
ANZIAM J. 42 (E) ppC1058–C1075, 2000 C1058

Solving the Navier-Stokes equations on a
workstation cluster

S.E. Norris S.W. Armfield∗

(Received 7 August 2000)

Abstract

A Finite Volume cfd code for modelling Natural convection has
been parallelised using High Performance Fortran (hpf). A compar-
ison is made between using hpf and message passing libraries (pvm

and mpi) in terms of performance and ease of conversion. For the code
being used by the authors hpf and mpi give similar speeds, and hpf

was considered significantly simpler to program.

∗Department of Mechanical and Mechatronic Engineering, University of Sydney,
NSW 2006, Australia. mailto:s.norris@auckland.ac.nz

0See http://anziamj.austms.org.au/V42/CTAC99/Norr for this article and ancillary
services, c© Austral. Mathematical Soc. 2000. Published 27 Nov 2000.

mailto:s.norris@auckland.ac.nz
http://anziamj.austms.org.au/V42/CTAC99/Norr

Contents C1059

Contents

1 Introduction C1059

2 The Test Code C1060

3 Speed of the Test Code C1068

4 The CFD Code C1072

5 Conclusion C1074

References C1074

1 Introduction

Transient natural convection can be effectively modelled using a finite volume
cfd code. However to capture the fine detail of flow structures in 3D natural
convection problems places a considerable demand on cpu time and memory
size. This demand can be met by using supercomputers, but a low cost
alternative is to use a cluster of conventional workstations.

An existing time stepping 3D finite volume cfd code has been parallelised
to demonstrate the viability of using a workstation cluster to model 3D flows.
In the first part of the paper a test code is used to compare the use of a data

2 The Test Code C1060

parallel language (High Performance Fortran) with message passing libraries.
In the second section the conversion of the cfd code from Fortran 77 to High
Performance Fortran is discussed.

2 The Test Code

There are two methodologies for programming distributed memory computers—
message passing and data parallel languages. In order to compare these two
methods, a conjugate gradient solver, which accounts for approximately 90%
of the cpu time of the serial version of the cfd code, was implemented us-
ing High Performance Fortran (hpf) [6], a data parallel language, and the
Fortran interfaces to the mpi [4], [7] and pvm [3] message passing libraries.
The codes were run on a cluster of 32 DEC Alpha 500/266’s connected with
a 100Mb Ethernet switch. The hpf code was compiled using the Digital hpf

compiler, whilst the message passing codes were compiled using the Digi-
tal Fortran 90 compiler and the lam mpi library, and the public domain
implementation of pvm.

The algorithm for an unpreconditioned conjugate gradient solver [2], [5]
is given in Figure 1. The solver was implemented for a 3D finite volume
discretisation of Laplace’s equation upon a structured mesh with Dirichlet
boundary conditions, with the equations and solution field being stored in
three dimensional arrays corresponding to the nodes of the mesh. For sim-
plicity the arrays were partitioned across the processors in their third axis.

2 The Test Code C1061

p(0) = 0
r(0) = b − Ax0

for k = 1, 2, ...
ρk−1 = r(k−1)T

r(k−1)

if k = 1
β0 = 0

else
βk−1 = ρk−1

ρk−2

p(k) = r(k−1) + βk−1p
(k−1)

q(k) = Apk

αk = ρk−1

p(k)T q(k)

x(k) = x(k−1) + αkp
(k)

r(k) = r(k−1) − αkq
(k)

Check convergence. Continue if necessary

Figure 1: The unpreconditioned Conjugate Gradient algorithm.

INTEGER nx,ny,nz
REAL rho,r(nx,ny,nz)
!hpf$ DISTRIBUTE (*,*,block) :: r

rho = sum(r(2:nx-1,2:ny-1,2:nz-1)**2)

Figure 2: The hpf implimentation of a dot product operation.

2 The Test Code C1062

INCLUDE ’mpif.h’
INTEGER nx,ny,nz_local,stat
REAL rho,rdum,r(nx,ny,nz_local)

rho = sum(r(2:nx-1,2:ny-1,2:nz_local-1)**2)
call MPI_AllReduce(rho,rdum,1,MPI_REAL,MPI_SUM,MPI_COMM_WORLD,stat)
rho = rdum

Figure 3: The mpi implimentation of a dot product operation.

