
ANZIAM J. 42 (E) ppC978–C995, 2000 C978

The scalability of parallel computers for sparse
QR factorisation

David J. Miron∗

(Received 7 August 2000)

Abstract

Sparse linear systems occur in areas such as finite element methods
and statistics. These systems are often solved on parallel computers
due to their size. In this paper a theoretical analysis of parallel sparse
QR factorisation using a multifrontal method is undertaken. The anal-
ysis is quantified by some estimates of parallel speeds up for various
parallel computers. These estimates show that only moderate parallel
speedups can be attained.

∗CRC for Advanced Computation, Research School of Information Sciences and
Engineering, Australian National University, Canberra, ACT 0200, Australia.

0See http://anziamj.austms.org.au/V42/CTAC99/Miro for this article and ancillary
services, c© Austral. Mathematical Soc. 2000. Published 27 Nov 2000.

http://anziamj.austms.org.au/V42/CTAC99/Miro

Contents C979

Contents

1 Introduction C979

2 Multifrontal Methods C981

3 The Model Problem C982

4 Completion Times C984
4.1 Single Processor Factorisation C984
4.2 Parallel Factorisation . C986

5 Parallel Speedups C989

6 Conclusions C993

References C994

1 Introduction

The primary focus of this work is the factorisation A = QR, where A is a
sparse real m × n (m ≥ n) matrix, Q is orthogonal, R is upper triangular
and the number of nonzero entries in any row or column is less than 10%.

The sparse qr factorisation is important as it can be used to solve

1 Introduction C980

sparse linear least squares problems. These problems occur in areas such
as geodesy [7], data mining [9], animal breeding [8] and finite element prob-
lems.

A sparse matrix is factorised by storing and operating only on the nonze-
roes in the matrix, thereby realising significant savings in storage require-
ments and factorisation time. However, sparse matrices can be so large that
factorisation on single processor computers is not practical, therefore requir-
ing the use of parallel computers.

Pozo [10] provides a theoretical study of the distributed memory multi-
frontal lu factorisation. His analysis is based upon completion time, being
the time taken by the multifrontal method [3] to perform the numeric fac-
torisation of a sparse matrix. Using some example matrices from the Harwell
Boeing Collection [2], Pozo was able to give estimates for the completion time
and parallel speedup of various parallel distributed memory computers.

Rather than using example matrices this work uses a model problem to
provide a theoretical analysis for the parallel sparse qr factorisation. The
model problem is based upon a special case of a relaxed supernodal elimina-
tion tree [1, 3]. Using the model problem an equation can be derived that
gives the theoretical completion time for parallel sparse qr factorisation us-
ing a multifrontal method. Having the theoretical completion time allows
the calculation of speedups achievable by a parallel computer to be made.

In Section 2, a brief overview of multifrontal methods is given before
proceeding to define the model problem in Section 3. Equations for the

2 Multifrontal Methods C981

theoretical completion times are then presented in Section 4 with results
given in Section 5. In Section 6 some conclusions are presented.

2 Multifrontal Methods

The multifrontal method of Duff and Reid [3] reduces the factorisation of a
sparse matrix to the factorisation of a sequence of small submatrices called
frontal matrices. A frontal matrix is associated with each column of the
matrix A, with the factorisation of a frontal matrix corresponding to the
elimination of a column in A. A factorised frontal matrix is dense and consists
of a contribution to R and an updatematrix, where the update matrix is made
up of the rank−1 updates produced by the frontal matrix factorisation. The
updatematrix is stored on a stack to be later retrieved and summed into
other frontal matrices.

The order in which frontal matrices are factorised and updatematrices re-
trieved from the stack is governed by a graph structure called the elimination
tree. An elimination tree is a tree of n nodes with each node corresponding
to a column in the matrix A. The columns of the matrix A corresponding
to the leaves of the elimination tree can be eliminated independently. The
order in which columns are eliminated is determined by a postorder traversal
of the tree.

Frontal matrices can be small, resulting in extensive overheads in stack

3 The Model Problem C982

operations and frontal matrix construction. These overheads can be reduced
on vector computers by merging nodes of the elimination tree into “relaxed
supernodes”. Thus factorisation of a relaxed supernode involves elimination
of all the columns associated with that node from the frontal matrix. Frontal
matrices associated with relaxed supernodes explicitly allow zeroes into the
factorised frontal matrix [1, 3]. In this work the term elimination tree shall
refer to a relaxed supernodal elimination tree.

3 The Model Problem

The model problem is based upon a relaxed supernodal elimination tree with
the following structure.

