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Smooth particle hydrodynamics in
cylindrical coordinates

Leigh Brookshaw∗

(Received 1 June 2001; revised 9 October 2001)

Abstract

A derivation of the equations of Smooth Particle Hy-
drodynamics (sph) in axisymmetric cylindrical coordinates
is presented. The cylindrical sph formulation is tested by
solving two dimensional shock problems.
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1 Introduction

Smoothed Particle Hydrodynamics (sph) is a Lagrangian method
with many attractive features. It is robust, simple to program,
and three dimensions are handled as easily as one. sph is used ex-
tensively in astrophysical problems where flows are hydrodynamic,
three dimensional and self gravitating [1]. The method can model
shocks and has been extended to incorporate material strength with
the solution of the stress and strain tensors [2].

The conceptual simplicity of the sph formulation means that
many problems can easily be cast into a three dimensional rectan-
gular Cartesian sph form. The resolution of a three dimensional
sph calculation is proportional to the cube root of the number of
Lagrangian interpolation points used in the problem. This means
that computational effort can increase dramatically if a higher reso-
lution is required—in this situation a two dimensional axisymmetric
formulation of sph is required.
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Some axisymmetric sph algorithms have been formulated [3, 4,
5, 6, 7]. None of these formulations seem to have been tested as
extensively as the original rectangular Cartesian sph formulation.
The method of Petschek and Libersky [7] is the most self consis-
tent but suffers from a complex formulation and can only work with
a Gaussian interpolation kernel, which in general is no longer em-
ployed in sph calculations as it lacks compact support. Apart from
the method of Petschek and Libersky none of the other formula-
tions incorporate the hoop stress expected to appear in cylindrical
coordinates.

In this paper we turn to a Lagrangian formulation to construct
the sph equations of motion in two dimensional axisymmetric cylin-
drical coordinates [8]. This method produces equations that natu-
rally conserve energy and contain the expected hoop stress.

2 Equations of Motion

The sph method is a linear interpolation method that can be written
in the form

〈A(s)〉 =

∫
2D

A(s′)W (s− s′; h) ds′ , (1)

in the cylindrical coordinate system s = (r, z) , where A(s) is the
function interpolated, W is the interpolation kernel, and h is the
smoothing length of the kernel. As in the standard rectangular
Cartesian coordinate system the kernel must mimic a delta function
in the limit h → 0 . The most widely used kernel is based on the
central B spline M4 [9].

If the interpolation points are distributed in the two dimensional
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cylindrical space with a number density n(s) then

〈A(s)〉 ≈
∑

j

A(sj)

n(sj)
W (s− sj; h) . (2)

If we assign a mass to each interpolation point, then the two dimen-
sional density η is

η(s) = mn(s) = 2πrρ , (3)

where ρ is the density in three dimensional space. The two dimen-
sional cylindrical density can therefore be calculated directly from
the particles by

η(s) =
∑

j

mjW (s− sj; h) . (4)

2.1 Lagrangian Formulation

The original energy and momentum conserving formulation of the
sph equations was constructed by starting with a Lagrangian and
assuming isentropic flow. This Lagrangian formulation produced
a surprising set of sph equations that have now become the stan-
dard. We will follow the same procedure to construct the basic sph
equations in cylindrical coordinates.

The Lagrangian for an isentropic compressible fluid is [10]

L =

∫
T − E(ρ) dm , (5)

where T is the specific kinetic energy, E is the specific internal
energy, and ρ is the density. In the cylindrical coordinates (r, z) the
Lagrangian becomes

L = 2π

∫∫ (
1

2
ṙ2 +

1

2
ż2 − E(ρ)

)
ρr dr dz , (6)
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where a dot over r and z represents the derivative with respect to
time t and we have used dm = 2πρr dr dz .

