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Two defence applications involving

discrete valued optimal control
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Abstract

We present two examples of optimal discrete valued con-

trol problems which arise in defence applications. The first

one involves the management of batteries in a submarine.

In the second example, one wishes to determine an optimal

transit path for a submarine through a field of sonar sensors,

subject to a total time constraint. A recently developed nu-

merical solution technique for discrete valued optimal con-

trol problems is used to solve both of these problems. We

present numerical results for each example.

∗Department of Mathematics and Statistics, Curtin University of

Technology, GPO Box U 1987, Perth 6845, Australia.

mailto:rehbock@maths.curtin.edu.au
†as above. mailto:caccetta@maths.curtin.edu.au
0See http://anziamj.austms.org.au/V44/E046 for this article, c© Austral.

Mathematical Soc. 2002. Published July 9, 2002. ISSN 1446-8735

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Australian Mathematical Society (AustMS): E-Journals

https://core.ac.uk/display/230868484?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:rehbock@maths.curtin.edu.au
mailto:caccetta@maths.curtin.edu.au
http://anziamj.austms.org.au/V44/E046


Contents E34

Contents

1 Introduction E34

2 Problem Formulation and Solution Strategy E35

3 The Optimal Battery Recharge Problem E39

3.1 The Optimal Control Model . . . . . . . . . . . . E40
3.2 Solution Strategy . . . . . . . . . . . . . . . . . . E41
3.3 Numerical Results . . . . . . . . . . . . . . . . . . E42

4 The Optimal Transit Path Problem E45

4.1 The Optimal Control Model . . . . . . . . . . . . E46
4.2 Results . . . . . . . . . . . . . . . . . . . . . . . . E49

5 Conclusions E52

References E53

1 Introduction

Consider a general class of optimal control problems where the con-
trol functions are assumed piecewise constant and only allowed to
take values from a finite discrete set. The aim in such a problem is
to find a sequence of discrete control values and a corresponding set
of switching times such that a given cost functional is minimized.
The difficulty here is that the range set of the control is discrete
and hence not convex. Furthermore, choosing the optimal sequence
of elements from the control set in an appropriate order is a non-
linear combinatorial optimization problem. Up until recently, even
finding the exact switching times for a given control sequence was
considered a numerically difficult problem, as the gradient of the
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cost functional with respect to these switching times is known to be
discontinuous [7]. However, a novel technique known as the Con-
trol Parametrization Enhancing Transform (cpet) was developed
in [4, 5, 6] to overcome this and other difficulties. The cpet is
briefly explained in the context of discrete valued optimal control
problems. We then consider two application examples arising in
defence science.

2 Problem Formulation and Solution

Strategy

Consider a process described by the following system of nonlinear
autonomous differential equations on (0, tf ] :

ẋ = f(x, u) , x(0) = x0 , (1)

where x ∈ IRn is the state vector, u ∈ IRr is the control vector and
tf is the terminal time. The function f : IRn×IRr → IRn is assumed
to be continuously differentiable with respect to all its arguments.
Consider a piecewise constant function u : [0, tf) → U where U

is a finite set in IRr. If u has a finite number of discontinuities or
switching points, we refer to it as an admissible control. Let U be
the class of all such admissible controls. Note that for a given u ∈ U ,
f(x, u) may be discontinuous in time at the switching points of u.
Denote these switching points as t1, t2, . . . , tN and also define t0
and tN+1 such that 0 = t0 < t1 < · · · < tN < tN+1 = tf . The
discrete valued optimal control problem is then defined as follows.
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Problem (P U): Given the dynamical system (1), find u ∈ U such
that the cost functional

J0(u) = Φ0(x(tf)) +
∫ tf

0
L0(x, u) dt (2)

is minimized subject to the constraints:

Ji(u) = Φi(x(tf )) +
∫ tf

0
Li(x, u) dt

{
= 0 , i = 1, 2, . . . , Ne ,
≥ 0 , i = Ne + 1, Ne + 2, . . . , NT .

