
available because we can select the HLA type to minimize GvHD.
Adoptive immunotherapy using banked VSTs from partially HLA-
matched donors has shown considerable success in treating EBV-
related lymphoma and EBV, Adv, and CMV infections.26,37–40

Although transportation of cryopreserved cells has allowed this tech-
nology to be available to centers beyond the ones manufacturing the
VST products, both nationally and internationally, the process of
screening healthy donors and HLA selection can be time-consuming.
The observed persistence of peripheral blood-derived third-party
VSTs is 14–90 days, and multiple infusions are often required.41

CB-derived T cells exhibit less alloreactivity and therefore a decreased
risk of GvHD.35 CB T cells are also known to have longer telomeres
than adult blood, with a greater proliferative potential and a tendency
for longer in vivo persistence; thus, multiple infusions may not be
required. The ready availability of clinical-grade frozen CB units
that are already screened and HLA-typed makes CB-derived VSTs
an attractive and cost-saving option.

In summary, we have established a simple and rapid GMP-applicable
methodology to generate multi-VSTs targeting CMV, EBV, Ad, and
BKV from a small fraction of CB with the potential to affect the trans-
plant-related morbidity and mortality in CB recipients.

MATERIALS AND METHODS
Ethics Statement

All research involving human materials was approved by the respec-
tive institutional review boards at the Children’s National Medical
Center and MD Anderson Cancer Center (MDACC). Fresh or frozen
CB units were obtained from healthy donors who gave written
informed consent.

Generation of DCs

CB mononuclear cells (CBMCs) were isolated by Ficoll/Hypaque
centrifugation. CBMCs were washed twice, resuspended in CellGenix
medium, and plated at approximately 1 � 107 cells/well in DC
medium (CellGenix medium plus 2 mM L-glutamine; GlutaMax,
Invitrogen) in a six-well plate for 1–2 hr at 37�C in a humidified

Figure 5. Simultaneous Recognition of Multiple Viruses by VSTs by the

Rapid Method as Evaluated by IFN-g ELISPOT

Each slice represents the number of viruses recognized by the multi-VSTs.
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CO incubator. Non-adherent T cells were removed by rinsing with
PBS (Sigma) and cryopreserved. Cells adherent after 1 hr were
cultured in DC medium with granulocyte-monocyte colony stimu-
lating factor (GM-CSF; 800 U/mL) (sargramostim, Leukine; Immu-
nex) and IL-4 (500 U/mL, R&D Systems) for 5 days.

Maturation of DCs and Pulsing of DCs with Viral PepMixes

On days 5–6, CB-derived DCs were matured using a cytokine cocktail
consisting of LPS, GM-CSF, IL-4, IL-6, IL-1b, and prostaglandin E2
(Sigma) (“maturation cocktail”) for 1–2 days.

Ex Vivo Expansion of Multivirus-Specific VSTs Using PHA Blasts

and gmK562 Cells

To generate rapidly manufactured CB-derived VSTs targeting EBV,
CMV, Ad, and BKV, matured DCs were harvested and pulsed with
overlapping 15-mer PepMixes spanning the entire length of the pro-
tein for each of the four viruses (CMV-IE1, CMV-pp65, Adv-hexon,
Adv-penton, EBV-LMP2, EBV-EBNA1, BKV-VP1, and BKV-Large
T; PepMixes, JPT Peptide Technologies) and used as APCs at a stim-
ulator-to-responder ratio of 1:10–1:20 with non-adherent CBMCs.
T cells were cultured in T cell medium containing RPMI 1640 supple-
mented with 40% Clicks medium, 10% human antibody (AB) serum
(Valley), and 2 mM GlutaMax. For the first stimulation, a cytokine
mix containing IL-7 (10 ng/mL), IL-12 (10 ng/mL), and IL-15
(5 ng/mL) (all from R&D Systems) was added.

To generate activated T cells, PHA blasts were used as APCs, and
CBMCs or non-adherent T cells were stimulated with the mitogen
PHA-L (5 mg/mL, Sigma-Aldrich). Cells were fed every 2–3 days
with 100–200 U/mL of IL-2.

After 8–10 days, peptide-pulsed autologous irradiated (30 Gy) CB-
derived PHA blasts were co-cultured with T cells at a T cell:PHA blast
ratio of 1:1 and maintained in medium supplemented with IL-15
(5 ng/mL) on the second stimulation or medium supplemented
with IL-2 (50 U/mL) for the third stimulation cycle. On the third
stimulation, irradiated (200 Gy) K562 cells that were genetically
modified to express the co-stimulatory molecules CD80, CD83,
CD86, and 4-1BBL (gmK562) were added to the T cell:PHA-blast
co-culture to provide further co-stimulation. GMP-grade gmK562
cells were a gift from Dr. Cliona Rooney at Baylor College of
Medicine).

