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Optimally locating a junction point for an
underground mine to maximise the net

present value
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Abstract

A review of the relevant literature identified an opportunity to
develop algorithms for designing the access and construction schedule
for an underground mine to maximise the net present value (npv).
The methods currently available perform the optimisation separately.
However, this article focuses on optimising the access design and con-
struction schedule simultaneously to yield a higher npv. Underground
mine access design was previously studied with the objective of min-
imising the haulage and development costs. However, when scheduling
is included, time value of money has a crucial effect on locating the
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junction points (Steiner points) in the access network for maximum
value. This article proposes an efficient algorithm to optimally locate
a single junction, given a surface portal and two ore bodies, for max-
imum npv where npv includes the value of the ore bodies and the
construction costs. We describe the variation in the location of the
junction for a range of discount rates.
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1 Introduction

The mining industry does not have reliable, accurate or well established
algorithms for simultaneously designing the access network for an underground
mine and scheduling its construction. Current industry practice is to design
the underground access first and then to complete the scheduling. One
problem with this process is that the costs of access construction are not
reflected in the net present value (npv) calculation. The npv is the usual
measure of value in the mining industry. Until now underground mine access
was not designed with the aim of maximising the npv. We will first define
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the term npv and then model the underground mine access design problem
as a tree network problem.

Money has a time value and it needs to be analysed in terms of a series
of cash flows. Cash flows are brought forward in time with an appropriate
discount factor. The discount rate is the key parameter of the process and
used to discount future cash flows to the present time. The summation of all
the discounted cash flows is called the net present value.

In 1988, Lane [1] expressed the problem of maximising the npv of a mine as
an optimisation problem and the npv as the sum of the variable and fixed
costs. Lane treated mineralised material as a resource. He observed that the
resources are actually finite and sooner or later they will be depleted.

We represent the underground access network design problem as a tree
network problem, where the locations of the ore resource points are given
and the junction points of the network are to be obtained for a specific given
objective function. To find a minimum length network connecting a set of
given terminals or points, Steiner points or junctions are added to reduce the
length. This is the classical Steiner problem [2].

Brazil et al. [3, 4] studied underground mine access design processes and
described how to locate the Steiner point. The objective of the problem
they analysed was to minimise the infrastructure and haulage costs of an
underground mine. However, they did not take the discounted cost into
account in their model and have not studied the problem of locating the
Steiner point with the objective of maximising the npv.

The problem we analyse is different from the classical Steiner problem and
also from the one discussed by Brazil and Thomas [3], as here the Steiner
point is located to maximise the npv. A Steiner point in a maximum npv
network is a discounted Steiner point. The objective is to locate a single
discounted Steiner point to maximise the npv.
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Figure 1: A schematic representation of a simple underground mine.

2 Problem formulation

In this section, we formulate and describe the optimisation problem. Figure 1
shows the access network for a simple underground mine. Let p0 = (x0,y0, z0),
p1 = (x1,y1, z1) and p2 = (x2,y2, z2) be the surface portal (or breakout point
from existing infrastructure) and the access points for ore deposits with worth
$V1 and $V2 , respectively. The aim is to locate the discounted Steiner point
s = (x,y, z) to maximise the npv. Let l0 , l1 and l2 be the construction
lengths from p0 , p1 and p2 to s, respectively, which are given by Euclidean
distances. The line segments p0s, sp1 and sp2 are called decline links.

A jumbo is a mobile carriage or platform fitted with mechanical arms upon
which several drilling machines are mounted and is used to construct the
decline and extract the ore. The ore at p1 is extracted when the jumbo
completes the construction of decline links p0s and sp1 . When the jumbo
finishes the construction of all the remaining decline links, then the ore at p2
is extracted.

First, we find the discounted cost for constructing a decline of length l. Let D,
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C and d be the decline development rate, development cost rate and discount
rate, respectively. The time taken to construct x distance of the decline
is x/D. Therefore,

Discounted cost =

∫ l
0

Cr−x/Ddx =
CD

log r
(1− r−l/D) , (1)

where r = 1+ d .

To construct the entire underground access network the decline links p0s,
sp1 and sp2 need to be developed. The discounted costs for constructing
these decline links are expressed using equation (1) and with an appropriate
time discount factor. The negative cash flows generated from the access
development are

npvdev =
CD

log r
[
(r−l0/D − 1) + r−l0/D(r−l1/D − 1) + r−(l0+l1)/D(r−l2/D − 1)

]
=
CD

log r
(r−(l0+l1+l2)/D − 1) . (2)

The ore at point p1 is extracted before p2 . Therefore, the total times taken
to reach p1 and p2 are t0+ t1 and t0+ t1+ t2 , respectively, where t0 = l0/D ,
t1 = l1/D , t2 = l2/D . The positive npv generated from the ore production
is

npvpro = V1r
−(l0+l1)/D + V2r

−(l0+l1+l2)/D. (3)

We consider only the cash flows generated from ore production and access
development because these directly relate to the location of the discounted
Steiner point. Therefore, the total npv is

npv = npvpro + npvdev . (4)

By substituting equations (2) and (3) into equation (4),

npv = V1r
−(l0+l1)/D + (V2 + Vc)r

−(l0+l1+l2)/D − Vc , (5)
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where Vc = CD/ log r . Equation (5) is the objective function for this problem.
The problem we analyse is expressed as an optimisation problem:

maximise: V1r
−(l0+l1)/D + (V2 + Vc)r

−(l0+l1+l2)/D − Vc ,
such that: l0, l1, l2 > 0 .

