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High shear helical flow of a Sisko fluid
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Abstract

The Sisko fluid model was proposed in response to observed failure
of the well-known Bingham model to represent the flows of viscoplastic
materials in high shear regimes, such failure increasing with shear rate.
We consider the flow of a Sisko fluid between infinitely long coaxial
cylinders, when the inner cylinder rotates with constant angular speed
and a constant axial fluid flow is maintained. High shear rates are
ensured by assuming an inter-cylindrical gap small in relation to the
overall geometry. Such a helical flow and geometry is of relevance to
a number of applications, including rheometry. We assume a laminar
flow and apply a perturbation procedure based on a scaled form of
the inter-cylindrical gap dimension as a perturbation parameter to
obtain simple explicit approximations for the fluid velocity field as
well as the fluid viscosity variation in this gap. We also derive an
approximate form of the Reiner–Riwlin equation, linking the defining
fluid parameters to measurable quantities in the flow.
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1 Introduction

Helical flows occur when fluid in the gap between infinitely long coaxial
cylinders has an axial fluid velocity superimposed on a transverse rotational
motion. Such flows are of interest in applications, where they arise in the
modelling of the action of a cup and bob rheometer modified to allow axial
flow in order to carry out measurements on slurries and other settling mixtures
(Chiera, Connell and Shepherd [3]).

When the fluid is incompressible and Newtonian, so that the stress and rate of
shearing are linearly related, such helical flow is well understood and solutions
of the flow problem are well-represented [7, Ch. IV]. However, when the
fluid is incompressible, with the stress a nonlinear function of the rate of
shearing alone; that is, it is a generalized Newtonian fluid (a particular class
of non-Newtonian fluids) [1], the problem of obtaining the velocity profile
and associated fluid properties is considerably more difficult and numerical
solution techniques usually must be employed. While Coleman and Noll [5]
solved this problem in general terms for all such fluids, their analysis converted
a nonlinear boundary value problem to a nonlinear algebraic one, leaving
the details of the solution of either incomplete. This phenomenon is clearly
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illustrated in the analysis of the helical flow of a power law fluid [1, p. 148], a
generalized Newtonian fluid.

For the rheometer application above, the inter-cylindrical gap is kept small,
to minimize experimental end effects. This is significant for the following
analysis in that a perturbation procedure based on some normalized form
of the inter-cylindrical gap as perturbation parameter is used to solve the
nonlinear equations of motion. It also means that the flow in the inter-
cylindrical gap experiences high shear rates; that is, the flow is a high shear
flow. This approach has been used to analyse such helical flow of similar
generalized Newtonian fluids [3, 6].

We apply a perturbation approach to the laminar helical flow of a Sisko fluid,
a generalized Newtonian fluid model used to represent viscous inelastic shear
thinning fluids [8], such as greases at high shear rates. This model was seen
to be an improvement on earlier models of these materials. Our analysis is
based upon the work of Chiera [2], uses arguments analogous to those of
Farrugia, Shepherd and Stacey [6] for the Powell–Eyring fluid, to parallel and
extend the earlier work of Chiera, Connell and Shepherd [4].

2 Governing equations

We consider steady helical flow of an incompressible viscous fluid in the
infinitely long annular region described in cylindrical polars (r, θ, z) by R1 6
r 6 R2 , 0 6 θ 6 2π , −∞ 6 z 6∞ . The inner cylindrical surface r = R1 is
given a constant angular velocity Ω > 0 , the outer cylinder r = R2 is held
stationary, and a given axial flow rate Q > 0 is imposed.

The equations of motion for such a flow are well documented [5, 6]. With the
z-axis taken as vertically down and assuming symmetry about this axis, the
velocity field takes the form

(ur,uθ,uz) = (0, rW(r),V(r)),



2 Governing equations C407

for appropriate functions V(r) and W(r), while the momentum equations
yield the differential equations

HV ′(r) = αr+
β

r
, HW ′(r) = −

M

2πr3
, (1)

together with the boundary conditions

V(R1) = V(R2) = 0 , W(R1) = Ω , W(R2) = 0 . (2)

In (1) H is the fluid viscosity, M > 0 is the moment per unit length exerted on
the inner cylinder r = R1 , and α and β are constants to be determined by the
application of the boundary conditions. Further, the differential equations (1)
yield the relationship

V ′(r) = −2π(αr2 + β)r2W ′(r)/M . (3)

The volume flow rate

Q = 2π

∫R2
R1

rV(r)dr (4)

(Q is regarded as known, so that (4) is a constraint on V(r)).