Table 1: Code sizes (in number of lines of code) for dot product and matrix-
multiply operations, and a conjugate gradient solver.

Method Dot Product Matrix-Vector Conjugate Gradient
Multiply Solver

hpf 4 6 22
mpi 6 15 36
pvm 15 16 54

2 The Test Code C1063

INCLUDE ’fpvm3.h’
INTEGER :: nx,ny,nz_local,stat,bufid,tid_parent,mtag=15
REAL rho,r(nx,ny,nz_local)
CHARACTER*(*) group

rho = sum(r(2:nx-1,2:ny-1,2:nz_local-1)**2)
call PvmfReduce(PvmSum,rho,1,Real4,mtag,group,0,stat)

call PvmfParent(tid_parent)
if (tid_parent.eq.PvmNoParent) then

call PvmfInitSend(PvmDataRaw,bufid)
call PvmfPack(Real4,rho,1,1,stat)
call PvmfBCast(group,mtag,stat)

else
call PvmfRecv(tid_parent,mtag,bufid)
call PvmfUnpack(Real4,rho,1,1,stat)

endif

Figure 4: The pvm implimentation of a dot product operation.

2 The Test Code C1064

INTEGER nx,ny,nz,i,j,k,l,noit
REAL, DIMENSION(nx,ny,nz) :: s,p,ae,aw,an,as,at,ab,ap
!hpf$ DISTRIBUTE (*,*,block) :: s,p,ae,aw,an,as,at,ab,ap

do l = 1,noit

forall(i=2:nx-1,j=2:ny-1,k=2:nz-1) &
s(i,j,k) = ae(i,j,k)*p(i+1,j,k) + aw(i,j,k)*p(i-1,j,k) &

+ an(i,j,k)*p(i,j+1,k) + as(i,j,k)*p(i,j-1,k) &
+ at(i,j,k)*p(i,j,k+1) + ab(i,j,k)*p(i,j,k-1) &
+ ap(i,j,k)*p(i,j,k)

enddo

Figure 5: The hpf implementation of a matrix vector multiply in an iter-
ative loop.

2 The Test Code C1065

INCLUDE ’mpif.h’
INTEGER :: nx,ny,nz_local,i,j,k,l,noit,id_previous, &

id_next,stat,req(4),mtag = 15
REAL, DIMENSION(nx,ny,nz_local) :: s,p,ae,aw,an,as,at,ab,ap
call MPI_RECV_INIT(p(1,1,nz_local),nx*ny,MPI_REAL,id_next,mtag, &

MPI_COMM_WORLD,req(3),stat)
call MPI_RECV_INIT(p(1,1,1),nx*ny,MPI_REAL,id_previous,mtag, &

MPI_COMM_WORLD,req(4),stat)
call MPI_SEND_INIT(p(1,1,2),nx*ny,MPI_REAL,id_previous,mtag, &

MPI_COMM_WORLD,req(1),stat)
call MPI_SEND_INIT(p(1,1,nz_local-1),nx*ny,MPI_REAL,id_next,mtag, &

MPI_COMM_WORLD,req(2),stat)
do l = 1,noit

call MPI_STARTALL(4,req,stat)
call MPI_WAITALL(4,req,status,stat)
forall(i=2:nx-1,j=2:ny-1,k=2:nz_local-1) &

s(i,j,k) = ae(i,j,k)*p(i+1,j,k) + aw(i,j,k)*p(i-1,j,k) &
+ an(i,j,k)*p(i,j+1,k) + as(i,j,k)*p(i,j-1,k) &
+ at(i,j,k)*p(i,j,k+1) + ab(i,j,k)*p(i,j,k-1) &
+ ap(i,j,k)*p(i,j,k)

enddo
do i = 1,4

call MPI_REQUEST_FREE(req(i),stat)
enddo

Figure 6: The mpi implementation of a matrix vector multiply in an itera-
tive loop.