Firstly, the elimination tree T is a balanced binary tree consisting of
l = 1 + log2 p levels and p leaves. A node t ∈ T at level i of the elimination
tree has a granularity κt = κ

νi where κ is the number of columns associated

with the root node and ν >
√

2 is the rate at which the granularity of the
nodes in the tree decreases between levels and is a constant.

Secondly, let a frontal matrix F t and an updatematrix U t of a node t in
the elimination tree have magnitudes:

|F t| =
c1κ

2

ν2i
(1)

3 The Model Problem C983

�
��

@
@@

�
��

@
@@

!!!!!!!!

aaaaaaa

��
��

��
��

��
��

��
��

��
��

��
��

��
��

κ

κ
ν

P0P1P2P3

P0P1 P2P3

P0 P1 P2 P3
κ
ν2

κ
ν2

κ
ν

κ
ν2

κ
ν2

|F0| = c1κ
2 & c2|U0| = 0

|F1| = c1

(
κ
ν

)2
& |U1| = c2

(
κ
ν

)2
|F2| = c1

(
κ
ν2

)2
& |U2| = c2

(
κ
ν2

)2

Level 0

Level 1

Level 2

Figure 1: The elimination tree for p = 4

and

|U t| =

{
0 if i = 0
c2κ2

ν2i if i > 0
(2)

respectively where |M | denotes the number of elements in a matrix M . The
parameters c1 and c2 are constants and their ratio represents the overdeter-
minism of the frontal and updatematrices respectively. An example of the
elimination tree for the case p = 4 is given in Figure 1.

The elimination tree in Figure 1 corresponds to a separator tree generated
by applying the Recursive Bisection [4] reordering to matrices arising from
finite element problems. For finite element problems based on a 2 dimensional
grid the granularity of the top level node κ would be proportional to

√
n [5]

while the rate at which the granularity changes between levels ν would be
proportional to

√
2.

4 Completion Times C984

Figure 1 also shows the processor to elimination tree mapping, the pro-
cessors being labelled P0, P1, P2 and P3 respectively. In general terms the
parallel factorisation of the elimination tree exploits the natural parallelism
in the tree while at the same time distributing the factorisation of a frontal
matrix F t at level i over 2l−i processors.

For each node t ∈ T there is a processor group and for each processor
group there is a lead processor. The lead processor is responsible for dis-
tributing a frontal matrix F t over the other processors within its group for
parallel factorisation and the gathering of the resulting R contribution and
the updatematrix U t. On completion of the gathering, the lead processor
then sends the updatematrix to the lead processor of its parent node.

4 Completion Times

In this section equations for determining the completion times of the single
processor and parallel factorisation of the model problem are derived.

4.1 Single Processor Factorisation

On a single processor the multifrontal qr factorisation involves a postorder
traversal of the elimination tree T . On visiting each node t ∈ T a frontal
matrix F t is assembled and factorised.

4 Completion Times C985

The assembly involves the accumulation of updatematrices Us (for which
s is a child node of t) into the frontal matrix F t. For each node t ∈ T the
assembly time is:

A(t) = γλ

 ∑

s∈child(t)

|Us|

 , (3)

where λ ≥ 1 relates to the efficiency of the indirect addressing associated
with the assembly process and γ is the average time for one floating point
operation (computation cost). In the ensuing discussion it is assumed that
the cost of indirect addressing λ = 1.

After assembly the frontal matrix F t is factorised. The factorisation in-
volves the elimination of κt columns from the frontal matrix F t . Using
Householder reflections to perform the qr factorisation requires the compu-
tation of κt Householder vectors and rank 1 updates resulting in at least
4κt|F t| operations [6]. This gives an upperbound on the time to factorise a
frontal matrix F t as:

E(t) = 4γκt|F t|. (4)

Thus an upperbound for the completion time for multifrontal qr factorisation
on a single processor is the sum of the time required to factor each frontal
matrix F t:

Tseq =

η∑
t=1

(A(t) + E(t)) , (5)

4 Completion Times C986

where η is the number of nodes in the elimination tree. Substituting the
frontal and updatematrix sizes from (1) and (2) into (5) and simplifying
gives a single processor completion time of:

Tseq = 4γκ3c1

[
1

1 − 2
ν3

(
1 −

(
2

ν3

)l+1
)

+
c2

2κc1

(
1 − 2

ν2

)
(

1 −
(

2

ν2

)l
)]

.