The local rate of shearing,

K =
√

[(rW ′)2 + V ′2] /2, (5)

in terms of the gradients of V and W.

The boundary conditions (2) imply that W ′(r) < 0 in all R1 < r < R2 ; and
applying (3) to (5) converts the local rate of shearing to

K = −rW ′φ(r,α,β)/
√
2 , φ(r,α,β) =

√
1+ (2π/M)2r2(αr2 + β)2. (6)

As noted, for generalized Newtonian fluids, H is a function of K alone; that
is, H = H(K). For the Sisko fluid, this relationship is

H(K) = H0

(
1+

(
K

K0

)n−1)
(7)
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where H0, K0 and n are positive constants, with 0 6 n < 1 .

In many cases, the range 0 6 n 6 1 is used. Putting n = 1 in (7) gives
H(K) = 2H0 , and the Sisko fluid reduces to a Newtonian one, of constant
viscosity 2H0. However, when n = 1 , there is no variation of H with K; and
since it is the aim of this article to analyze the flow when H varies with K,
especially as K→∞ , we exclude the value n = 1 . Moreover, the Newtonian
flow case may be solved exactly [7]. For 0 6 n < 1 , H(K)→ H0 , a constant,
as K→∞ ; that is, the Sisko fluid tends to the Newtonian at high shear rates.
Thus, it could be classed as a limiting Newtonian fluid.

The second equation in (1) gives, from (6) and (7),(
−rW ′φ(r,α,β√

2K0

)n−1
= −

M

2πH0r3W ′ − 1 , (8)

which is a first order nonlinear differential equation for W that can be solved,
in principle, subject to one of the boundary conditions (2).

The problem (1)–(8) is converted to dimensionless form by defining the radial
distance R = (R1 + R2)/2 and the dimensionless inter-cylindrical gap width
ε = (R2 − R1)/(R1 + R2). Thus small values of ε correspond to a small
inter-cylindrical gap.

Dimensionless constants a, b, σ and radial variable s are then defined by

a = −2πεR3α/M , b = 2πεRβ/M , σ2 = b/a , r = Rs ,

respectively, while dimensionless forms of V ,W,K and H, denoted by v(s),
w(s), κ(s) and η(s), are defined by

v = ∆V(Rs), w = ∆RW(Rs), κ =
√
2∆RK(Rs), η = H(K(Rs))/H0,

where ∆ = 2πH0R/(Mε).

Finally, define dimensionless parameters

γ =

(
Mε

2
√
2πH0K0R2

)n−1
, q =

2H0Q

Mε2R
, ω =

2πH0R
2Ω

Mε
.
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Parameter γ derives from the fluid parameters H0, K0 and n, while q and ω
are related to the axial flow rate Q and inner cylinder angular velocity Ω,
respectively.

The dimensionless flow problem in the inter-cylindrical gap, s1 = 1− ε 6 s 6
1+ ε = s2 , now consists of the nonlinear differential equation for w(s),

(−sw ′ψ)
n−1

γ = −
1

s3εw ′ − 1 (9)

where ψ(s,a,σ) =
√
1+ (sa/ε)2(s2 − σ2)2, with the linked equation for v(s)

v ′ = as2(s2 − σ2)w ′/ε , (10)

subject to the boundary conditions

v(s1) = v(s2) = 0 , w(s1) = ω , w(s2) = 0 . (11)

The flow condition (4) becomes, on integrating by parts, and using the first
set of boundary conditions in (11),∫ s2

s1

(s2 − σ2)v ′(s)ds = −εq , (12)

while K and H(K) take the dimensionless forms

κ(s) = −sw ′(s)ψ(s,a,σ), η(κ) = 1+ γκn−1. (13)

Given a, σ, γ, ε and q, the differential equations (9) and (10) are then
integrated subject to any v−w pair of the boundary conditions (11), to obtain
v(s) and w(s). The full set of conditions (11), with the flow condition (12)
yield three nonlinear equations

fi(a,σ,γ,ω,q, ε) = 0 , i = 1, 2, 3 .