2 The Test Code C1066

INCLUDE ’fpvm3.h’
INTEGER :: nx,ny,nz_local,i,j,k,l,noit,id_previous,id_next, &

stat,ibuf,mtag = 15
REAL, DIMENSION(nx,ny,nz_local) :: s,p,ae,aw,an,as,at,ab,ap
do l = 1,noit

! Left shift
call PvmfInitSend(PvmRaw,ibuf)
call PvmfPack(Real4,p(1,1,2),nx*ny,1,stat)
call PvmfSend(id_previous,mtag,stat)
call PvmfRecv(id_next,mtag,ibuf)
call PvmfUnpack(Real4,p(1,1,nz_local),nx*ny,1,stat)
! Right shift
call PvmfInitSend(PvmRaw,ibuf)
call PvmfPack(Real4,p(1,1,nz_local-1),nx*ny,1,stat)
call PvmfSend(id_next,mtag,stat)
call PvmfRecv(id_previous,mtag,ibuf)
call PvmfUnpack(Real4,p(1,1,1),nx*ny,1,stat)
forall(i=2:nx-1,j=2:ny-1,k=2:nz_local-1) &

s(i,j,k) = ae(i,j,k)*p(i+1,j,k) + aw(i,j,k)*p(i-1,j,k) &
+ an(i,j,k)*p(i,j+1,k) + as(i,j,k)*p(i,j-1,k) &
+ at(i,j,k)*p(i,j,k+1) + ab(i,j,k)*p(i,j,k-1) &
+ ap(i,j,k)*p(i,j,k)

enddo

Figure 7: The pvm implementation of a matrix vector multiply in an iter-
ative loop.

2 The Test Code C1067

For each iteration of the solver there are three saxpys, two dot products,
a matrix vector-multiply, and a reduction operation to determine conver-
gence. The saxpys are trivially parallel, but the dot product operations
require a global reduction/broadcast across all processors, and the matrix-
vector multiply requires a boundary swapping of data between neighbouring
processors.

The implementation of the dot product using hpf, mpi and pvm is shown
in Figures 2, 3 and 4 respectively. Whilst the dot product is a simple opera-
tion to code with both hpf and mpi, the pvm version is more complicated,
with a broadcast needed after the reduction, to return the final value back
to all processors.

In Fortran 90 the matrix-vector multiply can be implemented in a number
of ways; with do loops (as would be natural in Fortran 77), using the cshift

or eoshift intrinsics, using a forall block, or using Fortran 90 array oper-
ations. The speed of different implementations can vary by a factor of two,
and whilst the cshift intrinsic is the slowest on most platforms, on some
(the Thinking Machines CM-5 being an example) it is the fastest. For the
DEC Alpha using Digital Fortran the forall and Fortran 90 array forms of
the operation are fastest for both serial Fortran 90 code and code parallelised
using hpf, the forall form being shown in Figure 5.

With the message passing codes the matrix-vector operation can be im-
plemented in the same forms as the hpf code, with the additional step of a
swap operation between neighbouring processors to share elements at the ar-

3 Speed of the Test Code C1068

ray boundaries. The code is simplest when written with a dummy element at
the boundaries that are used in these swaps. For the mpi code the neighbour
swap operation can be implemented in a number of ways–the code here uses
a persistent communication request, or a “half channel”, with the communi-
cation pattern being initialised with the MPI * INIT calls, and then executed
with the MPI STARTALL and MPI WAITALL calls. The message passing versions
of the matrix-vector multiply are given in Figures 6 and 7.

The code sizes for the above code fragments and the complete conjugate
gradient solvers are given in Table 1. The message passing codes are in all
cases larger than the hpf codes. Extra care must be taken when writing
message passing codes to prevent deadlocks caused by mismatched send and
receive operations. Code must also be written to partition the data across the
nodes and to initialise the multiple processes—tasks which are done trans-
parently by the hpf codes.

3 Speed of the Test Code

For most modern architectures the speed of array operations is strongly de-
pendent on the array size, with memory banking, cache limits, start up time
of vector processors, and data partitioning all causing different behaviour on
different machines. For this reason the solver was tested for a range of array
sizes, typically in the range 103 to 1203.

