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On weighted three point quadrature rules
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Abstract

Weighted three point quadrature rules are obtained in the current
work giving explicit a priori bounds on the error. The results are
valid for general weight functions. The robustness of the bounds are
explored for specific weight functions and for a variety of integrands.
A comparison of the current development is made with traditional
quadrature rules and it is demonstrated that the current development
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has some advantages. In particular, this method allows the nodes and
weights of an n point rule to be easily obtained, which may be prefer-
ential if the region of integration varies. Other explicit error bounds
may be obtained in advance, thus making it possible to determine the
partition required to achieve a certain error tolerance.
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1 Introduction

Weighted three point quadrature rules are investigated in this article in which
sampling occurs at the boundary points and an interior point. Explicit a
priori bounds are obtained, thus enabling the determination of the partition
required for a prescribed error bound to be fulfilled. This approach con-
trasts to that commonly used of mesh refinement followed by a successive a
posteriori comparison of the results (see for example Atkinson [1]). Other
quadrature rules have been developed that differ from those given here. The
work in [5] presents optimal rules for given information in terms of functions
in L2. For further and more recent work see [8].

Three point quadrature rules of Newton-Cotes type have been examined
in Cerone and Dragomir [2] in which the error involved the behaviour of,
at most, a first derivative. Riemann and Riemann-Stieltjes integrals were
examined.

In the current article, weighted three point rules are investigated in which
the error relies on the behaviour of the first derivative. Roumeliotis et al. [6]
investigated weighted interior point rules for twice differentiable functions.

After developing the results in the initial sections of the paper, composite
quadrature rules are implemented in Section 4 and results for a log weight
function are given and compared with a product-trapezoidal rule of Atkin-
son [1].
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2 Weighted Three Point Inequalities

Weighted (or product) inequalities are to be developed. The weight function
is assumed to be non-negative and integrable over its entire domain. In order
to simplify the working, some notation needs to be presented.

Definition 1 Let w : (a, b) → [0,∞) be an integrable function so that∫ b

a
w (t) dt < ∞. Define the zeroth and first moments of w (·) by

m (a, b) =

∫ b

a

w(t) dt and M (a, b) =

∫ b

a

tw(t) dt, (1)

respectively. Both are assumed to exist over the entire domain of w (·). The
weight function may be zero at the end points.

Theorem 2 Let f : [a, b] → R be a differentiable mapping on (a, b) whose
derivative is bounded on (a, b) and denote ‖f ′‖∞ = supt∈(a,b) |f ′ (t)| < ∞.
Further, let a non-negative weight function w (·) have the properties as out-
lined in Definition 1. Then for x ∈ [a, b], α ∈ [a, x], β ∈ (x, b], the following
inequality holds∣∣∣∣

∫ b

a

w (t) f (t) dt − [m (α, β) f (x) + m (a, α) f (a) + m (β, b) f (b)]

∣∣∣∣
≤ I (α, x, β) ‖f ′‖∞ , (2)
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where

I (α, x, β) =

∫ b

a

k (x, t) w (t) dt and k (x, t) =




t − a, t ∈ [a, α]
|x − t| , t ∈ (α, β]
b − t, t ∈ (β, b]

(3)

Proof: Define the mapping K (·, ·) : [a, b]2 → R by

K (x, t) =

{
m (α, t) , t ∈ [a, x]
m (β, t) , t ∈ (x, b]

, (4)

where m (a, b) is the zeroth moment of w (·) over the interval [a, b] and is
given by (1)1.

It should be noted that m (c, d) will be non-negative for d ≥ c.

Integration by parts gives, on using (4),

∫ b

a

K (x, t) f ′ (t) dt

=

∫ x

a

m (α, t) f ′ (t) dt +

∫ b

x

m (β, t) f ′ (t) dt

= m (α, t) f (t)

]x

t=a

+ m (β, t) f (t)

]b

t=x

−
∫ b

a

w (t) f (t) dt,
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producing the identity∫ b

a

K (x, t) f ′ (t) dt

= m (α, β) f (x) + m (a, α) f (a) + m (β, b) f (b) −
∫ b

a

w (t) f (t) dt, (5)

valid for all x ∈ [a, b] .

Taking the modulus of (5) gives∣∣∣∣
∫ b

a

w (t) f (t) dt − [m (α, β) f (x) + m (a, α) f (a) + m (β, b) f (b)]

∣∣∣∣
=

∣∣∣∣
∫ b

a

K (x, t) f ′ (t) dt

∣∣∣∣ ≤ ‖f ′‖∞
∫ b

a

|K (x, t)| dt . (6)

Now, we wish to determine
∫ b

a
|K (x, t)| dt. To this end notice that, from (4),

K (x, t) is a monotonically non-decreasing function of t over each of its
branches. Thus, there are points α ∈ [a, x] and β ∈ [x, b] such that K (x, α) =
K (x, β) = 0.

