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Abstract

The modelling of typical engineering problems in industry, such as
water-jet cooling of hot-rolled steel strip products, directly involves
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the solution of a transport (advection-diffusion) equation for the cool-
ing characteristics of the strip. The non-linear nature of the heat
conduction involved aggravates the difficulty of the problem.

Traditional Finite Difference techniques for the solution of this ad-
vection dominated transport equation incur severe Courant number
stability restrictions as well as instabilities in the presence of tem-
perature discontinuities. Eulerian-Lagrangian Methods (elm’s) solve
the transport equation in Lagrangian form ‘along’ backward charac-
teristics effectively decoupling the advection and diffusion terms but
retaining the convenience of fixed computational grids. Typical inter-
polation methods used to obtain the values at the feet of characteristic
lines lead to spurious oscillations, numerical diffusion, peak clipping
and phase errors.

Through the use of ‘peak tracking’, by the forward-tracking of
Eulerian nodal points, this paper attempts to alleviate these errors.
A comparison of 1-D benchmark tests from the Convection-Diffusion
Forum as well as appropriate error measures, are shown to produce
appreciable improvements over the standard methods for a range of
time steps, very large Peclet numbers and Courant numbers in excess
of one.
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1 Introduction

Industrial problems involving the solution of the advection-diffusion/transport
equation range from the solution of fluid dynamical problems such as the gal-
vanisation of steel sheets and alloy solidification, to heat transfer applications
such as the temperature increase in current carrying wires [2] and the wa-
ter jet cooling of a moving hot rolled steel strip [13]. The latter problem,
currently under investigation by the authors, involves not only a transport
equation for the strip temperature distribution but also non-linear tempera-
ture boundary conditions due to nucleate boiling heat transfer on the surface
of the strip and discontinuous temperature jumps at the jet impact site [13].
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Traditionally, purely Eulerian numerical techniques, such as Finite Dif-
ference Methods (fdm), applied to such a problem lead to severe Courant
number stability restrictions. As well, these methods suffer from unphysi-
cal spatial oscillations for Peclet numbers greater than two [8]. Upwinding
methods, used to retard these oscillations through artificial diffusion, require
at least third-order upwinding and lead to non-tridiagonal matrices [6] often
requiring long solution times, are still Courant number dependent [6] and fail
to be Galilean invariant in higher dimensions.

On the other hand purely Lagrangian methods deal admirably with ad-
vection but are made unattractive due to practical difficulties such as grid
deformation in the presence of complex flows [10].

‘Eulerian-Lagrangian methods (elm)’ effectively decouple the advective
and diffusive terms by splitting the transport processes, first solving a purely
hyperbolic advective equation using a Lagrangian technique which follows the
flow along characteristic lines, followed by the solution of a purely parabolic
diffusion equation on an Eulerian grid [12, 10, 11]. Previous research has
shown that this strategy eliminates Courant number restrictions and handles
processes possessing significantly different time scales [5]. Most fd-elm’s
may be classified as one of two methods: ‘interpolation elm’s’ and ‘piece-
wise integration elm’s’ with other types such as ‘Quadrature Finite Element
Methods (fe-elm’s)’ and ‘Eulerian-Lagrangian localised adjoint methods’
(ellam) being specific to fe-elm’s, here we use the nomenclature of de
Oliveira [10].
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The generic steps inherent to elm’s include (i) a way to track the char-
acteristic lines (to either the ‘head’ ≡ next time level or ‘feet’ ≡ previous
time level, of the line) followed by (ii) the determination of the Lagrangian
values at the feet of the characteristic lines and finally (iii) the solution of the
Lagrangian form of the diffusion equation using the values obtained in (ii) as
initial conditions [11, 14]. While the forward-tracking of characteristic lines
using fictitious particles has been pursued by some researchers [7], it suffers
from instabilities at larger time steps. In general, a combination of single time
step, reverse, fictitious particle tracking (srpt) [3] and some sort of forward
particle node tracking (fpt) is used by most researchers [12, 9, 11, 14]. In
general, the backward-tracked foot of the characteristic line will not coincide
with the fixed Eulerian nodes so that interpolation from either neighbour-
ing nodes and/or forward-tracked nodes must be used to obtain Lagrangian
values.