(3)

A control u ∈ U is said to be a feasible control if it satisfies the
constraints (3). Let F(U) be the set of all such feasible controls.
We assume that F(U) is non empty, and that Problem (P U) admits
a solution.

Assumption 1 A solution of (P U) has a finite number of switch-
ings.

Suppose that U = {u1, u2, . . . , um} . We want to determine an
optimal sequence in which elements from U occur as well as the
switching times corresponding to this sequence. Let us initially
solve the problem for a fixed number of N switchings. Construct
a set {bi}

M
i=1 , M = (N + 1)m , where bi = u((i−1) mod m)+1, i =

1, 2, . . . , M . Then any u ∈ U which has N switchings can be written
as

u(t) = bi , t ∈ [τi−1, τi) , (4)

where the τi ∈ [0, tf ] satisfy 0 = τ0 ≤ τ1 ≤ τ2 ≤ · · · ≤ τM−1 ≤ τM =
tf . Note that u is now determined only by τi , i = 1, 2, . . . , M − 1 .
We then solve Problem (P N

U
), which is to determine a set of τi ,
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i = 1, 2, . . . , M−1 , such that the resulting uN minimizes (2) subject
to (3).

Note that a solution of Problem (P N
U

) is only optimal with re-
spect to a fixed number of switchings N . The question of actually
finding the optimal number of switchings has not been solved for
the general class of problems considered here. In addition, the ap-
proach outlined here cannot guarantee that we obtain the globally
optimal sequence of controls. In some practical problems, such as
the application examples given later, this is not particularly impor-
tant, but in others, it is. A reasonable heuristic approach is to start
with a fixed N and solve the Problem (P N

U
). We then increase N

and solve (P N
U

) again. If there is no decrease in the optimal cost,
we assume the previous value of N to yield the optimal number of
switchings. Otherwise we increase N further. Under Assumption 1,
we will not have to increase N indefinitely.

For a given set {τi}
M
i=0 , the right hand side of the dynamics

may be discontinuous as a function of t at τi , i = 1, 2, . . . , M − 1 .
Because of the manner in which they appear in the problem, there
are a number of numerical difficulties when trying to calculate the
optimal τ1 , τ2 , . . . , τM−1 in a conventional way [5]. To overcome
these, we employ the Control Parametrization Enhancing Technique
(cpet) developed in [4, 5, 6].

We introduce the new time variable s ∈ [0, M ] . Let V denote the
class of non-negative piecewise constant scalar functions defined on
[0, M) with fixed switching points located at {1, 2, 3, . . . , M − 1} .
The transformation (cpet) from t ∈ [0, tf ] to s ∈ [0, M ] is defined
by

dt

ds
= v(s) , t(0) = 0 , (5)

where the scalar function v ∈ V , v(s) = τi − τi−1 for s ∈ [i − 1, i) ,
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is called the enhancing control. We also impose the constraint

∫ M

0
v(s) ds = tf . (6)

Under the cpet, each admissible control u(t) ∈ U given by (4) is
transformed into µ , where µ(s) = bi , s ∈ [i − 1, i), i = 1, 2, . . . , M .
Whereas the fixed function µ contains many artificial switchings to
allow all the possible orderings of the sequence of discrete control
values to be considered when solving the transformed problem, these
do not have any bearing on the original problem, since if v(s) = 0
on [i− 1, i) , then τi−1 = τi and there is no switching in the original
time scale.

We now transform Problem (P N
U

) . Note that by substituting (5)
into (1), (2) and (3), we obtain the following equivalent problem.

