
ANZIAM J. 45 (E) ppC283–C295, 2004 C283

Effect of limited precision on the BFGS

quasi-Newton algorithm

D. Byatt I. D. Coope C. J. Price∗

(Received 8 August 2003; revised 22 December 2003)

Abstract

Some claim that updating approximate Hessian information via
the bfgs formula with a Cholesky factorisation offers greater numeri-
cal stability than the more straightforward approach of performing the
update directly. Others claim that no such advantage exists and that
any such improvement is probably due to early implementations of the
dfp formula in conjunction with low accuracy line searches. We find
no discernible advantage in choosing factorised implementations (over
non-factorised implementations) of bfgs methods when approximate
Hessian information is available to full machine precision. However,
the type of implementation may have significant effects when approx-
imate Hessian information is only available to limited precision. Fur-
thermore, a conjugate directions factorisation outperforms the other
methods explored (including Cholesky factorisation).

∗University of Canterbury, Christchurch, New Zealand.
mailto:d.byatt@math.canterbury.ac.nz, mailto:i.coope@math.canterbury.ac.nz,
mailto:c.price@math.canterbury.ac.nz

See http://anziamj.austms.org.au/V45/CTAC2003/Byat for this article, c© Aus-
tral. Mathematical Soc. 2004. Published May 15, 2004. ISSN 1446-8735

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Australian Mathematical Society (AustMS): E-Journals

https://core.ac.uk/display/230868752?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:d.byatt@math.canterbury.ac.nz
mailto:i.coope@math.canterbury.ac.nz
mailto:c.price@math.canterbury.ac.nz
http://anziamj.austms.org.au/V45/CTAC2003/Byat

Contents C284

Contents

1 Introduction C284

2 BFGS formula C285

2.1 Implementations . C285
2.2 Conjugate factorisation . C286
2.3 Practicalities . C287

3 Numerical results C288

3.1 Limited precision second order information C289
3.2 Quadratic termination . C290

4 Discussion and summary C293

References C294

1 Introduction

Quasi-Newton algorithms solve the local optimisation problem minx∈
�

n f(x)
iteratively, where f :

�
n →

�
and gradient information is available. The

solution is attained when ∇f(x) = 0 , but in practice the usual requirement
is that ‖∇f(x)‖ � τ for some (typically small) positive constant τ .

We adopt the convention of writing f(xk) as fk and ∇f(xk) as gk. At
iteration k of a quasi-Newton method a search direction pk is found by solving
the system of equations

Bkpk = −gk , (1)

where Bk approximates, in some sense, the Hessian matrix ∇2f(xk). A line
search is then performed along xk + αpk , α ∈

�
to find a new iterate xk+1 =

xk + αkpk for some αk that satisfies the line search criteria. Information at
this new point is used to generate a new approximate Hessian matrix Bk+1.

2 BFGS formula C285

If Bk is positive definite then pT

k
gk < 0 so that pk is a descent direction for f .

This paper investigates the performance of four bfgs implementations on a
selection of ill-conditioned test problems across a range of dimensions and
line search criteria as the precision of second order information varies from
16 to two digits. The results presented in this paper support and extend
those reported in [4].

2 BFGS formula

The bfgs update formula can be written as

Bk+1 =

[

B +
yyT

sTy
−

BssTB

sTBs

]

k

, (2)

where sk = xk+1−xk and yk = gk+1−gk . Note that the subscript k applies to
each of the variables inside the brackets. When the inverse of Bk is denoted
by Hk then application of the Sherman-Morrison-Woodbury formula gives

Hk+1 =

[

H +

(

1 +
yTHy

sTy

)

ssT

sTy
−

(

syTH + HysT

sTy

)

]

k

. (3)

Equation (3) allows the direct calculation of the search direction without the
need to solve the system of equations (1).

2.1 Implementations

There are many ways to implement the bfgs update formulae presented in
equations (2) and (3). The four implementations discussed in this paper
are introduced below. For each of these implementations the initial Hessian
approximation (or its inverse) is set to the identity matrix.