Any two of these may be solved, in principle, for a and σ in terms of the
other quantities; and, applying these values to the third equation

F(γ,ω,q, ε) = 0 .
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This equation defines a relationship linking γ and ω, with q and ε present as
parameters, which is equivalent to an analogous relationship linking Ω to M.
This relationship, termed the Reiner–Riwlin equation, is fundamental to this
flow for the given fluid [1, p. 231]. If γ is assumed given (that is, the flow
occurs under constant torque conditions—typical of rheometer applications),
this relationship determines ω in terms of q and ε. Thus, the quantities a
and σ are viewed as functions of q and ε. Consequently, the functions w
and v described above are regarded as functions of q and ε as well as s.

In general, the nonlinearity of the component equations above renders explicit
calculation of the Reiner–Riwlin equation well-nigh impossible. Thus, the
solution of the problem (9)–(12), and formulation of the Reiner–Riwlin
equation must be carried out numerically. This task is complex and is
beyond the scope of the present article. However, in one case of interest in
applications, solutions are obtained by approximate methods. For a large class
of helical flows, the inter-cylindrical gap is small, and thus so is ε (values of
R1 = 0.024 and R2 = 0.025 , as used in the laboratory model for the rheometer
application [3], give ε = 0.0204), while the ε-dependence of q is predictable;
so that perturbation methods based on ε→ 0 apply.

3 Perturbation analysis for flow in a narrow

gap

We apply a perturbation procedure based on the limit ε→ 0 (corresponding
to a small inter-cylindrical gap) to the problem defined by (9)–(12), to obtain
approximate expressions for v(s) and w(s) and the constants a and σ. This
requires estimating the order of terms in (9)–(12). Simple arguments based
on the physical situation and geometry [6] lead us to estimate all of a, b,
σ, γ, q, ω as O(1) constants, while v(s), w(s) and ψ(s,a,σ) are O(1) func-
tions, and v ′(s) and w ′(s) are O(ε−1) functions. In view of these estimates,
κ(s) is O(ε−1). Thus, small ε values correspond to high shear flow in the
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(narrow) inter-cylindrical gap.

The unknowns in this problem are the functions w(s) and v(s), and the
constants a and σ. We now propose that these be represented as perturbation
expansions in terms of the (small) parameter ε that, based on the estimates
above, take the form

a(ε) ∼ a0 + µ1(ε)a1 + µ2(ε)a2 + · · · , (14)

σ(ε) ∼ σ0 + δ1(ε)σ1 + δ2(ε)σ2 + · · · , (15)

εw ′(s) ∼ u0(s) + ν1(ε)u1(s) + ν2(ε)u2(s) + · · · , (16)

v ′(s) ∼ v ′0(s) + ξ1(ε)v
′
1(s) + ξ2(ε)v

′
2(s) + · · · , (17)

where µi(ε), δi(ε), νi(ε) and ξi(ε) are asymptotic sequences of gauge func-
tions of ε as ε → 0; that is, µi+1/µi → 0 as ε → 0 . Since w ′(s) = O(ε−1),
the expansion (16), which is the expansion for εw ′, is an O(1) quantity.

We substitute (14)–(17) into the equations (9)–(10) and (11)–(12) and on
seeking a balance of orders of terms as ε → 0 , obtain expressions for the
constants µ1(ε), δ1(ε), ν1(ε) and ξ1(ε), as well as the functions u0(s), u1(s),
v ′0(s) and v ′1(s). Integration of these last, subject to the boundary condi-
tions (11) at the outer boundary s = s2 , then yield expressions for w0(s),
w1(s), v0(s) and v1(s), and hence via (16) and (17) two term approximations
to w(s) and v(s) that satisfy the boundary conditions (11) at s = s2 .