The decision variables are l0 , l1 and l2 and they are functions of the discounted
Steiner point coordinates x, y and z. There are additional constraints on l0 ,
l1 and l2 that are imposed by the geometry of the network. Later, we obtain
such a constraint, given by equation (14). A maximum always exists since the
npv is bounded above by V1 + V2 . The optimal location of the discounted
Steiner point lies either in the interior or on the boundary of a triangle given
by the three vertices p0 , p1 and p2 . The objective function is differentiable on
the problem domain with respect to x, y and z, except at p0 , p1 and p2 . The
problem is a non-convex problem, therefore methods that assume convexity
cannot be used.

The derivatives of the objective function with respect to x, y and z are set
equal to zero

(A+ B)

(
∂l0

∂x
+
∂l1

∂x

)
+ B

∂l2

∂x
= 0 , (6)

(A+ B)

(
∂l0

∂y
+
∂l1

∂y

)
+ B

∂l2

∂y
= 0 , (7)

(A+ B)

(
∂l0

∂z
+
∂l1

∂z

)
+ B

∂l2

∂z
= 0 , (8)

where A = V1 log r/D and B = (V2 log r/D + C)r−l2/D . Equations (6), (7)
and (8) are expressed in terms of gradients,

(A+ B)∇(l0 + l1) + B∇l2 = 0 . (9)

Next, we develop an important property of the angles at the discounted
Steiner point.
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Figure 2: The (a) vector and (b) geometric representation of the problem.

Let u0 , u1 and u2 be the unit vectors which are directed from the fixed
points p0 , p1 and p2 towards s, respectively. Let θ be the angle between
u1 and u2 , and θ ′ be the angle between u0 and u2 , as shown in Figure 2(a).

The unit vectors are expressed as the gradients, u0 = ∇l0 , u1 = ∇l1 ,
u2 = ∇l2 , and after substituting these into equation (9) we have

(A+ B)(u0 + u1) + Bu2 = 0 . (10)

After taking the dot product of equation (10) with (u0 − u1) ,

(A+ B)(u0 + u1) · (u0 − u1) + Bu2 · (u0 − u1) = 0 .

The expression above reduces to u2 · u0 = u2 · u1 . Therefore, cos θ = cos θ ′
and θ = θ ′ .

Now, we develop the discount equation which is a relationship between l2 and θ
in terms of V1 , V2 and the discount rate. After taking the dot product of
equation (10) with u2 we obtain

(A+ B)(u0 + u1) · u2 + Bu2 · u2 = 0 . (11)

Since u0 · u2 = u1 · u2 = cos θ and u2 · u2 = 1 we obtain

cos θ = −
1

2(A/B+ 1)
= −

1

2(krl2/D + 1)
. (12)
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where k = V1/[V2 + CD/ log r] is a dimensionless constant.

We consider two special cases, a zero and an infinite discount rate which
correspond to the upper and lower bounds for angle θ, respectively. If
d = 0 , then r = 1 and θ = 2π/3 , which corresponds to the classical Steiner
location [2] and this angle is the upper bound of θ. If d→ ∞ , then r→ ∞
and θ = π/2 . Hence, π/2 is the lower bound of θ.

Thus far, we have derived equation (12) in terms of θ and l2 using the objective
function. Now, we relate θ and l2 geometrically and generate another equation
which we define as the geometric equation.

Let γ0 = 6 sp0p2 , γ1 = 6 sp1p2 , and d0 , d1 and d2 be the Euclidean distances
as shown in Figure 2(b). Let ν = 6 p0p2p1 . Hence, by the cosine rule,

ν = arccos
(
d20 + d

2
1 − d

2
2

2d0d1

)
. (13)

By applying the sine rule to triangles p0p2s and sp1p2 we obtain γ0 and γ1 ,
respectively. By setting the sum of the angles in the quadrilateral p0p2p1s
equal to 2π and substituting the values for γ1 and γ0 , the geometric equation
is

l2 =
d0d1| sin(2θ+ ν)|

sin θ
√
d20 + d

2
1 + 2 cos(2θ+ ν)d0d1

. (14)

3 The discounted Steiner point algorithm

In the previous section, the discount and geometric equations were derived in
terms of θ and l2 . We now propose an iterative process to find the optimal
values for θ and l2 . Once these two parameters are known the coordinates of
the discounted Steiner point are calculated.