The total kinetic and thermal energies in sph, are calculated
directly from the particles. To use the Lagrangian (6) to derive the
sph equations, the integral must be converted to a summation,

L =
N∑

j=1

mj

(
1

2
ṙ2
j +

1

2
ż2

j − E(ρj)

)
, (7)

where the summation is over all the particles i = 1, . . . , N . The
sph equations of motion are given by Lagrange’s equations using
the Lagrangian (7) and the fact that the density on particle i at si

from (4), is

ρi =
1

2πri

N∑
j=1

mjW (si − sj; h) . (8)

The Lagrangian equation for the r-component is

mir̈i +
∑

j

mj
∂E(ρj)

∂ri

= 0 . (9)

Expanding the summation in E we get

mir̈i + mi
∂E(ρi)

∂ρi

∂ρi

∂ri

+
N∑

j=1

j 6=i

mj
∂E(ρj)

∂ρj

∂ρj

∂ri

= 0 . (10)

Using the definition of density, equation (10) becomes

mir̈i + mi
Pi

ρ2
i

(
− ηi

2πr2
i

+
1

2πri

N∑
j=1

mj
∂Wij

∂ri

)

+ mi

N∑
j=1

mj

2πrj

Pj

ρ2
j

∂Wij

∂ri

= 0 , (11)
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where we have assumed that the fluid is isentropic, P is the pressure,
Wij = W (ri − rj; h) and the symmetry of the kernel Wij = Wji has
been used.

Following the same procedure for the z component, the equations
of motion are

r̈i = 2π
Pi

ηi

− 2π
N∑

j=1

mj

(
Piri

η2
i

+
Pjrj

η2
j

)
∂Wij

∂ri

, (12)

z̈i = −2π
N∑

j=1

mj

(
Piri

η2
i

+
Pjrj

η2
j

)
∂Wij

∂zi

. (13)

The first term of equation (12) is the term that provides the ‘hoop’
stress. This stress appears in the equations because an sph interpo-
lation point can be viewed as a “smeared out” particle or mass hoop
with an internal pressure. This means that the pressure force on the
outside surface of the hoop, or the surface with the greater radius, is
larger than the inner surface, or the surface with the smaller radius.
This produces a net outward force on the sph mass ‘hoop’.

These equations are similar in structure to the Cartesian sph
equations. Like the rectangular Cartesian sph equations they can
also be constructed without recourse to a Lagrangian (in hindsight).
Starting with the equation of motion for the coordinate r,

r̈ = −1

ρ

∂P

∂r
, (14)

we first note
∂P

∂r
=

1

r

(
∂(rP )

∂r
− P

)
, (15)

and
1

η

∂(rP )

∂r
=

∂

∂r

(
rP

η

)
+

rP

η2

∂η

∂r
. (16)
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Combining both equations, we get

r̈ = −1

ρ

∂P

∂r
= 2π

P

η
− 2π

(
∂

∂r

(
rP

η

)
+

rP

η2

∂η

∂r

)
. (17)

This equation, when converted into an sph interpolation form, will
give equation (12). Equation (13) follows similarly.

3 Continuity Equation

For exact mass conservation the continuity equation can be replaced
with the density interpolant equation (4). For some problems how-
ever, the continuity equation needs to be solved explicitly.

The continuity equation, in the cylindrical coordinates (r, z) is

∂ρ

∂t
+

ρ

r

∂

∂r
(r ṙ) + ρ

∂ż

∂z
= 0 . (18)

It can be rewritten in terms of the two dimensional density η, such
that

∂η

∂t
+ D · (ηṡ)− ṡ ·Dη = 0 , (19)

where ṡ = (ṙ, ż) and the differential operator D is defined as

D = r̂
∂

∂r
+ ẑ

∂

∂z
(20)

This equation, converted into an sph form, becomes

∂ηi

∂t
=

N∑
j=1

mj (ṡi − ṡj) ·DiWij . (21)
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4 Energy Equation

In the absence of sources and sinks the rate of change of the specific
thermal energy E is

dE

dt
= −P

ρ
∇ · ṡ , (22)

= − P

rρ
ṙ − P

ρ
D · ṡ . (23)

There are many ways this equation can be written in a form suitable
for sph. For example, starting with the identity

Pr

η
D · ṡ = D ·

(
Prṡ

η

)
− ṡ ·D

(
Pr

η

)
, (24)

we find the following sph equation for the energy of particle i

dEi

dt
= −2π

Pi

ηi

ṙi + 2π
N∑

j=1

mj
Pjrj

η2
j

(ṡi − ṡj) ·DiWij . (25)

