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A matched solution method for the prediction
of residual stresses for flat rolling

A. Dixon∗ W. Y. D. Yuen†

(Received 8 August 2003, revised 30 January 2004)

Abstract

Steel strip must meet tight dimensional tolerances as well as having
good ‘flatness’ such that the strip is planar when not subject to ex-
ternal forces. This latter attribute demands extremely small residual
stresses. A computational model is developed to describe the lateral
variations of the magnitude and direction of the plastic deformation of
the strip during rolling, together with the corresponding strip stresses
and the degree of elastic roll flattening. In addition the downstream
lateral variation in longitudinal strains, and resultant stresses, are cal-
culated. From these the strip flatness can be predicted. It was found
that for thin, wide strip the procedure became numerically unstable.
This was overcome by developing an analytical solution for the simpler
rolling conditions, away from the strip edge, and iteratively matching
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this solution to the numerical solution found for the edge region. This
provided a more stable solution procedure.
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1 Introduction

Steel strip is produced by the repeated rolling of hot steel slabs typically
200mm thick, to the required thickness. The final product must meet tight
dimensional tolerances in width and thickness as well as in the flatness (strip
shape). The latter is reflected in the residual strains in the strip after rolling,
with typical tolerances for the residual strain to be less than 0.01%. Dur-
ing rolling there is generally some lateral spread, causing a width change,
together with variation in strip thickness reduction across the width, due to
the bending and flattening of the mill rolls. Both these effects generate resid-
ual strains. An understanding of these mechanisms under different rolling
conditions is desirable, together with the ability to predict the residual strains
and spread for the lateral variation in thickness reduction.

For the flat rolling of thin strip the residual and lateral strains are small
compared to the thickness reduction, making the study of these strains dif-
ficult using numerical techniques, such as the finite element method, due to
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Figure 1: Strip thickness reduction for rolling (not to scale).

limited arithmetic precision. These numerical methods have either concen-
trated on plane strain cases, valid in the central regions of thin strip, or the
lateral spread of thick strip. The analysis of lateral variation of strains for
thin strip rolling has been studied mainly using analytical-numerical tech-
niques. Although the residual strains in the strip after rolling are small, if
the strip is kept flat downstream under tension large residual stresses can be
created due to the large elastic modulus of steel, the latter being typically
two to three orders of magnitude larger than the yield stress. The effect
of these downstream stresses on the rolling region stress field should be in-
cluded in a physically realistic model for thin strip rolling, as has been done
by Tozawa [1]. Stress and strain solutions were then found for strip of moder-
ate thicknesses using numerical methods, after analytical approximations to
the plastic flow and stress fields. Very little has been published for the case
of thin strip. In the present study it was found that when the strip is thin, of
thicknesses typical for the last stands of a hot strip mill, these methods be-
come unstable as the inner boundary condition at the strip centre is difficult
to satisfy due to the solution becoming divergent. This could be overcome by
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the use of an inner solution, found under appropriate approximations for this
region, and which exactly satisfies the inner boundary condition. A solution
valid across the whole strip is then obtained by ensuring solution continuity
across the boundary between the inner and outer regions.

2 Mathematical Description and Solution

Procedure

For a given stress field plastic strain rates are given by the Levy-Mises equa-
tions

Dεx/Dt

σx − σ̄
=

Dεy/Dt

σy − σ̄
=

Dεz/Dt

σz − σ̄
, (1)

where the directions of x, y and z are shown in Figure 1, εx, εy, εz and σx,
σy, σz are the corresponding strains and normal stresses respectively in the
three axial directions, σ̄ = 1

3
(σx + σy + σz) is minus the hydrostatic pressure.

The term D is the material time derivative. For plastic deformation to
occur the stresses within the strip must satisfy a yielding condition such as
that of von Mises

(σx − σy)
2 + (σx − σz)

2 + (σz − σy)
2 ≈ 3

2
Y 2 , (2)

where Y is the yield stress. The effects of the shear stresses have been
neglected, as will be discussed later. To simplify the analysis it is common
to assume [1] the relation

Dεy

Dt
= α(y)

Dεy

Dt
. (3)

As plastic deformation is incompressible one obtains the relation

(1 + α)εp
x + εp

z = 0 with εp
y = αεp

x , (4)
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after integrating through the plastic region between the rolls in the rolling
direction, where εp

y and εp
x are the plastic strains in the corresponding direc-

tions, generated from rolling. For thin strip one can write εp
z = ln(H/h) =

− ln(1 − r) where H and h are the strip entry and exit thicknesses and
r = (H − h)/H is the thickness reduction.

The parameter α indicates the direction of the flow of strip material
between the rolls, being zero if there is no lateral flow. From Equation (4)
we obtain

α = (ln(1− r)− εp
x) /εp

x . (5)

By substituting Equation (3) into Equation (1) and by the definition of the
hydrostatic pressure an expression for σy may be found in terms of the other
normal stresses. With the use of Equation (2) an expression for σz can then
be found in terms of σy and σx to finally give

σx = σy +
(1− α)Y

2
√

1 + α + α2
, (6)

where, for convenience, the effects of lateral shear stresses have been ne-
glected. This is justifiable for strip sufficiently thin, which is the main con-
cern of the present paper, as the resistance to lateral flow is then dominated
by the surface frictional forces rather than lateral shearing force, the latter
decreasing with thickness.