De Oliveira & Baptista [12] have shown that tracking errors contribute to
mass conservation and phase errors, as well as leading to both negative and
positive numerical diffusion which generate instability and accuracy problems
respectively [12]. Inaccurate interpolation at the feet of characteristic lines
leads to mass errors [12] and the order determines the stability, numerical
diffusion and spurious oscillations present in the method [14]. The seminal
research of Yeh et al [14] has shown that peak clipping and valley elevat-
ing are the most important factors generating numerical diffusion, spurious
oscillations and phase errors [14].

Using a combination of srpt, continuous (c)fpt and fourth order Runga-
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Kutta-Fehlberg tracking, Neuman [9] avoided numerical diffusion, peak clip-
ping, spurious oscillations and accurately modelled 1-D ‘Gaussian hills’ and
advancing fronts for Peclet numbers from zero to infinity and Courant num-
bers greater than one. The need to compensate for diffusion for continuously
forward-tracked particles was avoided by the projection of new time data to
the particles at each time step. This method resolves many problems but
relies on a large number of particles in the vicinity of high curvature regions
and must keep track of them continuously throughout the calculation.

The ‘interpolation elm’ of Casulli [3] and Cheng et al used a srpt with
one step and multi-step Euler [3] tracking and second order Lagrangian poly-
nomials to determine the backward-tracked values for 1-D and 2-D problems.
Some mass and phase errors resulted and sharp front changes could not be
adequately resolved.

Building on the initial concepts of Neuman [9], Yeh et al [14] constructed
a ‘piecewise integration method’ using a zoomable and adaptable hidden fine-
mesh approach which not only uses srpt and cfpt but also assigns ‘notable
points’ in regions of extreme curvature. The structure of the hidden mesh
points is automated and allows calculation to within the required tolerance
for exact peak capturing and eliminates spurious oscillations, numerical dif-
fusion and phase errors. Care must be taken with forward-tracked points to
ensure they ‘diffuse’ correspondingly as the calculation is stepped forward in
time. This is provided by a compensation factor [14] after the solution of
the diffusion equation. Yeh et al [14] reported very high accuracy with 1-D
benchmark problems although the extension to higher dimensions appears
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problematic. Very high computational costs, related to the accumulating
number of necessary notable points, provide a disincentive for its use.

A much simpler ‘piecewise integration method’ related to that of Yeh et
al [14] (srpt, linear polynomials for backward-tracked values with 5th or-
der Runga-Kutta tracking) using single time step fpt (sfpt) from Eulerian
nodal points, for the initial conditions for the diffusion step about a ‘core ele-
ment’ in the neighbourhood of the feet of characteristic lines, was developed
by de Oliveira [10]. This method is natural to fe-elm’s not being directly
amenable to fd-elm’s. It does not possess notable points thereby reducing
the high computational costs inherent to Yeh’s method, and the correction
of forward-tracked nodes is eliminated [10].

The current ‘interpolation fd-elm’ attempts to alleviate these problems,
as well as simplifying the method as much as possible. Using an fd-elm

defined in Section 2, with both srpt and sfpt for backward and forward-
tracked points, Section 2.1 Part 1, Lagrangian values are obtained by us-
ing four point Lagrangian polynomials, Section 2.1 Part 2, as interpolators
at backward-tracked points. Time and memory considerations are reduced
through lower storage requirements and the use of an iterative Successive
Overrelaxation scheme (sor), in Section 2.1 Part 3, for the solution of the
diffusion equation. The main aim of this paper is to solve the transport
equation with the most simplified elm treatment possible, that is, an ‘inter-
polation fd-elm’ with sr/fpt and iterative diffusion equation solver. The
method is directly extendable to an fe-elm with its accompanying advan-
tages as well as improvements in peak tracking through cfpt with diffusive
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compensation factors without piecewise integration.

In Section 3 numerical tests of the method conducted with the use of
‘Gaussian hill’ 1-D benchmarks, available from the Convection-Diffusion Fo-
rum [1], are used to test the accuracy and adaptability of the current elm.
Formal error measures examine the accuracy of the method for a variety of
Courant and Peclet numbers and a range of timesteps. Section 4 reviews the
results, discusses the further development of the method and the implications
for future research directions.