Using the identity

ηD · v = D · (ṡη)− ṡ ·Dη , (26)

we get the alternate sph energy equation

dEi

dt
= −2π

Pi

ηi

ṙi + 2π
Piri

η2
i

N∑
j=1

mj (ṡi − ṡj) ·DiWij . (27)

Or combining both equations

dEi

dt
= −2π

Pi

ηi

ṙi + π
N∑

j=1

mj

(
Piri

η2
i

+
Pjrj

η2
j

)
(ṡi − ṡj) ·DiWij . (28)
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The first term in the sph energy equation is the energy change
associated with the ‘hoop’ stress.

In the tests that follow equation (28) was used throughout and
energy was found to be conserved to five significant figures.

5 Artificial Viscosity

If shock phenomena is to be modelled using the sph equations then
an artificial viscosity must be added to the equations to dampen
post shock oscillations in the solution and to prevent particle inter-
penetration in high Mach number collisions.

We follow the rectangular Cartesian sph formulation of [11]
and [12] by writing the momentum equations as

dṡi

dt
= 2π

Pi

ηi

Diri−2π
N∑

j=1

mj

(
Piri

η2
i

+
Pjrj

η2
j

)(
1− αµij + βµ2

ij

)
DiWij ,

(29)
where α and β are non-dimensional constants, and

µij =


hṡij · sij

c(s2
ij + ζ2)

, ṡij · sij < 0 ;

0 , ṡij · sij > 0 ;
(30)

where c is the maximum sound speed, and sij = si − sj .

The viscosity is zero for particles moving away from each other
and positive for particles approaching each other.

Following the procedure in [13], it is easy to show in the limit
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as N →∞ and h → 0 , equation (29) becomes in one dimension

dṙ

dt
= −1

ρ

∂P

∂r
+

αh

crρ

∂

∂r

(
rP

∂ṙ

∂r

)
− β

rρ

(
h

c

)2
∂

∂r

(
rP

(
∂ṙ

∂r

)2
)

,

(31)
which shows that the effect of the viscosity term is to add a bulk
viscosity and a von Neumann-Richtmyer viscosity to the equation
of motion. The bulk viscosity dampens post shock oscillations, and
the von Neumann-Richtmyer viscosity is required for high Mach
number collisions to stop inter-penetration of particles.

The introduction of a viscous term in the equations of motion
means that for energy conservation the term must also be introduced
into the energy equation. Therefore the energy equation becomes

dEi

dt
= −2π

P

η
ṙi

+ π
N∑

j=1

mj

(
Piri

η2
i

+
Pjrj

η2
j

)(
1− αµij + βµ2

ij

)
(ṡi − ṡj) ·DiWij .

(32)

6 Shock Tube Problem

Consider a cylindrical version of the linear shock tube problem for
a perfect gas. The initial conditions are:

r < 5 , ρ = 1 , E = 1 ,
r > 5 , ρ = 0.25 , E = 1 ,

with the constitutive equation

P = (γ − 1)ρE, (33)
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and with the ratio of specific heats γ = 1.4 .

For the sph simulation we distribute the particles with separa-
tion δr = 0.01 in the low density region and with δr = 0.0025 in the
high density region. The smoothing length is constant throughout
the domain at h = 0.02 . To model a constant density fluid with
equally separated particles the mass of each particle must be pro-
portional to r. No special boundary conditions are applied at the
end points, as the rarefaction wave produced does not have time to
propagate inward over the time of the simulation. The smoothing
length is held constant throughout the calculation.

The time step δt is limited by the Courant condition, and by the
viscous diffusion introduced by the artificial viscosity. The criterion
used in [12] seems to lead to a stable algorithm at all radii.

The sph calculation is compared to a Lagrangian finite differ-
ence simulation [14, 15]. The finite difference code uses a grid
with δr = 0.002 . The finite difference code, like the sph code,
has been stabilised to post shock oscillations by the inclusion of
a bulk and von Neumann-Richtmyer artificial viscosity. (Follow-
ing Noh [15] the bulk viscosity constant is C1 = 2 , and the von
Neumann-Richtmyer constant C2

0 = 2 .)