Making the replacement w ′ = ε−1εw ′, then substituting (14), (15) and (16)
into (9) gives, to leading order

εn−1 [−su0 + · · ·ψ(s,a0 + · · · ,σ0 + · · · )]n−1 γ = −
1

s3u0 + · · ·
− 1 . (18)

From equation (18), equating leading order terms gives

u0 = −
1

s3
, (19)

which corresponds to the Newtonian description of fluid viscosity. This is
to be expected, since as ε→ 0 , the shear rate κ→∞ , and the Sisko fluid
tends to Newtonian.
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Equating higher order terms in (18) gives, on applying (19),

−
u1

s3u20
ν1(ε) + · · · = γ

(
−su0ψ0
ε

)n−1
, (20)

where we define

ψ0 = ψ(s,a0,σ0) =

(
1+

(a0s
ε

)2
(s2 − σ20)

2

)1/2
. (21)

Choosing ν1(ε) ≡ ε1−n gives, from (19) and (20),

u1 = γs
−2n−1ψn−10 . (22)

Similarly, substituting the perturbation expansions (14), (15), (16), (17)
and (19) into (10) gives, on considering leading order terms,

v ′0 =
a0

ε2
(s2 − σ20)s

−1 . (23)

Since s2 − σ20 is O(ε), v ′0(s) is an O(ε−1) quantity, as required. Futher,
repeating the process for generating v ′0(s) gives v ′1(s) as

v ′1(s)ξ1(ε) =
( s
ε

)2 [
(a0u1(s

2 − σ20)ε
1−n) − 2a0σ0σ1u0δ1(ε)

+ a1u0(s
2 − σ20)µ1(ε)

]
. (24)

Since we require that all the terms shown in (24) are to be included in v ′1(s),
then we choose the gauge functions

ξ1(ε) ≡ ε−n, δ1(ε) ≡ ε2−n, µ1(ε) ≡ ε1−n. (25)

Thus, on substituting for u0 and u1, as given in (19) and (22),

v ′1(s) =
[
2a0σ0σ1 −

a1

ε
(s2 − σ20)

]
s−1 −

a0γ

ε
(s2 − σ20)s

−2n+1ψn−1. (26)
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Having now determined the gauge functions µ1(ε), δ1(ε), ν1(ε) and ξ1(ε)
it remains to determine the coefficients a0, a1, σ0 and σ1. This is done by
using the expressions for v ′0(s) and v ′1(s), in combination with the boundary
conditions (11) and the flow condition (12), to generate the coefficient pairs
a0, σ0 and a1, σ1.

Integrating v ′0(s) (given in (23)) subject to the boundary conditions (11) gives

σ0 =

√
1
2
(s22 − s

2
1)

ln(s2/s1)
= 1+ O(ε2), (27)

on noting that s1 = 1− ε and s2 = 1+ ε .

Similarly, using v ′0(s) in the equation linking the scaled axial flow rate q and
the scaled axial velocity field component (12) yields

a0 =
ε3q∫s2

s1
s−1(s2 − σ20)

2 ds
=
3

8
q+ O(ε2), (28)

The values for σ0 and a0 are those obtained for the Newtonian fluid.

Using the same method as was used to generate (27) and (28) yields, after
some computation

a1 = a0γD

(
ln

(
I3
s2

s1

)
− I1H2

)
, (29)

where

D =

∫ s2
s1

s−1(s2 − σ20)ds

∫ s2
s1

s ds−

∫ s2
s1

s(s2 − σ20)ds

∫ s2
s1

s−1 ds

= −
16

3
ε3 + O(ε5), (30)

Hp =
1

p
(sp2 − s

p
1), (31)

Ip =

∫ s2
s1

s−2n+p(s2 − σ20)ψ
n−1
0 ds . (32)
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Similarly,

σ1 =
γ

2σ0εD

{
I3
[
H2 − σ

2
0 ln(s2/s1)

]
− I1

[
H4 − σ

2
0H2
]}

. (33)

Thus the scaled axial velocity field component

v(s, ε) =
a0

ε2

∫ s2
s

t2 − 1

t
dt− ε−n

∫ s2
s

[
(2a0σ0σ1 −

a1

ε
(t2 − σ20))t

−1

−
a0γ

ε
(t2 − σ20)t

−2n+1ψn−10

]
dt+ · · · , (34)

while the scaled transverse velocity

w(s, ε) = ε−1
∫ s2
s

t−3 dt+ ε−nγ

∫ s2
s

t−2n+1ψ
2(n−1)
0 dt+ · · · . (35)

4 Discussion

The expressions (34) and (35) are readily evaluated approximations to the
functions (w(s), v(s)) and the constants a and σ for small ε. They may be
used to obtain approximate expressions for the significant features of this
high shear helical flow. Each consists of a leading order term corresponding
to a Newtonian flow field, followed by a higher order correction involving the
parameter γ, which incorporates the Sisko parameters H0, K0 and n.