2 BFGS formula C286

Bupdate. Direct update of the approximate Hessian matrices Bk using
equation (2) and solving the resulting system of equations by calcu-
lating the inverse B−1

k
. Note this method is never recommended in

practice. It is used here to provide a guideline for the worst per-
formance that would be expected from this type of implementation.
Limited numerical trials shows it performed almost identically to more
preferred implementations, using Gaussian elimination for example [2].

Hupdate. Direct updates of the inverses of the approximate Hessian matri-
ces Hk using equation (3).

Cholesky. Cholesky factorisations of the approximate Hessian matrices Bk.

Conjugate. Conjugate factorisations of the inverses of the approximate Hes-
sian matrices Hk.

The method of conjugate factorisation used in this paper is based on [3];
however, the idea is not new, see for example [6, 7]. A brief description is
given below but the reader is referred to [3] for more details.

2.2 Conjugate factorisation

The bfgs update formula in equation (3) is written in product form as
Hk+1 =

[

(I − pqT)H(I − pqT)T
]

k
where

qk =

[

y

pTy
±

g
√

−pTg pTy/α

]

k

.

If the inverse Hessian approximation matrices are factored so that Hk =
CkC

T

k
then the columns of Ck are Bk-conjugate and the search direction

is pk = −Ckdk where dk = CT

k
gk . The elements of dk are the directional

2 BFGS formula C287

derivatives of f at xk in the directions of the columns of Ck. The updated
conjugate factors are

Ck+1 =

[

C +
pzT

dTz
∓

pdT

√

−dTd dTz /α

]

k

, (4)

and

dk+1 =

[

d̄ −
dTd̄ z

dTz
±

dTd̄ d
√

−dTd dTz /α

]

k

, (5)

where d̄k = CT

k
gk+1 and zk = CT

k
yk is the difference in the directional deriva-

tives at xk+1 and xk. There are two obvious implementations, one for each
of the ± signs in equations (4) and (5). After limited numerical trials both
were found to perform very similarly. The implementation described here
uses the + sign in equation (4).

2.3 Practicalities

The Bupdate implementation requires O(n3) operations at each iteration
to update the second order information and compute the new search direc-
tion, whereas the remaining implementations require only O(n2) operations.
Additionally, the Cholesky implementation easily detects loss of positive def-
initeness of the approximate Hessian matrices. However, with a conjugate
factorisation it is extremely unlikely that the inverse approximate Hessian
matrices will lose positive definiteness. The worst that can happen is that
they may become positive semi-definite when an eigenvalue is identically
equal to zero. However, Powell [7] comments:

We even find that, if we let Z [the conjugate factorisation ma-
trix] be singular initially, then in practice the rounding errors of
a sequence of updating calculations remove the singularity very
successfully.

3 Numerical results C288

Thus if positive definiteness of the inverse approximate Hessian matrices is
lost then it is extremely likely it will be restored at the next iteration; or
conversely, it is extremely unlikely that positive semi-definiteness will be
maintained for any length of time if conjugate factors are used.

3 Numerical results

Each of the bfgs implementations described above was tested on the 25 test
functions listed in Tables 1 and 2 as the precision of the approximate Hessian
information varied from 16 to two digits. More details on the test functions
appear in [4, 5]. The varying levels of precision are achieved by truncating
the elements of the approximate Hessian matrices (possibly in factored form,
or their inverses) to the desired level. For example, the elements of the
matrix X are truncated to n digits with trunc(X) = 10−db10dXc where
d = n − dlog10(max(|X|))e.

Two safeguarded, quadratically interpolating strong Wolfe line searches
are used with each of the bfgs implementations. At each iteration, αk is
chosen so that xk+1 = xk +αkpk satisfies fk+1 � fk +ραkp

T

k
gk and |pT

k
gk+1| �

σ|pT

k
gk| where the sufficient descent parameter ρ = 10−4 and the gradient

parameter σ is set to 10−3 and 0.9 for what are referred to in the remainder
of this paper as strict and standard line searches.

For each test problem the number of function evaluations, final function
value and execution time (in seconds) are recorded. The implementations
are ranked by the number of test functions successfully solved (out of a pos-
sible total of 375). A test problem is deemed to be successfully solved if the
termination criterion ‖∇f(x)‖ � 10−6 is met. If necessary, the algorithms
were then sub-sorted by the mean number of function evaluations. Any ties
were sub-sorted by the mean accuracy of the approximations to the mini-
mum function values. The accuracy is measured using log10(f − f ∗) where
f ∗ represents the minimum of the function and f is the final function value.