The lateral variation of σy can be found from the Lateral Equilibrium
Equation

∂hσy

∂y
− σz

∂h

∂y
− 2q(u− uR)√

(u− uR)2 + v2
= 0 , (7)

where u and v are the local strip speed in the rolling direction and lateral
direction respectively and uR is the rolling speed. The surface friction q may
be expressed in terms of the yield stress by q = mY where m is the friction
factor. The last term on the left hand side represents the lateral component
of the surface friction stress. The lateral strip speed may be found from the
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lateral strain. In particular,

∂v

∂y
=

Dεy

Dt
≈ u

∂εy

∂x
≈ uα

∂εx

∂x
or v ≈

∫ y

0

uα

(
∂

∂x
εx

)
dy′ , (8)

where y′ is the integration variable representing the y-direction. The vari-
ation in the strip speed u between the rolls may be found from mass flow
conservation, using Equation (4).

If, after rolling, the plastic elongation (in the rolling direction) of the
downstream strip is not uniform across the strip width then elastic stresses
will result if the strip is to remain flat. For such flat strip the elastic strains
must vary across the strip width so that the total elastic and plastic elonga-
tion is constant. The strip can be modelled as a series of parallel ribbons in
the rolling direction (yz plane), which are under plane stress in the vertical
and lateral directions (that is, xy and xz planes). In the rolling direction the
stress variation across the strip width is defined as

σx(y) = σ̄x − E(εp
x(y)− ε̄p

x) , (9)

with σ̄x and ε̄p being the corresponding values at a reference point, for the
present analysis this will be the strip centreline with values set. It will be
assumed that this expression for downstream conditions is also valid at the
rolling region exit.

The final strip thickness depends on the vertical distance between the
rolls at the rolling region exit. This in turn is dependent on the degree of
roll deformation per roll from flattening δ, which is dependent on the lateral
variation in roll pressure p = −σz. The roll flattening can be calculated from,

δ(x, y) =
1− ν2

πE

∫∫
A

p(x′, y′)× F (x′, x, y′, y) dx′ dy′ , (10)

where F is an influence function [1] and A is the area of contact between the
strip and roll. The variation in strip exit thickness in the rolling region is
then given by,

h(x, y) = h0(x) + 2δ(x, y) , (11)
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where h0 is the hypothetical thickness profile through the rolling region if
there was no roll deformation.

The solutions for the final strip thickness variation across the width, to-
gether with the variation in strip stresses and strains, are found using a two
level iteration process. The first, inner iteration, calculates the lateral vari-
ation in strip stresses and strains for an assumed degree of roll deformation
such that the stress boundary conditions are met. The outer iteration pro-
cedure ensures the roll deformation is compatible with the pressure profile
from the strip onto the rolls across the strip width.

The steps for the inner iteration is termed Procedure A and is summarised
as follows:

1. The strip edge conditions, σy = 0 at y = W/2, is set where W is the
strip width. Estimates for the other stresses and α at the edge are
found under these plane stress conditions. A value for the strip lateral
spread at the edge sedge is set. This is an initial guess for the first
iteration.

2. At a position ∆y (further) inwards the lateral stress σy is updated from
the Lateral Equilibrium Equation (7), using Euler’s scheme together
with the thickness profile from the assumed roll deformation.

3. The normal stress in the rolling direction σx is calculated from Equa-
tion (6) and the normal stress σz from Equation (2).

4. The corresponding strain in the rolling direction is found from Equa-
tion (9).

5. The corresponding value for α is found from Equation (5) and the

lateral spread s is updated using s(y) = sedge − 2ε̄
∫ W/2

y
α dy′ .

6. Steps 2–5 are repeated until the strip centreline is reached.
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Figure 2: Calculated solutions for lateral normal stress and strip spread
for 1st, 2nd, 5th iteration of Procedure A together with converges solution.
Strip entry thickness is 20mm, thickness reduction 40%, Y = 300MPa and
m = 0.4 .

7. The inner boundary condition of no lateral strip movement, s = 0 at
the strip centreline y = 0 is tested and the error value is used to update
the edge lateral spread sedge, (see Step 1), using the secant method.

8. Steps 1–7 are repeated until the inner boundary condition is satisfied.

As the rolling region is short compared to the strip width then an average
value for these stresses and the strip velocity through the rolling region may
be used. Typical results from the iteration process of Procedure A is shown
in Figure 2 where the profile across the strip width of the lateral normal stress
is shown assuming no roll deformation. Also shown is the predicted varia-
tion in lateral spread. The solutions converge to the correct inner boundary
condition where there is no lateral strip spread at the strip centreline.
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Figure 3: Calculated iterations and converged solution for roll pressure and
variation in roll deformation (compared to the width centreline). Rolling
conditions as in Figure 2.