Problem (P̃ N
U

): Subject to the system equations and initial con-
dition

dx

ds
= v(s) f(x(s), µ(s)) , x(0) = x0 , (7)

and the constraints

Ĵi(v(s)) = Φi(x(M)) +
∫ M

0
v(s)Li(x(s), µ(s)) ds

{
= 0 , i = 1, 2, . . . , Ne ,
≥ 0 , i = Ne + 1, . . . , NT ,

(8)

find a v ∈ V satisfying (6) such that the cost functional

Ĵ0(v(s)) = Φ0(x(M)) +
∫ M

0
v(s)L0(x(s), µ(s)) ds (9)

is minimized. We denote the feasible subset of V as F(V) where
feasibility relates to (6) and (8). Note that, rather than finding a
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set of feasible switchings τ1 , τ2 , . . . , τM−1 to minimize (2), (P̃ N
U

)
seeks to find v(·) ∈ F(V) to minimize (9). All switching points of
the original control are mapped onto the set of integers in chronolog-
ical order. Piecewise integration can now be performed easily since
all points of discontinuity in the s-domain are known and fixed.
Moreover, v(·) ∈ V is a piecewise constant function and hence

Problem (P̃ N
U

) is readily solvable by the optimal control software
MISER3.2 [3]. For any ŝ ∈ [0, M ] , the corresponding t̂ ∈ [0, tf ] is
given by t̂ = t(ŝ) =

∫ ŝ
0 v(s) ds , so the state and the control histories

of the original problem defined on [0, tf) can be reconstructed easily.

3 The Optimal Battery Recharge

Problem

Consider a submarine with three diesel generators, each of which
is operated in either ordinary mode or in supercharged mode. The
aim of a battery recharge plan is to optimally choose a strategy
of running the generators in a number of possible modes and for
varying lengths of time over a given period in order to maintain
charge in the battery bank. We need to decide how many recharge
intervals to employ, how many engines to run during each recharge
interval and what mode these should be run in, while allowing the
submarine to travel a fixed distance.

The primary objective is the minimization of the total recharge
time in order to minimize exposure of the vessel to the enemy. The
objective function should also reflect the fact that the various modes
of operation result in different levels of exposure. Finally, it should
take into account the need to maintain a reasonable charge level in
the battery banks.
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3.1 The Optimal Control Model

The optimal control model comprises of the battery recharge dy-
namics, the objective functional and a set of constraints. We start
with a time horizon [0, tf ] and let C(t) denote the charge state of
the battery pack at time t. The speed of the vessel is denoted by
the control function s(t) . We assume that the speed remains con-
stant over each individual discharge or recharge interval. Note that
s(t) is not a discrete valued control, since it is allowed to take on
any value between the bounds given below. We define two discrete
valued control functions whose values depend on how many engines
are running at any given time and the mode of operation:

• u1(t) indicates what fraction of full mechanical power is being
produced by the engines at time t;

• u2(t) gives an indication of the level of noise produced by the
combination and mode of operation of generators operating at
time t.

The values of u1 and u2 for the various possible operational modes
are given in Table 1. For the u2 values, unoise is a parameter which
represents the noise power output of a single engine running in nor-
mal mode. The subsequent values of u2 then assume that noise
power increases linearly with the number of engines used and by 50%
when engines are run in supercharged instead of normal mode.
These values would be calibrated as required for an actual sub-
marine. Note that there is a total of only 7 operational modes. The
charge dynamics are given by Ċ(t) = R(t, u1(t)) − D(t, s(t), u1(t)) ,
C(0) = Cstart , where R(t, u1(t)) = 20000 u1(t)/[C(t) + 100] and

D(t, s(t)) =

{
s2(t)/120 + 8 , if u1(t) 6= 0 ,
s2(t)/80 + 5 , if u1(t) = 0 .
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Operational Mode (engines) Value of u1 Value of u2

Discharging (none running) 0 0
Recharging (one normal) 0.2564 unoise

Recharging (one supercharged) 0.3333 1.5 × unoise

Recharging (two normal) 0.5128 2.0 × unoise

Recharging (two supercharged) 0.6666 3.0 × unoise

Recharging (three normal) 0.7692 3.0 × unoise

Recharging (three supercharged) 1.0 4.5 × unoise

Table 1: Values of u1 and u2 .

Subject to these dynamics, we then want to minimize
∫ tf

0

{
α(100 − C(t))2 + β ln(u2(t) + 1)

}
dt .

