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Abstract

We quantify the dexterity of underactuated robot manipulators
equipped with active and passive joints. We discuss the harnessing
of redundant degrees of freedom in a robotic manipulator in order to
keep it in service. We assume that the passive joints are locked at an
arbitrary known position. There are three important dexterity mea-
sures: workspace volume, reachability, and manipulability. We discuss
the workspace volume of a six degrees of freedom, three dimensional,
redundant manipulator with an arbitrarily located passive joint.
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1 Introduction

The last two decades witnessed considerable progress in the study of under-
actuated robots, which have fewer working actuators than design degrees of
freedom because of design failure. ‘Underactuated’ refers to the manipulator
having fewer working actuators than joints [1]. Most often, a passive, or
underactuated, joint results from a failure on a joint’s mechanism, system, or
alternative part. A passive joint might also be a design feature of a manipu-
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lator, as a hyper-redundant manipulator with more links than actuators may
result in energy saving, price decrease, or weight reduction [2].

This article is based on the work of Yahya et al. [3], which presented a
mechanical design for a three dimensional, planar, redundant manipulator,
which guaranted to decrease the weight of the manipulator by decreasing the
number of motors needed to control the manipulator. Yahya et al. studied the
kinematics of the manipulator and showed it avoids singular configurations.
Later Yahya et al. [4] explained the dynamics of this manipulator in detail
and showed its ability to acheive joint torque minimization. Here, the method
of dexterity explained by Bergerman and Xu [2] is used to show the dexterity
of the manipulator studied by Yahya et al. [3, 4].

In order to study the kinematic dexterity of such mechanisms, we assume that
the passive joints are locked, whereas the remaining (active) ones move freely.
If a passive joint arises from a joint failure, then we assume that it is locked
at the position where it failed by a high-level fault-detection system. We
surmise that the positions at which the passive joints are locked are known,
either because their position sensors still work reliably, or because other
sensors are available. Bergerman and Xu [2] proposed an optimization index
to find the angles at which the passive joints should be locked to maximize
the dexterity of the underactuated manipulator. Pradeep et al. [5] suggested
an alternative strategy for dealing with an uncontrollable or crippled joint.
Commercial robots, which are designed to perform a wide range of tasks,
often possess more degrees of freedom than are required for any particular
work assignment. A judicious use of these redundant degrees of freedom
may allow the disabled robot to remain in service pending repair, thereby
dramatically enhancing the device’s reliability. The proposed strategy is to
monitor the joints continuously and, should one of them become crippled,
apply a brake to immobilize it immediately. Then, if the desired destination is
still attainable, devise in real time a new set of kinematic instructions which
enable the remaining joints to bring the end-effector to the required position.

Roberts [6] and Roberts and Maciejewski [7] discussed the decrease in a



2 Workspace analysis C419

manipulator’s kinematic manipulability index and worst-case dexterity due to
the failure and locking of one or more of its joints. They were concerned with
finding pre-failure optimal configurations of the manipulator that guarantee
that the post-failure manipulability is maximized. A common mode of robot
failure is for one of the power sources or transmission mechanisms to become
inoperable, resulting in a loss of control over one of the joints. Depending
upon the details of the actuator and the nature of the failure, this may cause
the joint to lock up or go limp. In neither case would the end-effector be able
to reach its desired position and orientation. Indeed, the results could be
catastrophic, particularly if the other joints continue to move as if there were
no problem. The robot might, for instance, crash into some obstacle that
it is normally programmed to avoid, or deposit a hazardous material at an
inappropriate location. One obvious solution to the problem is to monitor the
state of the various joint parameters and apply brakes to freeze the robot in
its current state the moment a failure occurs. This would prevent the sort of
uncontrolled motions described above. However, in the case of continuous flow
production processes, the resulting disruption could lead to substantial losses
of revenue. Moreover, if the robot is serving in some truly critical capacity,
then the shutdown may itself prove to be life threatening. Accordingly, this
article examines a crippled version of the manipulator designed by Yahya et
al. [3, 4]. The object is to determine how the robot behaves after losing the
use of one of its joints. The first question to be addressed is whether or not
the remaining joints afford enough mobility for the manipulator to continue
operating and cover the entire workspace.

2 Workspace analysis

Suppose that joints P1, . . . ,Pnp
(with np < n), are passive joints locked at an

arbitrary position within their joint limits, and n is the number of degrees
of freedom when all the motors are operable. For convenience we represent
the passive set of joints by Ip , and the active and passive joint rotations by
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θa and θp , respectively.