3 Numerical results C289

Table 1: Low dimension test functions.
Function Dim. Initial point Min.
Rosenbrock 2 (−1.2, 1) 0
Powell badly scaled 2 (0, 1) 0
Repeated Rosenbrock 4 (−1.2, 1,−1.2, 1) 0
Multi-dimensional Rosenbrock 4 (−1.2, 1,−1.2, 1) 0
Powell singular 4 (3,−1, 0, 1) 0

Table 2: Test functions for 8, 12, 20, 40 and 60 dimensions.
Function Initial point Min.
Repeated Rosenbrock (−1.2, 1,−1.2, 1, . . .) 0
Multi-dimensional Rosenbrock (−1.2, 1,−1.2, 1, . . .) 0
Powell singular (3,−1, 0, 1, . . .) 0
Hilbert quadratic (0, 0, 0, 0, . . .) 0

Note that only data for the problems solved successfully are used in the
sorting process. As it is the “raw” performance of each implementation that
is being investigated, the algorithms are terminated whenever they ran into
difficulty, rather than applying some sort of corrective procedure. All of the
implementations presented were run in a Matlab R12.1 environment on
a Sun-Fire-880 multi-user machine with four 750MHz processors and 8Gb
of ram running Solaris 8. Matlab’s built-in functions were used where
convenient.

3.1 Limited precision second order information

The performance of each implementation as the precision of the second or-
der information varied from 16 to two digits with the strict and standard
line searches is now discussed. See the results in Tables 3 and 4, where the
columns labelled Succ, Fcnt, Accy and Time represent the number of suc-
cessfully solved test problems, the mean number of function evaluations, the

3 Numerical results C290

Table 3: Strict line search and varying second order precision.
Ranking Method Succ Fcnt Accy Time

1 Conjugate 332 323.1 −13.9 2.4
2 Cholesky 326 361.2 −13.8 2.8
3 Bupdate 286 336.6 −13.7 2.8
4 Hupdate 269 313.0 −13.8 2.6

mean accuracy of the solutions and the mean execution time in seconds. Note
that only the data for the test functions solved successfully are presented.

Strict line search. The number of successfully solved test problems ranged
from 332 for Conjugate down to 269 for Hupdate. The mean number of
function evaluations ranged from 313.0 for Hupdate through to 361.2 for
Cholesky.

Standard line search. The number of successfully solved test problems
ranged from 331 for Conjugate down to 267 for Hupdate. The mean number
of function evaluations ranged from 150.6 for Hupdate through to 171.4 for
Cholesky.

The results in Table 4 are presented graphically in Figure 1. The plot for
the strict line search results (Table 3) is not presented as it is very similar.
Figure 1 shows that differences in performance do not become noticeable
until the precision of the second order information falls below eight digits.

3.2 Quadratic termination

For any member of the Broyden family of quasi-Newton methods (which
includes the bfgs method), Bn+1 = G for any n-dimensional quadratic func-

3 Numerical results C291

Table 4: Standard line search and varying second order precision.
Ranking Method Succ Fcnt Accy Time

1 Conjugate 331 159.0 −13.1 1.6
2 Cholesky 323 171.4 −13.0 1.9
3 Bupdate 289 152.1 −12.7 1.7
4 Hupdate 267 150.6 −12.9 1.5

246810121416
0

5

10

15

20

25

PSfrag replacements

#
su

cc
es

s

Second order digits

Hupdate

Bupdate

Cholesky

Conjugate

Figure 1: Performance of selected bfgs implementations with the standard
line search and varying second order precision.

3 Numerical results C292

246810121416
−10

−5

0

5

PSfrag replacements lo
g

1
0
‖H

n
+

1
−

G
−

1
‖ F

Second order digits

Bupdate

Cholesky

Conjugate

Figure 2: Difference in norm of approximate inverse Hessian and exact
inverse Hessian after n + 1 iterations with varying second order precision.

tion with Hessian matrix G when exact arithmetic and exact line searches
are used.