2 Eulerian-Lagrangian Method

Consider the Lagrangian operator version of the 1-D transport equation in
the domain Ω = {x ∈ IR, t > 0}:

DC

Dt
= α

∂2C

∂x2
(1)

where the co-moving derivative D/Dt indicates the time rate of change is
calculated along a characteristic line defined by the solution of:

dx

dt
= u(x, t) (2)

and
D

Dt
≡ ∂

∂t
+ u(x, t)

∂

∂x
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where C is the appropriate variable such as concentration, x is the space
dimension, t time, α a known constant (diffusion coefficient) and u(x, t) the
given velocity field. The equation is solved subject to the initial and boundary
conditions:

C(x, 0) = C0(x)

C |∂Ω = f(t)

where ∂Ω is the boundary and C0(x) and f(t) are prescribed functions.

2.1 Numerical Formulation of the ELM

We discretise the above domain with fixed Eulerian nodes defined by xi =
i∆x, i = {0, 1, 2, . . . , I} and time given by tn = n∆t, n = {0, 1, . . .}, where
∆x is selected for the particular benchmark problem and ∆t is determined
as a multiple of the advective time step ∆t = ∆x/u. This is clearly shown
in Figure 1. Adopting the notation of Neuman [9] the Crandall method of
weighted averages [4], is defined by:

Cn+1
i − Cn

i−Cu

∆t
= αθ

[
∂2C

∂x2

]n+1

i

+ α(1 − θ)

[
∂2C

∂x2

]n

i−Cu

(3)

and

∂2C

∂x2

∣∣∣∣∣
i

=
Ci+1 − 2Ci + Ci−1

∆x2
,

∂2C

∂x2

∣∣∣∣∣
i−Cu

=
Ci−Cu+1 − 2Ci−Cu + Ci−Cu−1

∆x2
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where for example θ = 1, 1/2, 0, the time weighting factor (0 < θ < 1),
represents a purely implicit, Crank-Nicolsen type semi-implicit method and
explicit method respectively. Here, Cun

i = un
i ∆t/∆x is the grid Courant

number which is, in general, not an integer and may be space and time
dependent. Thus the backward-tracked point at time tn, xbt = (i − Cu)∆x,
which lies on the characteristic line passing through the point xi = i∆x at
time tn+1, is not a grid point (unless Cu is an integer) and an interpolation
formula must be used to construct the value Cn

i−Cu which remains constant
along the characteristic line (2).

The three steps underlying elm’s are:

1. Definition and location of heads and feet of characteristic lines

At any time tn the solution of the hyperbolic equation in Lagrangian
form is carried out by backward-tracking fictitious particles along the
characteristic line passing through the Eulerian nodes xi = i∆x at
time tn+1 until the foot, xn

bt = (i − Cu)∆x, of the characteristic line is
reached at tn, open circles in Figure 1. In order to reduce peak clipping
and other problems, fictitious particles are forward-tracked along the
characteristic line passing through Eulerian nodes xi = i∆x at time
tn−1 until the head, xn

ft = (i + Cu)∆x, is reached at tn, circles with
central dots in Figure 1. These backward and forward-tracked points at
time tn are located by solving the characteristic equation (2) backwards
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or forwards in time respectively. That is:

xn
bt = xn+1

i −
∫ tn+1

tn
u(xi, t

n+1)dt (4)

for the backward-tracked point and

xn
ft = xn−1

i +
∫ tn

tn−1
u(xi, t

n−1)dt (5)

for the forward-tracked point. The calculation of these integrals is
carried out by a second order Runga-Kutta (rk) method [12].

2. Determination of concentrations at feet of characteristic lines

At time tn the backward-tracked concentrations, Cn
i−Cu = Cn(xbt), may

be constructed by Lagrangian polynomial interpolation from nearby
given Eulerian nodal points, Cn

i = Cn(xi), and forward-tracked con-
centrations, Cn−1

i+Cu = Cn−1(xft), defined by:

Cn
i−Cu

=
J∑

j=1


 J∏

k=1(6=j)