The finite difference and the sph schemes have error terms of
second order, which implies that the finite difference scheme will
have a truncation error two orders of magnitude smaller than the
sph method.

Figures 1, 2, 3, and 4 show the density, specific thermal energy,
radial velocity and the pressure profiles respectively. The sph pro-
files compare favourably with the more accurate finite difference
results. The shock front and contact discontinuity are broadened
over 2h–3h as is expected with the inclusion of an artificial vis-
cosity. The oscillations in the velocity profile are negligible. The
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Figure 1: Density profile of the shock expansion problem described
in Section 6. The sph result (· · · ) has h = 0.02 , α = 4.0 and β =
2.0 . The Lagrangian finite difference result (—) has δr = 0.002 .
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Figure 2: Thermal energy profile of the shock expansion problem
described in Section 6. The sph result (· · · ) has h = 0.02 , α = 4.0
and β = 2.0 . The Lagrangian finite difference result (—) has δr =
0.002 .
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Figure 3: Radial velocity profile of the shock expansion problem
described in Section 6. The sph result (· · · ) has h = 0.02 , α = 4.0
and β = 2.0 . The Lagrangian finite difference result (—) has δr =
0.002 .
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Figure 4: Pressure profile of the shock expansion problem de-
scribed in Section 6. The sph result (· · · ) has h = 0.02 , α = 4.0
and β = 2.0 . The Lagrangian finite difference result (—) has
δr = 0.002 .
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thermal energy exhibits the largest error at the contact discontinu-
ity. The error also appears in the finite difference calculation. This
error appears to be an example of Noh’s ‘wall heating’ [15], (see
§7). The error in the thermal energy appears in the pressure as the
break at the contact discontinuity.

Tests at different radii show that the broadening of the shock
and contact discontinuities, and the viscosity constants appear to
be independent of the radius.

7 Artificial Thermal Conduction

The introduction of an artificial viscosity, in Lagrangian methods,
can introduce errors in the form of excessive heating when streams
of gas collide, or when a stream of gas is brought to rest against a
wall (hence the term ‘wall heating’). Noh [14, 15] has shown that
if an artificial thermal diffusion is introduced into the equations the
excessive heating can be reduced significantly. The heat conduction
term also helps to smooth errors in the velocity field which can
lead to a reduction in the artificial viscosity and a sharpening of
the shock. Following Monaghan [16], and Noh [14, 15] the thermal
energy equation needs to be modified by the inclusion of a term of
the form

1

ρ
∇ · (H∇E) . (34)

This term is estimated by the following sph expression:

N∑
j=1

Hij

η̄ij

(Ei − Ej)

(s2
ij + ζ2)

s ·DiWij , (35)

where η̄ij = (ηi + ηj)/2 and

Hij = g1hc̄ij + g2h
2|µij| , (36)
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where c̄ij = (ci + cj)/2 , and g1 and g2 are constants.

In the limit as N → ∞ and h → 0 , equation (35) becomes in
one dimension

1

rρ

∂

∂r

(
Hr

∂E

∂r

)
, (37)

where

H = g1hρc + g2ρh2∂ṙ

∂r
. (38)

Equation (35) when added to the sph energy equation behaves
as a heat conduction term, that adds nothing to the overall energy of
the system. To control ‘wall heating’ only, equation (35) is added to
those particles with ṡij · sij < 0 , that is where the artificial viscosity
is non-zero. The conduction coefficient H is made up of two terms,
the first is a linear term that is a function of the local sound speed,
the second term is a quadratic term that is a function of the local
velocity gradient. The second term will dominate in the vicinity of
a shock.

8 Wall Heating Shocks

To investigate the effects of ‘wall heating’ we model two streams
of gas impacting with a relative velocity greater than their sound
speed. The initial conditions are:

r < 3 , ρ = 1 , E = 1 , ṙ = 1 ,
r > 3 , ρ = 1 , E = 1 , ṙ = −1 ,

where, with the ratio of specific heats γ = 1.4 the sound speed of
the undisturbed gas is c = 0.748 .
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Figure 5: Density profile of the shock collision problem described
in Section 7 without heat conduction (g1 = g2 = 0). The sph result
(· · · ) has h = 0.02 , α = 5.0 and β = 5.0 . The Lagrangian finite
difference result (—) has δr = 0.002 .