Generation of Multi-VSTs Using PepMix-Pulsed EBV-

Transformed B Cell Lines from CBMCs

As the source of APCs for the second and third stimulations, 5 � 106

CBMCs were infected with concentrated supernatants from a B95-8
working cell bank as described previously.20 When the LCLs were
in T-75 flasks and ready for use as stimulators, the cells were irradi-
ated at 50 Gy, washed, resuspended at 5 � 105cells/mL of complete
medium (RPMI medium [HyClone} plus human serum and
GlutaMax) and then used as stimulators at a ratio of one T cell to
four LCLs in a 24-well plate or five LCLs to one T cell in a
G-Rex10 gas-permeable culture device as published.42

IFN-g ELISPOT

Ninety-six-well filtration plates (MultiScreen, MSIPS4W10, Milli-
pore) were coated overnight with 10 mg/mL anti-human IFN mono-
clonal antibody (mAb) (capture mAb, 1-DIK-purified, Mabtech).
VSTs were plated at 1 � 105 cells/well and stimulated with overlap-
ping 15-mer PepMixes encompassing proteins for each of the four
viruses (for CMV-pp65, CMV-IE1, EBV-LMP2, EBV-EBNA1, Adv-
hexon, Adv-Penton, BKV-Large T, and BKV-VP1, 0.5 nmol/peptide/
well). Each condition was run in duplicate or triplicate. Staphylo-
coccal enterotoxin-B (SEB) was used as positive control (1 mg/mL).
A 15-mer PepMix encompassing the actin protein was used as a
negative control. After 18–24 hr, the plates were washed and incu-
bated with the secondary biotin-conjugated anti-human IFN-g
mAb (detector mAb, 7-B6-1 biotin, Mabtech) at 1 mg/mL. After
incubation with avidin:biotinylated horseradish peroxidase (HRP)
complex (Vectastain Elite ABC kit [standard], PK6100, Vector
Laboratories), plates were developed with AEC substrate (A6926,
Sigma-Aldrich), dried overnight, and quantified (Zellnet Consulting).
The frequency of T cells specific for each peptide was expressed as
SFCs per 1 � 105 cells. A correction for confluence was applied as
follows: well count + 2 � (well count � (percent confluence /
[1 � % confluence])).

Flow Cytometry

Staining of cell surface markers on CBMCs and T cells was performed
with CD3-APC/Vio770, CD4-Vioblue, CD8-Viogreen, CD19-FITC,
CD56-PE/Vio770, CD16-PE, CD62L-Vioblue, CD45RA-PE,
CD45RO-APC, and CCR7-FITC (Miltenyi Biotec and BD Biosci-
ences). 50,000 events per sample were acquired on a MACSQuant
cytometer (Miltenyi), and the data were analyzed with Flow Jo
(Tree Star).

Intracellular Cytokine Staining

For intracellular cytokine staining, T cells were rested with IL-2
(100 U/mL) overnight and then stimulated with PepMixes encom-
passing viral or control proteins (JPT) at 0.5 nmol/mL, along with
anti-CD49d/CD28 antibodies (BD Biosciences) at 1:1,000 for co-
stimulation and Golgi stop at 1 mL/mL. SEB and Actin were utilized
as controls. T cells were stained with cell surface markers (CD3,
CD4, and CD8), followed by permeabilization with Cytofix/Cyto-
perm (BD Biosciences), washing, and staining with IFN-g-APC
(BioLegend), IL-2-fluorescein isothiocyanate (FITC), and TNF-a-
PE (BD Biosciences).

Cytotoxicity Assay

Cytotoxicity was measured by standard 51Cr release assay. Briefly,
autologous or allogeneic PHA-stimulated lymphoblasts were pro-
duced and incubated with viral PepMixes (0.5 nmol/peptide/mL of
each protein) for 1–2 hr and then pulsed with 51Cr (PerkinElmer)
at 10 mCi per 1� 105 cells for 1 hr and washed. Effector T cells rested
overnight with IL-2 (100 U/mL) and were plated with radiolabeled
target cells at multiple effector-to-target ratios. Maximum release
was determined by lysis of radiolabeled targets with 1% Triton
X-100 detergent. Targets and effectors were incubated at 37�C for

www.moleculartherapy.org

Molecular Therapy: Methods & Clinical Development Vol. 5 June 2017 19

http://www.moleculartherapy.org


4–6 hr and centrifuged, and then supernatants were transferred to a
96-well scintillation plate and allowed to dry. Radioactivity was
measured on a gamma counter. Specific lysis was determined as fol-
lows: (experimental CPM – background CPM) / (maximum CPM –

background CPM). All experiments were performed in triplicate.

Data Analysis/Statistics

Results were evaluated using descriptive statistics (means, SDs,
and ranges). Comparative analysis between ELISPOT and flow
cytometry results for different epitopes was performed via compari-
son of rowmeans and t tests. Comparisons between responses to viral
peptides and irrelevant peptides were performed using a two-
sided unpaired t test. Analysis was performed in GraphPad Prism
(GraphPad).
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