If the third of the boundary conditions (11) is applied to (35), we obtain

ω0 = ε
−1

∫ s2
s1

t−3 dt+ ε−nγ

∫ s2
s1

t−2n+1ψ
2(n−1)
0 dt+ · · · (36)

Equation (36) is a dimensionless approximate form of the Reiner-Riwlin
equation, which links the (dimensionless) angular speed of rotation, ω0, of
the central cylinder to the Sisko parameters H0, K0 and n incorporated into
the dimensionless parameter γ. This constitutes an approximate constraint
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on the parameters defining the helical flow. If this in rewritten in the original
dimensional variables, it provides a link between the parameters H0, K0 and n
and the observable quantities M, Q and Ω. Experimental readings of the
latter may then be used to calculate the Sisko parameters H0, K0 and n.

The approximations (34) and (35) are used to represent the fluid velocity
field (sw(s), v(s)) in the inter-cylindrical gap.

Thus Figure 1 shows the axial velocity profile v(s) as represented by these
approximations, for several values of γ, the ‘Sisko parameter’, indicating in-
creasing levels of non-Newtonian behaviour. It is apparent that as γ increases
from zero, corresponding to Newtonian flow, the axial velocity increases
throughout the gap, roughly linearly. There is also no discernible shift in
the location of the velocity peak, as might be expected from the estimate
σ = 1+O(ε2−n). Figure 2 shows the transverse velocity profile εw(s) for the
same γ values. Here the overall transverse velocity increases with γ through-
out the gap. In particular, the transverse velocity s1ω at the inner cylinder
increases with γ, reminding us that the value of ω is not arbitrarily pre-
scribed, but is linked to the other fluid parameters through the Reiner–Riwlin
equation.

The approximations (34) and (35) are also used to obtain approximate
expressions for the rate of shearing κ(s) and the viscosity profile η(s) as
functions of s. These are shown in Figures 3 and 4 respectively.

Figure 3 shows the rate of shear profile κ(s) obtained by applying (34) and (35)
to the first equation in (13), for the same γ values. In all cases, the rate
of shearing has a minimum near the centre of the inter-cylindrical gap, but
increases overall with γ. The minimum location shifts towards the inner
cylinder as γ increases.

Figure 4 shows the viscosity profile η(s) using (34) and (35) in (13) for the
same γ values. As expected, the viscosity is constant when γ = 0 , but shows
(limited) variation for nonzero values. As γ increases, a maximum viscosity
evolves near the gap centreline.
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Figure 1: Dimensionless axial velocity profile v(s) across the inter-cylindrical
gap as given by the approximation (34) for ε = 0.02 , γ = 0 (solid curve),
γ = 1 (dotted curve), γ = 3 (dashed curve).
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Figure 2: Dimensionless transverse velocity profile sw(s) across the inter-
cylindrical gap as given by the approximation (35) for ε = 0.02 , γ = 0 (solid
curve), γ = 1 (dotted curve), γ = 3 (dashed curve).
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κ(s)

Figure 3: Dimensionless rate of shearing profile κ(s) across the inter-cylindrical
gap as given by the approximations (34), (35) to (13) for ε = 0.02 , γ = 0

(solid curve), γ = 1 (dotted curve), γ = 3 (dashed curve).



4 Discussion C419

η(s)

Figure 4: Dimensionless rate of viscosity profile η(s) across the inter-
cylindrical gap as given by the approximations (34), (35) to (13) for ε = 0.02 ,
γ = 0 (solid curve), γ = 1 (dotted curve), γ = 3 (dashed curve).
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