The first term in this objective measures the deviation of the charge
state from the full level, while the second term measures the expo-
sure of the vessel due to recharging. The weights α and β are chosen
appropriately. We impose a number of constraints on the problem.
The speed of the vessel is restricted to between 5 and 60 km/h, that
is, s(t) ∈ [5, 60] for all t ∈ [0, tf ] . The submarine must cover a

distance of L kms, that is,
∫ tf
0 s(t) = L . We place bounds on the

charge state of the battery:

20 ≤ C(t) ≤ 100 , for all t ∈ [0, tf ] . (10)

Finally, we ensure that the submarine ends the journey with a suf-
ficiently high charge state, that is, C(tf) ≥ Cmin .

3.2 Solution Strategy

While this model is an example of a discrete valued optimal control
problem, there are two additional features which we did not consider
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in Problem (P U). First, in addition to the discrete valued control
functions, we have the control s(t) which can take any value in the
given interval. Assuming that this additional control is a piecewise
constant function which switches at the same time points as the
discrete valued controls, there are no difficulties to incorporate it.
Even if different switching points for s(t) are desired, this is easily
achieved by a simple increase in the number of allowable switchings.
The second additional feature is the existence of the all time state
constraints (10). They are dealt with using the method described
in [2], already incorporated into the MISER3.2 software.

3.3 Numerical Results

We consider the following parameter settings: tf = 24 , Cstart =
100 , unoise = 10 , L = 840 and Cmin = 20 . We assume that any
type of recharge interval can occur a maximum of 10 times over the
time horizon and calculate optimal solutions for various values of
α and β . For example, α = 0.001 and β = 1 results in the solution
shown in Figures 1 and 2. The values along the vertical axis in
Figure 2(b) are interpreted as follows: 0 ≡ no engine running; 1 ≡
one engine (normal mode); 2 ≡ one engine (supercharged); 3 ≡
two engines (normal mode); 4 ≡ two engines (supercharged); 5 ≡
three engines (normal mode); and 6 ≡ three engines (supercharged).
Lower values of β result in extended periods of recharging which is
unlikely to be acceptable in practise. Much larger values of β yield
solutions where the charge state is repeatedly driven to the lower
bound, which is also not acceptable. Note that, for nearly all of the
cases when β > 1 , recharging is carried out with all three engines
running in supercharged mode. Also, the final charge state is often
driven down a long way. This may be undesirable for a practical
implementation, as a low charge state reduces manoeuvrability and
combat readiness. However, raising the value of Cmin does result in
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Figure 1: Optimal Capacity as a function of time: α = 0.001 ,
β = 1 .

a more acceptable solution.

The fact that recharging is almost exclusively carried out with
all engines running in supercharged mode is a reflection of how we
modelled the noise term in the objective functional, including our
particular choice of the unoise value. The reasoning for choosing
unoise = 10 is that it reflects the operational reality that there is a
significant difference between no recharging (u2 = 0) and recharg-
ing with even just one engine running in normal mode (u2 = 1),
particularly when the added danger of being surfaced is taken into
account. Consequently, there is then a relatively small difference
in the ‘noise’ produced when one engine is running as compared to
the case of all three engines running. To then minimize the total
recharge time, the optimal solution consequently chooses to recharge
as quickly as possible, that is, with as many engines as possible, all
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Figure 2: Optimal speed profile, (a), and optimal engine manage-
ment, (b), over time: α = 0.001 , β = 1 .
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in supercharged mode. By modifying this aspect of the objective
functional, we have been able to obtain solutions which are quali-
tatively very different. However, it is felt that these modifications
make the model too unrealistic.

Finally, note that it is possible to modify the model in a num-
ber of practical ways. For example, by adding an appropriately
weighted term to the objective functional, we discourage recharging
over certain time intervals if there is more danger in the submarine
surfacing during those periods.