(6)

4.2 Parallel Factorisation

The time to perform the parallel factorisation is governed by the height of
the elimination tree |h| where |h| = log2 p + 1 and h is the longest path from
a leaf node to the root node of the elimination tree.

The parallel factorisation involves communicating updatematrices from
child nodes of the elimination tree to their parents. This needs to be done
by the lead processor of each child node in the elimination tree.

Let the time for sending k words of data from one processor to another
be:

M(k) = α + ωβk, (7)

where α is the startup cost (latency), β is the per byte transmission time
(communication cost) and ω the number of bytes per word. Therefore the

4 Completion Times C987

cost of communicating an updatematrix is:

C(t) = α + ωβ|U t|. (8)

If it is assumed that the frontal matrix F t is on one processor before distri-
bution and gathered back onto that same processor after factorisation, then
an upperbound for the distributed factorisation time for a frontal matrix F t

is:

E(t, p) = 2(p − 1)

(
α + ωβ

|F t|
p

)
+

4γκt|F t|
φp

. (9)

The first term of (9) reflects the communication cost of distributing and
gathering the frontal matrix F t, while the second term is an upperbound on
the time required to factor the frontal matrix F t over p processors with the
distributed factorisation having a parallel efficiency of 0 < φ ≤ 1.

Exploiting the natural parallelism of the elimination tree gives the parallel
factorisation an optimal total time of:

Tpar = min
z()

1≤p≤|Ft|

max
h

[A(t) + E(t, p) + C(t)] . (10)

Equation (10) shows that the optimal total time for parallel factorisation,
given all possible processor mappings z() and distributing the factorisation
of a frontal matrix over an optimal number of processors p, is governed by
the longest time taken to traverse the elimination tree from the leaves to the
root while performing the factorisation.

4 Completion Times C988

Thus the estimated completion time for the parallel factorisation of the
model problem is:

T ∗
par = 4γκ3c1

[
1

2lφ
(
1 − 2

ν3

)
(

1 −
(

2

ν3

)l+1
)

+

ωβ

2γκ

(
1

1 − 1
ν2

(
1 −

(
1

ν2

)l+1
)
−

1

2l
(
1 − 2

ν2

)
(

1 −
(

2

ν2

)l+1
))

+

c2

2κc1 (ν2 − 1)

(
1 −

(
1

ν2

)l
)(

ωβ

2γ
+ ν2

)
+

α

4γκ3c1

(
2l+2 − l − 6

)]
.

(11)

Equation (11) is derived from (10) by making the appropriate substitutions
for the frontal and updatematrix sizes given by Equations (1) and (2) re-
spectively. The sum for (11) is taken over all levels 0 to l of the elimination
tree.

Hence, the speedup for the parallel factorisation is:

S =
T ∗

seq

T ∗
par

. (12)

5 Parallel Speedups C989

Table 1: Computer parameters

Computer γ−1 (Mflops) α(µ sec) β−1 (MB/sec) β
γ

Intel iPSC/2 dx3 1.7 322 2.8 0.6
Intel iPSC/860 CX 80.0 322 2.8 28.6
IBM P2SC (Thin node) 810.0 35 110.0 7.4
DEC Alpha 600 EB5 Farm 323.0 500 11.0 29.5
Fujitsu VPP300 2200.0 4 570.0 3.9
Fujitsu AP1000 5.6 7 25.0 0.2

Again assuming that both l and κ are sufficiently large in Equations (6)
and (11) then (12) would behave as follows:

S∗
par = φ2l = φp. (13)

The upperbound given in (13) is a theoretical upperbound which in practice
would be unreachable.

5 Parallel Speedups

To estimate the scalability of various parallel computers consider the perfor-
mance figures in Table 1.

5 Parallel Speedups C990

Table 2: Speedups for the various computers.

Machine p = 2 p = 4 p = 8 p = 16 p = 32 p = 64
DEC Alpha 600 EB5 Farm 1.83 3.09 4.67 6.21 7.40 8.10
Intel iPSC/860 CX 1.83 3.11 4.72 6.34 7.61 8.43
IBM P2SC (Thin node) 1.95 3.72 6.78 11.46 17.43 23.44
Fujitsu VPP300 1.98 3.85 7.31 13.24 22.23 33.56
Intel iPSC/2 dx3 1.99 3.97 7.87 15.45 29.79 55.51
Fujitsu AP1000 2.00 3.99 7.95 15.76 31.02 60.09

Table 1 gives the computer type, the number of floating point operations
per second (γ−1), the latency in micro seconds (α) and the communication
speed in megabytes/second (β−1) for the various example parallel computers.
It also gives the communication to computation ratio β

γ
.