Thus, ∫ b

a

|K (x, t)| dt = −
∫ α

a

m (α, t) dt +

∫ x

α

m (α, t) dt

−
∫ β

x

m (β, t) dt +

∫ b

β

m (β, t) dt . (7)
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Integration by parts gives, for example,

−
∫ α

a

m (α, t) dt = − (t − a) m (α, t)]αt=a +

∫ α

a

(t − a) w (t) dt

=

∫ α

a

(t − a) w (t) dt .

A similar development for the remainder of the three integrals on the right
hand side of (7) produces the result∫ b

a

|K (x, t)| dt = I (α, x, β) , (8)

where I (α, x, β) is as given by (3). Combining (6) and (8) produces the
result (2) and hence the theorem is proved. ♠

It should be noted at this stage that taking w (·) ≡ 1 reproduces the
results of Cerone and Dragomir [2]. If α = a and β = b then a weighted
interior point rule is obtained. If α = β = x, then a weighted rule results
where the function is evaluated at the boundary points. For α = a or β = b
then Radau type rules are obtained while the current work will focus on
Lobatto type rules allowing sampling at both ends of the boundary.

Corollary 3 Inequality (2) is minimized at x = x∗ where x∗ satisfies

m (α∗, x∗) = m (x∗, β∗) , α∗ =
a + x∗

2
and β∗ =

x∗ + b

2
. (9)
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Proof: From (2–3), I (α, x, β) may be written as

I (α, x, β) =

∫ α

a

(t − a) w (t) dt +

∫ x

α

(x − t) w (t) dt

+

∫ β

x

(t − x) w (t) dt +

∫ b

β

(b − t) w (t) dt, (10)

where α ∈ [a, x] and β ∈ (x, b]. Equation (10) could equivalently be written
in terms of its zeroth and first moments as given by (1). Differentiating (10)
with respect to α, β and x gives

∂I

∂α
= A (α, x)w (x) ,

∂I

∂β
= B (β, x) w (x)

and
∂I

∂x
= m (α, x) − m (x, β) , (11)

where

A (α, x) = 2α − (a + x) , B (β, x) = 2β − (x + b) (12)

and m (·, ·) is defined by (1)1. An inspection of the second derivatives demon-
strates that (10) is convex on using the fact that w (t) is non-negative for
t ∈ (a, b). Thus, I is minimal at the zeros of (11) and so the corollary is
proven. ♠

Corollary 3 investigates the problem of determining the optimal choice of
α, x and β that produce the tightest bound. The following corollary gives
coarser bounds although the bound may be easier to implement.
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Corollary 4 Let the conditions be as in Theorem 2. Then the following
inequalities hold

∣∣∣∣
∫ b

a

w (t) f (t) dt − [m (α, β) f (x) + m (a, α) f (a) + m (β, b) f (b)]

∣∣∣∣
≤ ‖f ′‖∞ ×




‖w‖∞ · K1 (x)

‖w‖1 · K∞ (x)
, (13)

where

K1 (x) =
1

2

[(
b − a

2

)2

+

(
x − a + b

2

)2
]

+

(
α − a + x

2

)2

+

(
β − x + b

2

)2

(14)

and

K∞ (x) =
1

2

[
b − a

2
+

∣∣∣∣α − a + x

2

∣∣∣∣ +

∣∣∣∣β − x + b

2

∣∣∣∣
+

∣∣∣∣x − a + b

2
+

∣∣∣∣α − a + x

2

∣∣∣∣ −
∣∣∣∣β − x + b

2

∣∣∣∣
∣∣∣∣
]

(15)

with ‖g‖1 :=
∫ b

a
|g (s)| ds meaning g ∈ L1 [a, b] , the linear space of absolutely

integrable functions and ‖g‖∞ := supt∈[a,b] |g (t)| < ∞.
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Proof: From Theorem 2 and equations (2–3), (4) and (8) we have

I (α, x, β) =

∫ b

a

|K (x, t)|w (t) dt =

∫ b

a

k (x, t) w (t) dt .

Now,

∫ b

a

k (x, t) w (t) dt ≤



‖w‖∞
∫ b

a
|k (x, t)| dt

‖w‖1 supt∈[a,b] |k (x, t)|
,

where k (x, t) is as defined in (3).

Some straight forward evaluation gives∫ b

a

|k (x, t)| dt =
1

2

[
(α − a)2 + (x − α)2 + (β − x)2 + (b − β)2] ,

which may readily be shown to equal K1 (x) as given by (14) through using
the identity

X2 + Y 2

2
=

(
X + Y

2

)2

+

(
X − Y

2

)2

three times.