Being able to access to a large number of points in Cartesian space is generally
a design benchmark and a desirable attribute of a robot manipulator. When
the manipulator has both active and passive joints, it is desirable that the
number of reachable points (which create the reachable workspace) is as large
as possible. Denote by V the volume or area of a fully actuated manipulator’s
workspace, and by VIp , that of the corresponding underactuated manipulator.
Whereas V is a fixed quantity, VIp depends on the positions where the passive
joints are locked. The relative workspace loss is

ṼIp(θp) = 1−
VIp(θp)

V
. (1)

To control the motion of the end-effector of the manipulator shown in Fig-
ure 1(a), all the motors of the manipulator should be controlled. For example,
to command a five links planar redundant manipulator with the ability to
rotate around its vertical axis, the six motors (five motors for each joint
bend and one motor to rotate the whole manipulator around its upright axis)
of the manipulator ought to be controlled. Using our previously published
method [7, 8], the configuration of the manipulator has three controllable
angles instead of (n+ 1) angles. Figure 1(b) shows the configuration of the
manipulator when there are just three controllable angles.

Because the end-effector follows any desired path by controlling three angles
(θ1 , θ2 and θ3) only, instead of using a motor for each joint angle only three
motors are used to control the manipulator. In this manipulator, even though
the manipulator has six degrees of freedom, there are only three active joints
while the other joints are passive. Figure 2 shows the mechanism of this
manipulator. Samer et al. [3, 4] provided more details.

For the manipulator shown in Figure 1(a), the position coordinates of the
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Figure 1: (a) A three dimensional planar redundant manipulator configuration;
(b) a three dimensional planar redundant manipulator configuration using
the method of Yahya et al. [7, 8].
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Figure 2: The manipulator used in experiments.

target point are

xtp = cos θ1[l1 cos(θ2) + l2 cos(θ2 + θ3) + · · ·+ ln cos(θ2 + θ3 + · · ·+ θn+1)] ,
ytp = sin θ1[l1 cos(θ2) + l2 cos(θ2 + θ3) + · · ·+ ln cos(θ2 + θ3 + · · ·+ θn+1)] ,
ztp = l1 sin(θ2) + l2 sin(θ2 + θ3) + · · ·+ ln sin(θ2 + θ3 + · · ·+ θn+1) , (2)

where n is the number of links, the links are of length l1, . . . , ln and make
angles θ1 , . . . , θn+1 . For the manipulator shown in Figure 1(b) using the
method of Yahya et al. [8], the angles between the links are equal, θ3 = θ4 =
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· · · = θn+1 . Therefore, the position coordinates of the target point are

xtp = cos θ1[l1 cos(θ2) + l2 cos(θ2 + θ3) + · · ·+ ln cos(θ2 + (n− 1)θ3)] ,

= cos θ1
n∑
k=1

lk cos[θ2 + (k− 1)θ3] ,

ytp = sin θ1[l1 cos(θ2) + l2 cos(θ2 + θ3) + · · ·+ ln cos(θ2 + (n− 1)θ3)] ,

= sin θ1
n∑
k=1

lk cos[θ2 + (k− 1)θ3] ,

ztp = l1 sin θ2 + l2 sin(θ2 + θ3) + · · ·+ ln sin(θ2 + (n− 1)θ3) ,

=

n∑
k=1

lk sin[θ2 + (k− 1)θ3] . (3)

The inverse kinematics of this manipulator are approximated using numerical
iterations such as Newton–Raphson, because we have only three equations and
three unknown variables, θ1 , θ2 , θ3 . The next section shows the crippling
effect of each joint on the workspace of the manipulator.

3 Crippling of the manipulator

3.1 Crippling of θ1 joint

To enable the planar manipulator capable of moving in a three dimensional
workspace, the angle θ1 controls the rotation of the entire manipulator around
the vertical axis, as shown in Figure 2. Therefore, when θ1 has a value other
than the desired one, it is impossible to attain the desired target point. From
equation (3) it is seen that the x and y axes of the target point are functions
of θ1 , which means that when this angle has an incorrect value because of
crippling, it will be impossible to attain the target point.
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Figure 3: The configuration of the planar manipulator using the method of
Yahya et al. [8]

3.2 Crippling of θ2 joint

As long as the θ1 joint is uncrippled, the manipulator freely rotates in a three
dimensional workspace. Therefore, we concentrate on the planar manipulator
which moves in the xy-z plane, as shown in Figure 3.