Figure 2 shows log10 ‖Hn+1−G−1‖F for each of the bfgs implementations
with the four dimensional Hilbert quadratic and an accurate line search (σ =
10−10). Note that ‖ · ‖F represents the Frobenius norm. The difference in
norm of the inverse Hessian rather than the Hessian is used as the inverse
Hessian allows the direct calculation of the search direction. Note also that
the inverse Hessian is exact but the approximate inverse Hessian matrices Hk

are truncated depending on the level of second order precision. The results for

4 Discussion and summary C293

Hupdate clutter the figure somewhat and are omitted; however, if included,
the plot for Hupdate would oscillate between the lines for Cholesky and
Conjugate.

Note that as the precision of the second order information falls below
about five digits there is a plateau in Figure 2 with a height of about four.
The height of this plateau coincides with the norm of the inverse Hessian of
the four dimensional Hilbert quadratic (log10 ‖G

−1‖F ≈ 4.0146). Presumably
once the precision of the second order information falls below a certain level
there is insufficient information to approximate the inverse Hessian to any
significant level. Similar results are produced with Hilbert quadratics of
different dimensions. In higher dimensions the height of the plateau matches
the norm of the inverse Hessian but the plateau starts at higher levels of
second order precision. In lower dimensions the plateau effect is lost and the
difference in the performance of each implementation is reduced.

4 Discussion and summary

The performance of four bfgs implementations on a suite of 25 test functions
with two line searches (strict and standard) as the precision of second order
information varied from 16 to two digits has been presented.

When second order information is available to single precision (eight dig-
its), or better, there is no real advantage in any particular implementa-
tion. If second order information is available to reasonable precision then
the straightforward inverse Hessian update of the bfgs method, Hupdate,
produced results which are as accurate as those of any of the other methods
considered and requires, on average, fewer function evaluations.

Figures 1–2 and Tables 3–4 clearly show the importance of a factorisation
strategy as the precision of second order information is reduced. The conju-
gate factorisation implementation successfully solved significantly more test

References C294

problems with significantly fewer function evaluations than any of the other
implementations presented here, including Cholesky factorisation. Addition-
ally, the conjugate factorisation implementation produced better approxi-
mations to the inverse Hessian matrices of n-dimensional Hilbert quadratics
when terminated after n + 1 iterations than any of the other methods.

A further advantage of conjugate factorisations is that grids based on
these conjugate directions have useful theoretical and practical properties [1].

Acknowledgement: DB is financially supported by a Top Achiever Doc-
toral Scholarship.

References

[1] D. Byatt, I. D. Coope, and C. J. Price. Conjugate grids for
unconstrained optimisation. Research report UCDMS2002/10,
University of Canterbury, Christchurch, New Zealand, August 2002.
C294

[2] D. Byatt, I. D. Coope, and C. J. Price. Performance of various BFGS
and DFP implementations with limited precision second order
information. Research report UCDMS2003/1, University of Canterbury,
Christchurch, New Zealand, January 2003. C286

[3] I. D. Coope. A conjugate direction implementation of the BFGS
algorithm with automatic scaling. Journal of the Australian
Mathematics Society Series B, 31:122–134, 1989. C286

[4] L. Grandinetti. Factorization versus non-factorization in
quasi-Newtonian algorithms for differentiable optimization. In Third
Symposium on Operations Research (University of Mannheim,

References C295

Mannheim, 1978), pages 255–274, Konigstein, 1979. Hain. Section I.
C285, C288

[5] J. J. Moré, B. S. Garbow, and K. E. Hillstrom. Testing unconstrained
optimization software. ACM Transactions on Mathematical Software,
7(1):17–41, March 1981. C288

[6] M. R. Osborne and M. A. Saunders. Descent methods for minimization.
In R. S. Anderssen, L. D. Jennings, and D. M. Ryan, editors,
Optimization, pages 221–237. University of Queensland Press, St. Lucia,
1972. C286

[7] M. J. D. Powell. Updating conjugate directions by the BFGS formula.
Mathematical Programming, 38(1):29–46, 1987. C286, C287

	Introduction
	BFGS formula
	Implementations
	Conjugate factorisation
	Practicalities

	Numerical results
	Limited precision second order information
	Quadratic termination

	Discussion and summary
	References