Once the stresses across the strip width are known then the roll deforma-
tion can be calculated. This provides the outer iterations loop:

1. Obtain the profile of strip pressure p = −σz from Procedure A us-
ing the strip thickness profile from the previous estimate of the roll
deformation.

2. Use this pressure profile to update the roll deformation from Equa-
tion (10) and the strip thickness profile through the rolling region from
Equation (11).

3. Repeat Steps 1–2 until both the stress profiles and roll deformation
profiles have converged.



2 Mathematical Description and Solution Procedure C444

0 200 400 600
Distance from Centre (mm)

-1

0

1

2

S
pr

ea
d

(m
m

)

-1000

-750

-500

-250

0

250

500

La
te

ra
lS

tr
es

s
(M

P
a)Lateral Stress

Spread
Solution
Perturbed Solution

Figure 4: Strip lateral stress and lateral spread solutions with an entry
thickness of 4mm and thickness reduction of 40%. Lateral speed at edge has
been perturbed by a small amount to obtain large changes to the solutions
in the central region.

The result of this iteration procedure is shown in Figure 3. The converged
solution now shows the strip edges to be thinner than at the centreline due to
the variation in roll deformation in this region. The strip pressure onto the
roll initially increases away from the strip centre to a distance about 100mm
from the edge and then decreases with a discontinuity at the strip edge which
causes the large variation in roll deformation in this region.
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3 Matched Domain Procedure

It was found that when the strip thickness used was decreased sufficiently the
iteration Procedure A became unstable with the stress and strain solution
in the strip central region becoming exponentially divergent. Impractically
accurate estimates for the strip lateral spread at the edge were necessary to
overcome this difficulty. This is shown in Figure 4 where a small perturba-
tion to the strip lateral spread at the edge produced a large change to the
calculated spread at the strip centre. The strip thickness entering the mill is
4 mm for this case, rather than 20mm for the cases of Figures 2–3.

A possible method to improve the stability of the computational scheme
would be to incorporate the inner boundary condition into an implicit scheme.
It was felt, however, that this would be difficult due to the algorithm com-
plexity and the non-linearity of the problem. Instead a method was devised
that exploited the simpler conditions of the strip central region where there
is less lateral strain, that is, α is small, and the variation in roll deforma-
tion can be largely ignored. An analytical solution for this region could then
be obtained which was matched at some domain boundary to the numerical
solution obtained using the above procedure.

Under the approximation of small α,and using Equations (6), (9) and (5)
then

∂σy

∂y
≈ ∂σx

∂y
≈ −E

∂εp

∂y
≈ E

(
ε̄
∂α

∂y
+

1

1− r̄

∂r

∂y

)
, (12)

which may be substituted into the Lateral Equilibrium Equation (7) to
give [2]

∂2α

∂y2
−G2α =

1

ε0
x

∂2r

∂y2
with G2 =

mY (∂u/∂x)

hEε0
x|u− uR|

, (13)

where G may be evaluated from the known roll profile and, again, an average
value taken through the rolling region. In the present context for the inner
region the thickness reduction variation across the strip is ignored and the
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Figure 5: Pressure and lateral spread solutions for inner and outer regions.
Converged solution has continuous lateral spread over boundary.

solution for α can be expressed as,

α = A exp(G(W/2− y)) + B exp(−G(W/2− y)) . (14)

This solution form was chosen to explain the cause of the instability found
previously for small strip thicknesses. If the factors A and B are chosen
from conditions at the edge then any change from the correct value of A
will cause an error in the solution to grow exponentially towards the strip
centreline. The magnitude of this solution error will increase for decreasing
strip thickness, as can be seen from the definition of G, which is consistent
with the results of the previous section. A more suitable solution form which
guarantees symmetry about the strip centre and zero lateral strip velocity at
the centreline is

α = α0 cosh(Gy) , giving s(y) =
2αε̄

G
sinh(Gy) . (15)
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This solution for the inner region is then matched to the numerical solution
for the outer strip edge region at the boundary of the two regions, y = ŷ, say.
If the Lateral Equilibrium Equation is numerically integrated from the strip
edge inwards using the procedure of the previous section, to obtain the value
of the lateral stress at the boundary to be σN

y (ŷ), (where the superscript
denotes the numerical solution), then the inner analytical stress solution can
be matched using Equations (6) and (9) to obtain,

α0 =

(
1

2
Y − σ̄x − σN

y (ŷ)

)
/Eε̄(1− cosh(Gŷ)) . (16)

Using the secant method the lateral strip spread at the edge is chosen so that
the lateral strip spread is continuous across the boundary. It can be shown
that this condition guarantees that the stress gradient is also continuous, as
can be seen in Figure 5. To test the reliability of the method the position of
the boundary between the inner and outer regions was shifted. The resulting
variation in the solution was found to be small, giving confidence to the
solution method.
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