A comparison of the scalability of the example computer architectures
using combined parallel factorisation is given in Table 2.

Table 2 gives the speedups S for the various example computers given
in Table 1. The values for the speedup S were calculated using (12) and
setting the frontal matrix constant c1 = 2, the updatematrix constant c2 = 1,
the rate that the granularity of the nodes decreases between levels of the
elimination tree ν = 3

√
2, the parallel efficiency φ = 1 and the granularity of

the top level node κ = 1000. The computers in Table 2 are ranked using the

5 Parallel Speedups C991

communication to computation ratio β
γ
.

Table 2 shows that the Intel iPSC2 scales the best and has the smallest
communication to computation ratio. The VPP300 however can achieve only
moderate speedups due to its higher communication to computation ratio.
This is despite the fact that its completion time would be considerably faster
than that of the Intel iPSC2 for a given number of processors. Table 2
also shows that the scalability of a computer is closely linked to the ratio of
communication cost to computation cost β

γ
given in Table 1.

In order to understand the interrelationship between the granularity of
the top level node of the elimination tree κ and the number of processors
p and their effect on the speedup S a three dimensional plot is given in
Figure 2.

Figure 2 plots the speedup S against the granularity of the top level node
κ of the elimination tree and the number of levels l = log2 p of the separator
tree for the Fujitsu VPP300. Figure 2 was plotted using (12) and setting
the frontal matrix constant c1 = 2, the updatematrix constant c2 = 1, the
parallel efficiency φ = 1 and the rate of granularity decrease between the
levels of the elimination tree ν = 3

√
2. The effect of communication is evident

in Figure 2 by the crest in the surface.

5 Parallel Speedups C992

2

4

6

8

10

 log p

200

400

600

800

kappa

0

20

40

 S

2

4

6

8

10

 log p

200

400

600

800

kappa

0

20

40

Figure 2: A plot of speedup S against l and κ
.

6 Conclusions C993

6 Conclusions

A model problem based on the separator tree produced by the Recursive
Bisection reordering was used to calculate the speedup of various parallel
computers.

The parallel factorisation scales linearly with the number of processors.
The scalability is closely related to the communication to computation ratio
β
γ
. The higher this ratio the less scalable the computer architecture.

The analysis also highlights the importance of efficient dense factorisation
of frontal matrices. If the dense factorisation is inefficient then the ratio of
communication cost to computation cost is reduced giving inflated speedups
and larger completion times.

The model problem reflects an ideal situation and no mention has been
made of how imbalance in the elimination tree would affect the completion
times and speedups. Pozo [10] suggested that such imbalance would have a
detrimental effect on parallel performance.

References C994

References

[1] C. Ashcraft and R. Grimes. The influence of relaxed supernode
partitions on the multifrontal method. ACM Transactions on
Mathematical Software, 15(4):291–309, 1989. C980, C982

[2] I. Duff. Harwell Boeing sparse matrix collection release I, 1992. C980

[3] I. Duff and J. Reid. The multifrontal solution of indefinite sparse
symmetric linear systems. ACM Transactions on Mathematical
Software, 9:302–325, 1983. C980, C980, C981, C982

[4] A. George. Nested disection of a regular finite element mesh. SIAM
J. Numer. Anal., pages 345–363, 1973. C983

[5] J. Gilbert and R. Tarjan. The analysis of a nested disection algorithm.
Numerische Mathematik, 50:377–404, 1987. C983

[6] G. Golub and C. Van Loan. Matrix Computations. The Johns Hopkins
University Press, 2nd edition, 1989. C985

[7] G. Golub and R. Plemmons. Large-scale geodetic least-squares
adjustment by dissection and orthogonal decomposition. Linear
Algebra and its Applications, 34:3–27, 1980. C980

[8] M. Hegland. On the computation of breeding values. In Proceedings of
the CONPAR-90-VAPPIV, Joint International Conference on Vector
and Parallel Processing, pages 232–242, Zurich, 1990. C980

References C995

[9] M. Hegland. Personal communication, February 1997. C980

[10] R. Pozo. Performance modeling of sparse matrix methods for
distributed memory architectures. In Proceedings of Parallel
Processing: CONPAR 92 - VAPP V, Lecture Notes in Computer
Science No. 634, pages 677–688. Springer-Verlag, 1992. C980, C993

	Introduction
	Multifrontal Methods
	The Model Problem
	Completion Times
	Single Processor Factorisation
	Parallel Factorisation

	Parallel Speedups
	Conclusions
	References