Further,

sup
t∈[a,b]

|k (x, t)| = max {α − a, x − α, β − x, b − β} ,
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which can be shown to equal K∞ (x) as given by (15) from using the result

max {X, Y } =
X + Y

2
+

|X − Y |
2

, (16)

three times.

Hence the corollary is proven. ♠
It should be noted that the tightest bounds are obtained at x = a+b

2
and

α = a+x
2

, β = x+b
2

. That is, at their respective midpoints. The optimal
sampling scheme is independent of the weight.

Theorem 5 Let f : I ⊆ R → R be a differentiable mapping on I̊ (the
interior of I) and a, b ∈̊I are such that b > a. If f ′ ∈ L1 [a, b] , then

‖f ′‖1 =
∫ b

a
|f ′ (t)| dt < ∞. In addition, let a non-negative weight function

w (·) have the properties as outlined in Definition 1. Then for x ∈ [a, b] ,
α ∈ [a, x] and β ∈ (x, b] the following inequality holds.∣∣∣∣

∫ b

a

w (t) f (t) dt − [m (α, β) f (x) + m (a, α) f (a) + m (β, b) f (b)]

∣∣∣∣
≤ θ (α, x, β) ‖f ′‖1 , (17)

where

θ (α, x, β) =
1

4

{
m (a, b) + |m (α, x) − m (a, α)| + |m (β, b) − m (x, β)|

+ |m (a, x) − m (x, b) + |m (α, x) − m (a, α)| − |m (β, b) − m (x, β)||} (18)
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and m (a, b) is the zeroth moment of w (·) over [a, b] as defined by (1)1.

Proof: From identity (5) we obtain, from taking the modulus

θ (α, x, β) = sup
t∈[a,b]

|K (x, t)| ,

where K (x, t) is as given by (4). As discussed in the proof of Theorem 2,
K (x, t) is a monotonic non-decreasing function of t in each of its two branches
so that

θ (α, x, β) = max {m (a, α) , m (α, x) , m (x, β) , m (β, b)} .

Now, using equation (16) we have

m1 = max {m (a, α) , m (α, x)} =
1

2
[m (a, x) + |m (α, x) − m (a, α)|]

and m2 = max {m (x, β) , m (β, b)} =
1

2
[m (x, b) + |m (β, b) − m (x, β)|] ,

to give

θ (α, x, β) = max {m1, m2} =
m1 + m2

2
+

∣∣∣∣m1 − m2

2

∣∣∣∣
and hence the result (18) is obtained after some simplification and the theo-
rem is proved. ♠
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Remark 6 It should be noted that the tightest bound in (18) is obtained when
α, x and β are taken as their respective medians. Thus, the best quadrature
rule in the above sense is given by∣∣∣∣

∫ b

a

w (t) f (t) dt −
[
m (a, α̃) f (a) + m(α̃, β̃)f (x̃) + m(β̃, b)f (b)

]∣∣∣∣
≤ m (a, b)

4
‖f ′‖1 , (19)

where

m (a, x̃) = m (x̃, b) , m (a, α̃) = m (α̃, x̃) and m(β̃, b) = m(x̃, β̃).

3 Development of a Quadrature Rule

The following theorem will be useful in determining the partition for com-
posite quadrature rules. The optimal partition in terms of the partition that
provides the tightest bounds will be determined. The optimal quadrature
rules will result for f ′ ∈ L∞ [a, b]. If f ′ ∈ L1 [a, b] a similar development may
be followed but will not be pursued further here.

Theorem 7 Let the conditions of Theorem 2 hold and let ξ partition the
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interval [a, b] into two. Then the following inequality holds

∣∣∣∣
∫ b

a

w (t) f (t) dt − [
m (a, α1) f (a) + m (α1, β1) f (x1) + m (β1, α2) f (ξ)

+ m (α2, β2) f (x2) + m (β2, b) f (b)
]∣∣∣∣ ≤ J (z, ξ) ‖f ′‖∞ , (20)

where

J (z, ξ) = J1 (z1, ξ) + J2 (z2, ξ) (21)

with

zT
i = (αi, xi, βi) , i = 1, 2, z = z1 ∪ z2, (22)

J1 (z1, ξ) =

∫ ξ

a

k1 (x1, t)w (t) dt , J2 (z2, ξ) =

∫ b

ξ

k2 (x2, t) w (t) dt

and

k1 (x1, t) =




t − a, t ∈ [a, α1]
|x1 − t| , t ∈ (α1, β1]
ξ − t, t ∈ (β1, ξ]

,

k2 (x2, t) =




t − ξ, t ∈ [ξ, α2]
|x2 − t| , t ∈ (α2, β2]
b − t, t ∈ (β2, b]

. (23)

Further, a ≤ α1 ≤ x1 ≤ β1 ≤ ξ and ξ ≤ α2 ≤ x2 ≤ β2 ≤ b.
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Proof: The proof follows that of Theorem 2. A subscript of 1 is used
to denote parameters in the interval [a, ξ] and 2 for parameters in (ξ, b].