For this manipulator, we define the target point by its distance s from the
origin and the angle α shown in Figure 3. This distance is

s =
√
x2tp + y

2
tp + z

2
tp . (4)

The value of s is not a function of θ2; as shown in Figure 4, changing the
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Figure 4: Affect of modifying θ2 on the angle α.

value of θ2 will change the the angle α but not the distance s. To prove
this mathematically, s is calculated using the right angled triangle shown in
Figure 5, and equation (4) is rewritten as

s =

√√√√( n∑
k=1

lk cos[(k− 1)θ3]

)2
+

(
n∑
k=2

lk sin[(k− 1)θ3]

)2
, (5)

which is not a function of θ2 .

The angle of the target point is

α = tan−1

(
n∑
k=1

lk cos[θ2 + (k− 1)θ3]

)(
n∑
k=1

lk sin[θ2 + (k− 1)θ3]

)−1

. (6)

This equation shows that α is a function of θ2 . When the joint θ2 is inoperable,
if the angles between the links are equal (θ3 = θ4 = · · · = θn+1), then changing
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Figure 5: Calculating distance s without using angle θ2 .

angle θ3 is not sufficient to allow the end-effector to reach the target point.
For example, to move the end-effector from point a to point b (as shown in
Figure 4), which maintain the same distance from the origin, θ2 must change.
In contrast, changing θ3 without changing θ2 will move the end-effector along
a path which has different values of both s and α, as shown in Figure 6.

3.3 Crippling of θ3 joint

From equation (5), the distance s between the origin and the end-effector
is a function of the joint angle θ3 . This means that when the joint θ3 is
inoperable, there is no way to move the end-effector to the target point, unless
it lies on a sphere of radius s. In another words, when the joint θ3 becomes
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Figure 6: Effect of modifying θ3 without changing θ2 .

inoperable, then the distance s is fixed, no matter what the values of the
angles θ1 and θ2 .

3.4 Crippling of θ4, θ5, . . . , θn joint

Now consider a breakdown of joint θ4 . Provided θ4 = θ5 = · · · = θn+1 , all
these joints will be inoperable and will act as one link only, as shown in
Figure 7. In this figure, θ4 = θ5 = · · · = θn+1 = θio , where θio is the value
of the joint θ4 when it becomes inoperable and is not equal to θ3 . For this
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Figure 7: Crippling of joint θ4 .

manipulator, the target point coordinates are

xtp = cos θ1

(
l1 cos θ2 +

n∑
k=2

lk cos[θ2 + θ3 + (k− 2)θio]

)
,

ytp = sin θ1

(
l1 cos θ2 +

n∑
k=2

lk cos[θ2 + θ3 + (k− 2)θio]

)
,

ztp = l1 sin θ2 +
n∑
k=2

lk sin[θ2 + θ3 + (k− 2)θio] . (7)

To calculate whether there is a solution for the inverse kinematics of this
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manipulator, the Newton–Raphson approximations are used, because we have
three equations and three unknown variables (θ1 , θ2 , θ3). From Figure 7,

l2n =

√√√√( n∑
k=2

lk cos[θ3 + (k− 2)θio]

)2
+

(
n∑
k=2

lk sin[θ3 + (k− 2)θio

)2
. (8)

where n is the number of links.

Now, if the breakdown occurs at joint θ5 , then an equation similar to equa-
tion (7) determines whether there is solution for the inverse kinematics of the
manipulator. The only change in these coordinate equations is that two joints
move with angle θ3 instead of one and (n − 3) joints move with angle θio
instead of (n− 2). Using the same concept, equation (7) is used to calculate
the inverse kinematics when joints θ6 , . . . , θn+1 become inoperable.

4 Simulation results

Consider the six degrees of freedom manipulator of Figure 2. We only consider
the five links planar manipulator, n = 5 . When there is no breakdown, the
maximum reach of the manipulator is

Ro = l1 + l2 + l3 + l4 + l5 . (9)

If the manipulator is equipped with one passive joint p, which is kept locked
during manipulation tasks, then the degrees of freedom of the manipulator are
reduced and the workspace is also reduced. The workspace of the underactu-
ated manipulator is an annulus with inner and outer radii Ri(θp) and Ro(θp) ,
respectively. The workspace area is

Ap(θp) = π[R
2
o(θp) − R

2
i (θp)] . (10)

We now discuss the boundary radii and workspace area calculations for
all possible inoperable joints on the six degrees of freedom manipulator of
Figure 2.
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4.1 Breakdown of θ1 joint

As mentioned in Section 3.1, when θ1 has a value other than the desired one, it
is impossible to attain the specified target point because the manipulator loses
its ability to move in three dimensions and becomes just a planar manipulator
with a circular workspace. As explained in Section 3.2, the distance s is not a
function of θ2 but a function of θ3 only. The end-effector of the manipulator
is at its maximum position when it is fully stretched out, that is, when the
angle θ3 is zero. In this case the distance s is equal to the sum of all lengths
of links of the manipulator.