4 The Optimal Transit Path Problem

Here we consider the problem of determining a safe path which a
submarine should follow through a field of sonar sensors. Each of
the sensors detects the presence of the submarine with a proba-
bility which is a given function of the distance between the two
and of the speed of the submarine. This function is not a simple
analytical expression, but depends upon a range of factors, includ-
ing the characteristics of the ocean floor and ocean surface, depths
of the sensor and the submarine, and the temperature and salin-
ity of the water. See [1] and the references cited therein for more
details. In this paper, we use probability of detection functions
reported in [1], constructed under the assumptions that the geo-
graphic location and environmental conditions are known and that
the submarine remains at a constant depth. Each of the functions
are constructed for a particular constant vessel speed. While there
are still further factors influencing the probability of detection, the
functions from [1] contain sufficient detail to test the feasibility of
the proposed method.

The objective then is to find a transit path between two fixed



4 The Optimal Transit Path Problem E46

positions in the region of interest which will minimize the overall
probability of detection while still satisfying a maximum time con-
straint.

Previous work in this area [1] has concentrated on creating a
network structure over the sensor field and then using network opti-
mization techniques and heuristic search procedures to find optimal
paths in terms of node and arc sets. Here, we propose an optimal
control formulation with a simple dynamical system to describe the
movement of the vessel. The resulting problem is a discrete valued
optimal control problem.

4.1 The Optimal Control Model

The region of interest is modelled by the Cartesian plane with co-
ordinates (x, y) indicating the latitudinal and longitudinal distance
from the origin in kilometres, where the origin is assumed to be
the starting point of the journey. We let (x(t), y(t)) represent the
(point) location of the submarine at time t, assumed to be governed
by

ẋ(t) = s(t) cos θ(t) , ẏ(t) = s(t) sin θ(t) , x(0) = y(0) = 0 ,
(11)

where θ(t) represents the heading angle of the vessel in radians and
s(t) is the speed of the vessel in km/h. Note that θ and s are control
functions here, subject to the constraints

0 ≤ θ(t) ≤ 2π , s(t) ∈ {8, 14} , for all t ∈ [0, tf ) , (12)

where tf is the terminal time of the journey. Clearly, s(t) is a
discrete valued control function. Physically, a discrete valued vessel
speed is obviously not realistic. However, at the planning level, it
is natural for human operators to think of the journey in terms of
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discrete stages with each stage corresponding to a constant speed
section of the journey.

Suppose that a total of ns sensors are located at positions (xi, yi) ,
i = 1, 2, . . . , ns , in the field. We assume for simplicity that these
positions remain fixed during the journey and that the sonars are
all of the same type with the same detection capabilities. Either of
these assumptions can easily be relaxed in the model and solution
method described below. At any instant of time, the distance of the
submarine from each sensor is

ri(t) =
√

(x(t) − xi)2 + (y(t) − yi)2 , i = 1, . . . , ns .

For each given vessel speed s, a probability of detection profile,
p(r, s) is constructed as a function of the physical distance r(t) .
For the purposes of our model, we use a cubic spline interpolation
of the data in [1], as illustrated in Figure 3. Note that a separate
profile is required for each vessel speed.

Assuming that the sensors operate independently, the instanta-
neous probability of the vessel being detected is then

Pr(x(t), y(t), s(t)) = 1 −
ns∏

i=1

[1 − pi(ri(t), s(t))] ,

where pi(ri(t), s(t)) , i = 1, . . . , ns , are the probabilities of being
detected by the individual sensors.

Our aim is to minimize the cumulative probability of being de-
tected over the entire journey. This is equivalent to minimizing the
objective functional

g(θ, s, tf) =
∫ tf

0
Pr(x(t), y(t), s(t)) dt . (13)
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Figure 3: Probability of detection curves corresponding to speeds
of 14 km/h and 8 km/h, interpolated from the data in [1].

Note that the submarine must arrive at its intended destination,
so we have the terminal state constraints

x(tf ) = xf , y(tf) = yf . (14)

The terminal time, tf , is variable in this problem, with

tf ≤ Tmax . (15)

In summary, then, the optimal control model of the submarine tran-
sit path problem is: Find a terminal time tf (satisfying (15)), and
control functions θ(t) and s(t) (satisfying (12)) such that the objec-
tive functional (13) is minimized subject to the vessel dynamics (11)
and the constraints (14).