3 Speed of the Test Code C1069

Program speeds were calculated on an unloaded cluster using wallclock
time, in an effort to account for the communication overhead. For each
array size enough iterations were done to ensure an overall runtime of several
seconds, with the conjugate gradient solver being restarted after every 100
iterations to ensure that the operations weren’t being performed on arrays
of zeros. Wallclock time was measured with the C gettimeofday call, which
gives a resolution in milliseconds with Digital Unix.

Since the data is quite “spiky” it has been smoothed in the following
graphs to aid readability. The speedups were calculated from the smoothed
data, since otherwise spurious non-linear speedups could occur on some mesh
sizes due to the poor performance of the single processor version of the code.
It should be noted that run times for a particular array size typically varied
between runs by less than 1%, so the variability of the speeds is real and not
experimental error.

The speed for a single DEC Alpha 500/233 is shown in Figure 8, as both
raw and smoothed data, using the version of the code written using the forall
construct for the matrix-vector multiply. The graph is typical for a modern
risc machine, with the speed increasing as the array sizes are increased, until
the arrays can no longer fit into the processor’s cache. When the size of the
cache is exceeded the speed drops off and is limited by the speed of memory
accesses from the main system memory. The large variation in speeds from
one array size to the next is also typical, with the extremely slow speeds for
arrays of 163, 323, 643 and 963 being a result of the memory banking scheme
breaking down for these sizes.

3 Speed of the Test Code C1070

0

10

20

30

40

50

60

70

80

90

0 10 20 30 40 50 60 70 80 90

S
pe

ed
 (

M
F

LO
P

S
)

Grid Size

Speed for DEC Alpha 500/233

0

1

2

3

4

5

6

7

8

9

0 20 40 60 80 100 120 140 160

S
pe

ed
up

Grid Size

Speedup for DEC Alpha 500/233 Cluster using Digital HPF (forall)

 2 cpu
 4 cpu
 6 cpu
 8 cpu
10 cpu

0

1

2

3

4

5

6

7

8

9

0 20 40 60 80 100 120 140 160

S
pe

ed
up

Grid Size

Speedup for 8cpu DEC Alpha 500/233 Cluster

HPF (cshift)
HPF (forall)
PVM
MPI

0

2

4

6

8

10

0 2 4 6 8 10

S
pe

ed
up

Number of Processors

Speedup for DEC Alpha 500/233 Cluster using Digital HPF (forall)

Grid Size
 20x20x20
 36x36x36
 44x44x44
 52x52x52
 68x68x68
 84x84x84
100x100x100
120x120x120

Figure 8: Speed of a single processor DEC Alpha 500/233, and speedup for
a DEC Alpha 500/233 Cluster.

3 Speed of the Test Code C1071

Also shown in Figure 8 is the speedup for the parallel versions of the
code, which all showed an initial increase in speedup with increasing array
size, with the speedup levelling off as the array reached a size of 403 to 703,
for cases of 2 to 10 processors respectively. The two and four processor
hpf codes showed a small region of superlinear speedup, where the data
for the parallel code fitted in cache, whilst the serial version exceeded the
cache size. Otherwise any gains in caching are offset by the increased relative
communication cost for small arrays, and for large arrays the speed is largely
constrained by memory access speeds.

For each cluster size, the hpf (forall) and mpi implementations gave sim-
ilar performance, with the hpf (cshift) and pvm codes being 5–50% slower.
The pvm code is slower than mpi for smaller array sizes, but as the array
sizes are increased the speed difference between the two codes decreases. This
was thought to be due to the high start-up overhead of the pvm implementa-
tion when compared with mpi. The comparative slowness of the hpf (cshift)
code when compared to the hpf (forall) implementation is due to the cshift
operations creating temporary arrays. This increases the memory used in an
operation that is limited by memory bandwidth, thus slowing the speed of
the operation.

The similarity of the speeds of the hpf (forall) and mpi codes means that
the choice between using a message passing library or a data parallel language
cannot be made in terms of performance, and must instead be made in terms
of ease of programming and the codes data structures. A single structured
mesh obviously fits easily within the hpf model, whilst a block decomposition

4 The CFD Code C1072

of a complex domain might be more easily coded using a message passing
model.