(
xbt − xk

xj − xk

)Cj

where xj = {. . . , xn
i , . . . ; . . . , xn

i+Cu, . . .} ,

Cj = {. . . , Cn
i , . . . ; . . . , Cn−1

i+Cu, . . .}
and j = {1, 2, . . . , degree of polynomial} .
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3. Solution of Lagrangian form of diffusion equation with values of 2. as
initial conditions

The backward-tracked concentrations, Cn
i−Cu, are used as initial condi-

tions in the solution of (1) via a sor scheme defined by:

Ck+1
i = Ck

i + λ(C
(∗)
i − Ck

i ) (6)

where the solution C
(∗)
i is combined with the previous solution Ck

i

(1 + 2s)C
(∗)
i = s(Ck

i+1 + Ck+1
i−1 ) + Ck

i−Cu
(7)

(1 + 2s)Ck+1
i = s(Ck

i+1 + Ck
i−1) + Ck

i−Cu (8)

in the purely implicit case and an analogous definition for the semi-
implicit case. Here, k is the iteration parameter, λ the relaxation
parameter (0 < λ < 2) and s = α∆t/∆x2 = Cu/Pe, Pe = u∆x/α
(Peclet number). The stopping criterion is chosen such that

|Ck+1 − Ck| ≤ tolerance

where the tolerance is selected beforehand.

Note that the Courant number may be split into integer and fractional
parts:

Cuint = int(Cu), Cufr = Cu − Cuint

If Cufr = 0 then any backward-tracked point coincides with an Eulerian
node and no information is lost resulting in an exact solution of the transport
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(i)

(ii)

(i)

(ii)

cn-1
i before advection

cn
i after advection

forw. char. lines

back. char. lines

cn
i after

diffusion

tn-1

tn

tn+1u ∆t (Cufr ≠ 0)

ii - 1 i + 1

Figure 1: The three steps of the elm proposed by the authors.
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equation. Selection of such time steps is not always possible and artificially
restricts the usefulness of the elm. Note that it is possible to construct an
elm with notable points using interpolation to determine backward-tracked
values (ie not a piecewise function as in Yeh [14]) by recalculating the value of
continuously forward-tracked points through the diffusive term αCxx which
may be constructed from Taylor series approximations of nearby nodes even
if the nodes are unevenly distributed.

3 Benchmark Tests

To study the efficacy of the current elm we choose a 1-D benchmark test
from the cd forum [1]. The transport of a ‘Gaussian concentration hill’ in
uniform flow:

∂C

∂t
+ u

∂C

∂x
= α

∂2C

∂x2
−∞ < x < ∞

C(x, 0) = C0(x), C(x, t) = 0 as |x| → ∞
with the solution

C(x, t) =
(

σ0

σ

)
exp

(
−(x − x̄)2

2σ2

)

where

σ =
√

σ2
0 + 2αt x̄ = x0 +

∫ t

0
u(x, t′)dt′
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u is now a Lagrangian variable. In order to measure the accumulation of
error we make use of the error measures defined in the cd forum [1] and de
Oliveira & Baptista [12]: measures of mass conservation, ability to preserve
peaks, artificial spreading of the numerical solution, phase shift and L2 error.
These are defined by: Measure of global mass

merr(t) =
1

mex(t)

∫
Ω

Cnum(x, t)dx

Discrete L2-norm

L2(t) =
1

mex(t)

∫
Ω
[Cnum(x, t) − Cex(x, t)]2dx

Integral measure of phase shift

µx(t) = 1 −
∫
Ω

xCexdx

mext
−
∫
Ω

xCnumdx

mnumt

∆x

Integral measure of numerical diffusion

µxx(t) =

∫
Ω

[
x −

∫
Ω xCnumdx

mnum

]2

Cnumdx

∫
Ω

[
x −

∫
Ω xCexdx

mex

]2

Cexdx

mex(t)

mnum(t)

We consider two time steps: ∆t < ∆x/u and ∆t > ∆x/u, the case ∆t =
∆x/u results in exact solutions since Cufr = 0. For each of these two time
steps we selected the transport of a ‘Gaussian hill’, Cases 1-A and 1-C, used
in the cd forum [1], see Table 1.
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Table 1: Time step and Case data for Gaussian hill benchmark tests
time step no. steps Case ∆x u σ α Cu Pe Cu