The inner and outer reach of the manipulator is calculated from equation (5)
with n = 5 :

s2 = [l1 + l2 cos(θ3) + l3 cos(2θ3) + l4 cos(3θ3) + l5 cos(4θ3)]2

+ [l1 + l2 sin(θ3) + l3 sin(2θ3) + l4 sin(3θ3) + l5 sin(4θ3)]2 . (11)

To find the values of θ3 which minimise or maximise s, we take the derivative
of the above equation with respect to θ3:

2s
ds

dθ3
= 2[l1 + l2 cos(θ3) + l3 cos(2θ3) + l4 cos(3θ3) + l5 cos(4θ3)]

× [−l2 sin(θ3) − 2l3 sin(2θ3) − 3l4 sin(3θ3) − 4l5 sin(4θ3)]
+ 2[l2 sin(θ3) + l3 sin(2θ3) + l4 sin(3θ3) + l5 sin(4θ3)]
× [l2 cos(θ3) + 2l3 cos(2θ3) + 3l4 cos(3θ3) + 4l5 cos(4θ3)] . (12)

Now, the values of θ3 that make s minimum or maximum are calculated by
setting ds/dθ3 to zero. The next step is to substitute these values of θ3 into
equation (5) or (11) to find the minimum and maximum reach.

4.2 Breakdown of θ2 joint

When a breakdown occurs on the θ2 joint, the manipulator is reduced, in
practice, to a four link underactuated manipulator, and the origin is shifted



4 Simulation results C431

to the joint between link one and link two. We calculate the distance from
the new origin to the end-effector from

s =
{
[l2 cos(θ3) + l3 cos(2θ3) + l4 cos(3θ3) + l5 cos(4θ3)]2

+ [l2 sin(θ3) + l3 sin(2θ3) + l4 sin(3θ3) + l5 sin(4θ3)]2
}1/2 . (13)

Again, the values of θ3 which minimise or maximise s are calculated by
setting ds/dθ3 to zero in

2s
ds

dθ3
=2[l2 cos(θ3) + l3 cos(2θ3) + l4 cos(3θ3) + l5 cos(4θ3)]

× [−l2 sin(θ3) − 2l3 sin(2θ3) − 3l4 sin(3θ3) − 4l5 sin(4θ3)]
+ 2[l2 sin(θ3) + l3 sin(2θ3) + l4 sin(3θ3) + l5 sin(4θ3)]
× [l2 cos(θ3) + 2l3 cos(2θ3) + 3l4 cos(3θ3) + 4l5 cos(4θ3)], (14)

and then substituting the solution of θ3 into equation (13).

4.3 Breakdown of θ3 joint

Because the motor which controls the θ3 joint is the same motor which controls
all higher joints (θ4 , θ5 , θ6), any breakdown of the θ3 joint means that these
higher joints are also inoperable. In other words, when joint three becomes
passive, θ3 = θio , the manipulator is reduced to a one link underactuated
mechanism with distance from origin to end-effector

s =
{
[l1 + l2 cos(θio) + l3 cos(2θio) + l4 cos(3θio) + l5 cos(4θio)]2

+ [l2 sin(θio) + l3 sin(2θio) + l4 sin(3θio) + l5 sin(4θio)]2
}1/2 . (15)
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4.4 Breakdown of θ4 joint

When a breakdown occurs in the θ4 joint the manipulator is reduced, in
practice, to a two link underactuated mechanism with link lengths l1 and

l25 =
{
[l2 cos(θ3) + l3 cos(θ3 + θio) + l4 cos(θ3 + 2θio) + l5 cos(θ3 + 3θio)]2

+ [l2 sin(θ3) + l3 sin(θ3 + θio) + l4 sin(θ3 + 2θio) + l5 sin(θ3 + 3θio)]2
}1/2 ,
(16)

where θ4 = θio . Therefore, the inner and outer radii are

Ri = |l1 − l25| and Ro = l1 + l25 . (17)

From these two radii, the area of the workspace is

Vp = 4πl1l25 . (18)