4 The CFD Code

The code to be converted was a 3D finite volume time stepping code that used
a structured Cartesian mesh [1]. The diffusion terms are discretised using
an implicit Crank-Nicholson time stepping scheme with second order differ-
encing in space, with the advection terms using an explicit Adams-Bashford
time stepping scheme with a third order upwind spatial discretisation. At
each time step the temperature and momentum equations are calculated,
and then a pressure correction equation is used to force continuity. In the
serial code the pressure equations were initially solved using an adi iterative
method. Since this wouldn’t easily parallelise it was converted to a Jacobi
preconditioned Conjugate gradient solver. This step alone resulted in a 5
times speed up of the code. To improve the robustness of the pressure cor-
rection step a BiCGSTAB solver was substituted for the Conjugate gradient
solver, with a marginal improvement in speed.

The code was then converted to hpf, with a rewriting of the operations
into Fortran 90 array operations and the addition of hpf directives. Run
times for the code running on the DEC Alpha cluster are shown in Figure 9
along with the speedups for different mesh and cluster sizes.

4 The CFD Code C1073

1

10

100

1000

10000

10 20 40 70 100

T
im

e
(S

ec
on

ds
)

Grid Size

Runtime for CFD code on DEC Alpha 500/233 Cluster

 1 cpu
 2 cpu
 4 cpu
 6 cpu
 8 cpu
10 cpu

0

2

4

6

8

10

0 2 4 6 8 10

S
pe

ed
up

Number of Processors

Speedup of CFD code on DEC Alpha 500/233 Cluster

 Mesh Size
 20x20x20
 36x36x36
 44x44x44
 52x52x52
 68x68x68
 84x84x84
100x100x100

Figure 9: Runtime and speedup for cfd code on DEC Alpha 500/233
Cluster. The code was modelling transient natural convection in a cubic
cavity, with ∆t/∆x being kept constant to ensure a uniform Courant number
for all mesh sizes.

5 Conclusion C1074

As can be seen the speedup characteristics are broadly similar to those of
the test programs, and the runtime increases as the fifth power for moderate
to large problems.

5 Conclusion

A cfd code has been converted to run on a workstation cluster by rewriting
it into High Performance Fortran (hpf). The use of hpf shows no disad-
vantages in terms of speed when compared to message passing systems, but
eases the programming of the code. Good speedup is shown for a cluster of
2–10 workstations.

References

[1] S. W. Armfield and R. Janssen. Direct simulation of travelling wave
instability in steady state convection. Heat and Fluid Flow, 17:539–546,
1996. C1072

[2] R. Barrett, M. Berry, T. Chan, J. Demmel, J. Donato, J. Dongarra,
V. Eijkhout, R. Pozo, C. Romine, and H. van der Vorst. Templates for
the Solution of Linear Systems. SIAM, Philadelphia, 1994. C1060

References C1075

[3] A. Geist, A. Beguelin, J. Dongarra, W. Jiang, R. Manchek, and
V. Sunderam. PVM: Parallel Virtual Machine, A Users’ Guide and
Tutorial for Networked Parallel Computing. MIT Press, Cambridge,
Massachusetts, 1994. C1060

[4] W. Gropp, E. Lusk, and A. Skjellum. Using MPI: Portable Parallel
Programming with the Message–Passing Interface. MIT Press,
Cambridge, Massachusetts, 1994. C1060

[5] M.R. Hestenes and E. Stiefel. Methods of conjugate gradients for
solving linear systems. Journal of Research of the National Bureau of
Standards, 49(6):409–437, 1952. C1060

[6] C.H. Koelbel, D.B. Loveman, R.S. Schreiber, G.L. Steele Jr, and M.E.
Zosel. The High Performance Fortran Handbook. Scientific and
Engineering Computation Series. MIT Press, Cambridge,
Massachusetts, 1994. C1060

[7] M. Snir, S. Otto, S. Huss-Lederman, D. Walker, and J. Dongarra.
MPI–The Complete Reference: Volume 1, The MPI Core. MIT Press,
Cambridge, Massachusetts, second edition, 1998. C1060

	Introduction
	The Test Code
	Speed of the Test Code
	The CFD Code
	Conclusion
	References