Let θ∗ and l∗2 be the optimal values obtained from the iterative process. Then
optimal values l∗0 and l∗1 are calculated by applying the sine rule for triangles
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p0sp2 and p1sp2 in Figure 2(b). The maximum npv is

npv∗ = V1r−(l∗0+l
∗
1)/D + (V2 + Vc)r

−(l∗0+l
∗
1+l

∗
2)/D − Vc . (15)

Since the distances l∗0 , l∗1 and l∗2 are known, x, y and z are calculated by
solving three quadratic simultaneous equations:

l∗20 = (x0 − x)
2 + (y0 − y)

2 + (z0 − z)
2 , (16)

l∗21 = (x− x1)
2 + (y− y1)

2 + (z− z1)
2 , (17)

l∗22 = (x− x2)
2 + (y− y2)

2 + (z− z2)
2 . (18)

Based on many numerical trials, the process always appears to converge
rapidly and the results are independent of the initial value of θ. These trials
also show that the optimal solution converges uniquely. Algorithm 1 describes
the numerical procedure where ε is the accepted error.

4 Numerical trials

We now give some results of numerical trials, obtain using

V1 = $60M, V2 = $40M, C = $6000/m , D = 1560m/year,
d = 0, 5, 10, 20, 50, 100,∞%/year,
p0 = (200, 1200, 1000) , p1 = (0, 0, 0) , p2 = (1000, 1000, 0) ,

with coordinates given in metres.

We showed analytically for zero and infinite discount rates that the corre-
sponding optimal values of θ are 2π/3 and π/2, respectively. The results
of the trials confirm this, as shown in Table 1 . Figure 3 shows that p1 is
accessed sooner for higher discount rates when the optimal location of the
discounted Steiner point is used. However, the distance from the discounted
Steiner point to p2 increases. In addition, when the discount rate is increased
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Algorithm 1: Discounted Steiner Point algorithm.
Input: V1 , V2 , C, D, d, ε and locations of p0 , p1 and p2
Output: The location of the discounted Steiner point and npv

1 Calculate Euclidean distances d0 , d1 and ν using equation (13)
2 Initialisation: θ(0) = 2π/3
3 i = 0
4 repeat
5 Compute l2 :

l2(i+ 1) =
d0d1| sin(2θ(i) + ν)|

sin θ(i)
√
d20 + d

2
1 + 2 cos(2θ(i) + ν)d0d1

Update θ :

θ(i+ 1) = arccos
(
−

1

2(krl2(i+1)/D + 1)

)
6 i = i+ 1

7 until |θ(i) − θ(i− 1)| < ε
8 θ∗ = θ(i) and l∗2 = l2(i)
9 The optimal npv is given by equation (15)

10 The optimal location of the discounted Steiner point is calculated using
equations (16), (17) and (18)

the npv is reduced. For an infinite discount rate, the optimal location of the
discounted Steiner point is on the edge p0p1 , which also gives the minimum
sum of the construction length for the p0s and sp1 decline links.

The last column of Table 1 shows the improvement in npv when the discounted
Steiner point algorithm is applied compared with placing the discounted
Steiner point at the classical position (θ = 2π/3). The discounted Steiner
point algorithm gives an improvement for all discount rates and greater
improvements as the discount increases.
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Figure 3: The optimal locations of the discounted Steiner point.
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Table 1: Variation of the npv for a range of discount rates (dr) per year.
dr Steiner point θ◦ l2 (m) npv ($K) Improvement ($K)
0 s0 = (319, 578, 259) 120 728 88660 0

5 s1 = (247, 514, 267) 113 798 84618 49

10 s2 = (215, 482, 267) 110 828 80997 159

20 s3 = (184, 449, 265) 106 857 74700 393

50 s4 = (150, 409, 259) 103 888 60875 958

100 s5 = (128, 381, 253) 100 907 46971 1516∞ s6 = (38, 230, 192) 90 980 0 0

5 Conclusion and future research

We developed an algorithm to optimally locate a discounted Steiner point.
The discounted Steiner point algorithm provides higher npv compared with
the placement of the discounted Steiner point at the classical position. Fur-
thermore, we showed that paths from the discounted Steiner point to the
surface portal and the first resource point make equal angles with the path
from the discounted Steiner point to the second resource point.

Future work will be to locate a discounted Steiner point with more realistic
constraints, such as the gradient constraint. The gradient constraint on the
decline is the most important physical constraint on the access network and
defines a safe climbing limit for trucks. We then plan to extend the discounted
Steiner point algorithm to optimally locate multiple discounted Steiner points.
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and an ARC Linkage grant.
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