Pe

∆t < ∆x
u

= 96 100 1-A 200 0.5 264 0 0.24 ∞ 0
1-C 200 0.5 264 50 0.24 2 0.12

∆t > ∆x
u

= 480 20 1-A 200 0.5 264 0 1.2 ∞ 0
1-C 200 0.5 264 50 1.2 2 0.6
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Figure 2: Comparison of Cases 1-A and 1-C with ∆t < ∆x
u

after 100 time
steps: (a) Convection profiles; (b) phase shift;
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Figure 2: (c) peak clipping error; (d) numerical diffusion;

4 Summary and Conclusions

The results are shown in Figures 2 (∆t < ∆x
u

) and 3 (∆t > ∆x
u

)

1. ∆t < ∆x
u

: A Comparison of numerical and exact solutions: Figure
2(a) shows good tracking behaviour even for low order rk methods
and provides a good qualitative feel for other errors, both low and high
diffusion results are quite accurate even for small time steps. Both the
global mass, Figure 2(f), and phase errors, Figure 2(b), are minimal
although some numerical diffusive error persists when α 6= 0. The L2-
norm, Figure 2(e), shows increasing error for the purely advective case
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Figure 2: (e) Discrete L2-norm; (f) global mass error.

although it starts to level out at later time steps, on the other hand the
diffusive case appears to reach an average constant value. It seems that
the dependence of the peak clipping error, Fig 2(c), rests with the initial
time step for the diffusive case and levels out for the advective case.
De Oliveira & Baptista [12] have shown that even moderate tracking
errors for low order methods can lead to strong error growth, no doubt
contributing to the inaccuracies shown in Figure 2.

2. ∆t > ∆x
u

: A study of Figure 3 on the other hand shows that an increase
in ∆t above the critical value ∆x/u (corresponding to Cu = 1) greatly
improves the results with very small errors visible in Figures 3(a,b,d,f)
although a very small mass error exists, Figure 3(f). A comparison of
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Figure 3: Comparison of Cases 1-A and 1-C with ∆t > ∆x
u

after 20 time
steps: (a) Convection profiles; (b) phase shift;
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Figure 3: (c) peak clipping error; (d) numerical diffusion;

the error present in the two methods, 1-A with 100 time steps and 1-C
with 20, is possible by observing each method for the same number of
timesteps, ie n = 20 or at t = 1920 for 1-A and t = 9600 for 1-C. 1-C
shows considerably better behaviour at n = 20. Both the peak and L2-
norm show excellent behaviour over time without the error increasing
greatly beyond a certain value.

No instabilities are present in either of the two cases above even for
Courant numbers in excess of one and very high Peclet numbers. The present
paper has shown that
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Figure 3: (e) Discrete L2-norm; (f) global mass error.

1. 1-D ‘Gaussian hill’ numerical tests have shown the present simplified
elm to be an accurate, stable and adaptable method for solving the
transport equation with excellent Courant and Peclet number charac-
teristics possessing even better behaviour for large time steps, a crucial
hindrance in other explicit and implicit fdm’s such as upwinding meth-
ods.

2. The method, like that of de Oliveira [10], provides a straightforward
solution of the transport equation without resorting to notable points
with their accompanying high computational costs, complex particle
density distributions, ‘diffusion’ compensation factors, seemingly ar-
tificial ‘core elements’ and restriction to fe-elm’s. In addition the
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method is extendable to an fe-elm with its grid structure advantages.
Its speed is assured through the straightforward use of an sor method
rather than the far more laborious matrix solvers which cannot be
avoided for implicit upwinding fdm’s.

3. The present work is only preliminary but provides a guide for further
research such as the quantitative stability properties of the elm: varia-
tion with Cu, Pe and u(x, t), accuracy analysis for Lagrange polynomi-
als of higher/lower degree (linear, quadratic etc), effect of Cufr, effects
of tracking errors, stability and accuracy effects of varying concentra-
tion boundary conditions, eg: non-linear, non-local, discontinuous. The
extension of this method to the solution of the fully non-linear Navier-
Stokes equations is a further target and has been shown to be possible
by other elm’s such as Neuman’s [9]. Previous tests by the authors
have shown the ability of the method to handle complex boundary con-
ditions in higher dimensions and for non-constant velocity fields. The
further study of these aspects are the aim for the foreseeable future.
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