4.5 Breakdown of θ5 joint

When the θ5 joint becomes inoperable, the manipulator is reduced, in practice,
to a three link underactuated mechanism with link lengths l1 , l2 and

l35 =
{
[l3 cos(θ3) + l4 cos(θ3 + θio) + l5 cos(θ3 + 2θio)]2

+ [l3 sin(θ3) + l4 sin(θ3 + θio) + l5 sin(θ3 + 2θio)]2
}1/2 , (19)

where θ5 = θio . As mentioned previously, θio is constant and equal to the
angle at which the joint breaks down. The distance from the origin to the
end-effector is

s = {[l1 cos(θ2) + l2 cos(θ2 + θ3) + l3 cos(θ2 + 2θ3)
+ l4 cos(θ2 + 2θ3 + θio) + l5 cos(θ2 + 2θ3 + 2θio)]2

[l1 sin(θ2) + l2 sin(θ2 + θ3) + l3 sin(θ2 + 2θ3)

+ l4 sin(θ2 + 2θ3 + θio) + l5 sin(θ2 + 2θ3 + 2θio)]2
}1/2 . (20)
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We need to calculate the values of θ3 which minimise or maximise the dis-
tance s, which means calculating the inner and outer radii of the workspace.
To calculate the distance s, we determine θ3 when ds/dθ3 is set to zero,
and then substitute these values of θ3 into equation (20). The derivative of
equation (20) is

2s
ds

dθ3
= 2[l1 cos(θ2) + l2 cos(θ2 + θ3) + l3 cos(θ2 + 2θ3)

+ l4 cos(θ2 + 2θ3 + θio) + l5 cos(θ2 + 2θ3 + 2θio)]
× [−l2 sin(θ2 + θ3) − 2l3 sin(θ2 + 2θ3)
− 2l4 sin(θ2 + 2θ3 + θio) − 2l5 sin(θ2 + 2θ3 + 2θio)]
+ 2[l1 sin(θ2) + l2 sin(θ2 + θ3) + l3 sin(θ2 + 2θ3)
+ l4 sin(θ2 + 2θ3 + θio) + l5 sin(θ2 + 2θ3 + 2θio)]
× [l2 cos(θ2 + θ3) + 2l3 cos(θ2 + 2θ3)
+ 2l4 cos(θ2 + 2θ3 + θio) + 2l5 cos(θ2 + 2θ3 + 2θio)] . (21)

4.6 Breakdown of θ6 joint

When the θ6 joint becomes inoperable, the manipulator is reduced, in practice,
to a four link underactuated mechanism. The link lengths of this manipulator
are l1 , l2 , l3 and

l45 =
√
l24 + l

2
5 + 2l4l5 cos θio , (22)

where θ6 = θio . The distance from the origin to the end-effector is

s = {[l1 cos(θ2) + l2 cos(θ2 + θ3) + l3 cos(θ2 + 2θ3)}
+ l4 cos(θ2 + 3θ3) + l5 cos(θ2 + 3θ3 + θio)]2

+ [l1 sin(θ2) + l2 sin(θ2 + θ3) + l3 sin(θ2 + 2θ3)

+l4 sin(θ2 + 3θ3) + l5 sin(θ2 + 3θ3 + θio)]2
}1/2 . (23)
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To calculate the minimum and maximum distances s, we set ds/dθ3 to zero
and determine θ3, then we substitute these values of θ3 into equation (23).
The derivative of equation (23) is

2s
ds

dθ3
= 2[l1 cos(θ2) + l2 cos(θ2 + θ3) + l3 cos(θ2 + 2θ3)

+ l4 cos(θ2 + 3θ3) + l5 cos(θ2 + 3θ3 + θio)]
× [−l2 sin(θ2 + θ3) − 2l3 sin(θ2 + 2θ3)
− 3l4 sin(θ2 + 3θ3) − 3l5 sin(θ2 + 3θ3 + θio)]
+ 2[l1 sin(θ2) + l2 sin(θ2 + θ3) + l3 sin(θ2 + 2θ3)
+ l4 sin(θ2 + 3θ3) + l5 sin(θ2 + 3θ3 + θio)]
× [l2 cos(θ2 + θ3) + 2l3 cos(θ2 + 2θ3)
+ 3l4 cos(θ2 + 3θ3) + 3l5 cos(θ2 + 3θ3 + θio)] . (24)

5 Conclusion

We assessed whether, in the event of crippling, one might exploit the remaining
degrees of freedom of a robot to keep it in service, pending repair. A six
degrees of freedom three dimensional manipulator was used for simulation.
The results showed that when any one of the first three joints becomes
inoperable, the end-effector is unable to attain all target points. In contrast,
for the n = 5 case, when any of the last three joints breakdown, the operable
joints still enable the end-effector to attain the target point. The inner
and outer radii of the workspace, attainable with one inoperable joint, were
calculated and discussed.
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