The particles were distributed with a separation of δr = 0.01
and with a smoothing length h = 0.02 . The smoothing length is
held constant throughout the calculation.

Figures 5, 6, and 7 show the density, specific thermal energy,
and radial velocity profiles respectively. This run shows the results
when both the sph and the finite difference calculation do not have
a heat conduction term incorporated into the energy equation. The
spike in the energy profile, at the point of impact is quite clear.
The effect of the spike in the energy is to cause a dip in the density.
Increasing the artificial viscosity will not remove the spike, but does
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Figure 6: Thermal energy profile of the shock expansion problem
described in Section 7 without heat conduction (g1 = g2 = 0) .
The sph result (· · · ) has h = 0.02 , α = 5.0 and β = 5.0 . The
Lagrangian finite difference result (—), has δr = 0.002 .
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Figure 7: Radial velocity profile of the shock expansion problem
described in Section 7 without heat conduction (g1 = g2 = 0). The
sph result (· · · ) has h = 0.02 , α = 5.0 and β = 5.0 . The Lagrangian
finite difference result (—) has δr = 0.002 .
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Figure 8: Density profile of the shock collision problem described
in Section 7 with heat conduction. The sph result (· · · ) has h =
0.02 , α = 3.0 , β = 3.0 , g1 = 1.0 , and g2 = 2.0 . The Lagrangian
finite difference result (—) has δr = 0.002 .

broaden the shock. Decreasing the artificial viscosity will reduce the
spike, but oscillations in the profiles increase. The spike is a direct
result of the inclusion of an artificial viscosity into the equations.

Figures 8, 9, and 10 show the density, specific thermal energy,
and radial velocity profiles respectively, when artificial heat conduc-
tion is added to the thermal energy equation of both methods. The
plots show the profiles at the same time as Figures 5, 6, and 7.
With the inclusion of the artificial conduction (g1 = 1 , g2 = 2),
the artificial viscosity was reduced slightly (α = 3 , β = 3). The
effect of the artificial heat conduction is to remove the spike in the
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Figure 9: Thermal energy profile of the shock expansion problem
described in Section 7 with heat conduction. The sph result (· · · )
has h = 0.02 , α = 3.0 , β = 3.0 , g1 = 1.0 , and g2 = 2.0 . The
Lagrangian finite difference result (—) has δr = 0.002 .
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Figure 10: Radial velocity profile of the shock expansion problem
described in Section 7 without heat conduction. The sph result
(· · · ) has h = 0.02 , α = 3.0 and β = 3.0 , g1 = 1.0 , and g2 = 2.0 .
The Lagrangian finite difference result (—) has δr = 0.002 .
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energy completely. The broadening of the shock has not changed,
but the shoulder of the shock has become rounder, with the small
oscillations in density and velocity removed.

The effect of the inclusion of an artificial heat conduction in the
finite difference equation is to remove the thermal energy spike and
to sharpen the shock. In the sph formulation, though the artificial
viscosity can be reduced there is little evidence that the shock is
sharpened by the inclusion of the artificial heat conduction. If any-
thing the rounding of the shoulders of the shock can give the effect
of broadening the shock.

A small amount of artificial heat conduction added to the energy
equation for the shock tube result (g1 = 0.2 , g2 = 0) can greatly
reduce the error at the contact discontinuity. But care has to be
taken as the contact discontinuity is sensitive to the heat conduc-
tion and can be greatly reduced. As expected the contact discon-
tinuity is sensitive only to the linear heat conduction term not the
quadratic term.

9 Conclusion

This study shows that the cylindrical sph formulation presented,
performs as well as the rectangular sph formulation for the mod-
elling of shocks. The artificial viscosity and artificial heat conduc-
tion perform as well as their rectangular Cartesian counterparts.

The advantages of the cylindrical sph formulation presented here
is that it is very similar in structure, derivation and errors to its
rectangular counterpart.

What has not been presented here, and is currently under inves-
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tigation is a self consistent sph formulation within the vicinity∼ 2h ,
of the line of symmetry r = 0 .
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