Once again, we are dealing with a discrete valued optimal control
problem. As for the optimal battery recharge problem, here we have
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a control function, θ(t) , which is not discrete valued. However, as
before, with some mild assumptions stated below, this can also be
easily incorporated into the cpet.

We need to set a limit to the number of course/speed switchings
to be allowed. Note that the heading angle control function, θ(t) ,
is modelled as a piecewise constant function, which is natural, given
that the heading angle ought to remain constant between course
changes. For simplicity, we assume that the switching times for the
course changes coincide with switching times for the speed changes.
This may appear to be restrictive, but since we allow for only one
of the controls to change values at a particular switching time, full
generality of the control is preserved. A submarine commander is
unlikely to implement a solution which involves an excessive num-
ber of course/speed changes, so we assume a maximum number of
switchings N .

4.2 Results

We have restricted our examples to sonar fields with ns = 4 sen-
sors. We choose x0 = 0 , y0 = 0 , xf = 80 and yf = 80 . For our
simulations, the sonar sensors are located at

{(20, 60), (40, 60), (60, 60), (70, 10)}

relative to the starting point of the journey. We assume that the
journey is to be completed within a day, so Tmax = 24 . Further-
more, we allow a maximum of N = 72 course or speed changes. We
use the probability of detection curves shown in Figure 3. The solu-
tion is illustrated in Figure 4, where the transit path is indicated by
the thin white line. Note that the thick circular white lines indicate
regions where the probability of detection is extremely high and
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these correspond to the peaks of the curves in Figure 3 at approx-
imately 63 km. A feature of the solution not immediately obvious
from the figure is that the speed of the vessel changes according to
the level of danger present in the various sections of the paths. It
can be seen the transit path stays close to low danger areas as long
as it is not forced into a major detour. If this is not possible, the
path does end up crossing high probability of detection regions a
number of times. When these high danger areas are traversed, con-
trary to what one might expect, the optimal solution is to do so at
the high speed. In this manner, the total amount of time spent in
the high danger regions is reduced, and thus the cumulative effect
of exposure is minimized. This is clearly a direct reflection of the
objective function used in our model, which implicitly seeks to min-
imize the total transit time. Since even short time periods spent
in high danger areas are highly undesirable, the chosen objective
function may require modifications to more accurately reflect the
needs of vessel operators.

The time duration for the optimal path of the above problem
is 12 hours and 53 minutes, less than the allowed 24 hours, that
is, the total time constraint is not active for this solution. To see
the behaviour in the case of when the time constraint is active, we
have a simulation where Tmax = 10 . The resulting path takes a
more direct route, going almost diagonally from the start to the
finish point. The duration and number of high speed intervals is
also greater in this case, as expected.

Our numerical studies have shown that, for some sensor pat-
terns and probability of detection profiles, the solutions obtained
are highly dependent on the initial guesses provided to the soft-
ware. In other words, the solutions we have obtained here are only
local optima. It is quite easy to see the reason for this in the proba-
bility of detection pattern resulting from the sensor field. There are
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Figure 4: Optimal transit path is the thin white line through four
detectors at the middle of the circles.
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many possible paths to the destination and once the basic move-
ments are determined (as a consequence of the initial guess), it is
unlikely that they are altered again during the optimization to yield
a qualitatively different path. Despite this drawback, the optimal
control approach to the transit path problem is clearly able to gen-
erate good locally optimal solutions. In addition, it is quite easy
to incorporate more complex path constraints and dynamics, rather
than static, sensor patterns. The authors are currently developing
global optimization strategies for this problem.

5 Conclusions

We have presented two practical problems arising in defence science,
both modelled as optimal control problems. In each case, some of
the controls are discrete valued. A brief review of a general class of
discrete valued optimal controls was presented, along with a solu-
tion strategy via the Control Parametrization Enhancing Transform.
Numerical results are given for both application examples.
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