Integration by parts of
∫ ξ

a
K (x1, t) f ′ (t) dt produces an identity similar to (5)

with b replaced by ξ and x by x1. Similarly for
∫ b

ξ
K (x2, t) f ′ (t) dt produces

an identity like (5) with a replaced by ξ and x by x2. Summing the two results
produces an identity over [a, b]. Taking the modulus and using the triangle
inequality, relying heavily on (3) gives the stated result after collecting the
terms in order. Here on [a, ξ] , (α, x, β, b) are replaced by (α1, x1, β1, ξ) and on
[ξ, b] , (a, α, x, β) are replaced by (ξ, α2, x2, β2). Hence the theorem is proved.
♠

Corollary 8 The optimal location of the parameters in Theorem 7 are α1 =
α∗

1 =
a+x∗

1

2
, β1 = β∗

1 =
x∗
1+ξ∗

2
, α2 = α∗

2 =
ξ∗+x∗

2

2
, β2 = β∗

2 =
x∗
2+b

2
and x∗

1,
x∗

2 and ξ∗ satisfy the following respective equations: m (α∗
1, x

∗
1) = m (x∗

1, β
∗
1) ,

m (α∗
2, x

∗
2) = m (x∗

2, β
∗
2) and m (β∗

1 , ξ
∗) = m (ξ∗, α∗

2) .

Proof: The proof of this corollary closely follows the proof of Corollary 3.
From (21–23), differentiation of J with respect to (α1, x1, β1, ξ, α2, x2, β2)
produces, on equating to zero, seven simultaneous equations.

Using the fact that the weight function is assumed to be positive, then
the solution of the seven simultaneous equations give the point at which
an optimal bound is produced, since an inspection of the second derivatives
readily demonstrates the convexity of the function J . ♠
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The results in Theorem 7 may be used to develop a composite quadrature
rule. To this end, define a grid In : a = ξ0 < ξ1 < · · · < ξn−1 < ξn = b on
the interval [a,b], with xi ∈ [ξi, ξi+1] for i = 0, 1, . . . , n − 1. The following
quadrature formula for weighted integrals is obtained which relies only on
the first two moments of the weight function.

Theorem 9 Let the conditions in Theorem 7 hold, then following weighted
quadrature rule holds∫ b

a

w(t)f(t) dt = A(f, ξ, x) + R(f, ξ, x) (24)

where

A(f, ξ, x) =

n∑
i=1

m(αi, βi)f(xi) + m(ξ0, α1)f(ξ0)

+ 2
n−1∑
i=1

m(βi, ξi)f(ξi) + m(βn, ξn)f(ξn) (25)

and

|R(f, ξ, x)| ≤ ‖f ′‖∞
(

M(ξ0, ξn) − 2

n∑
i=

[M(αi, βi) + M(βi, ξi)]

+ ξnm(βn, ξn) − ξ0m(ξ0, α1)

)
. (26)
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The parameters xi, αi, βi and ξi satisfy

m(αi, xi) = m(xi, βi), αi =
ξi−1 + xi

2
, βi =

xi + ξi

2
(27)

for i = 1, 2, . . . , n, and

m(βi, ξi) = m(ξi, αi+1), (28)

for i = 1, 2, . . . , n − 1.

Proof: Using Theorems 2 and 7 over [ξi, ξi+1] for i = 0, 1, . . . , n − 1 and
summing readily produces the result after using Corollaries 3 and 8 to sim-
plify. ♠

4 Numerical Results

In this section we illustrate the application of the composite quadrature rule
developed in the previous section to approximate the integrals∫ 1

0

ln(1/t)

t + 2
dt = 0.4484142069 and

∫ 1

0

e−1/t ln(1/t) dt = 0.05065230956

(29)
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The integrals are evaluated using the composite rule (24) and the product-
trapezoidal as described in [1, p. 310]. The first integral, (29)1, has been
used to demonstrate the product-trapezoidal and as a result we can compare
the performance with the rule developed here. Note that (24) is a first-order
rule in that it was derived for the class of once-differentiable functions. This
contrasts with the product-trapezoidal rule which is of second order. Thus,
to investigate the effects of rule order, we also apply these rules to (29)2.
In contrast with (29)1, the integrand of (29)2 increases with the order of its
derivative.

Table 1 shows the numerical error in evaluating (29) using (24) for an
increasing number of intervals. We note that the nodes and weights of
the quadrature rule are obtained by solving the 4n − 1 simultaneous equa-
tions (27) and (28). It is a simple matter to implement a numerical procedure
to solve these equations iteratively with an initial uniform mesh. For example
on a Pentium-90 personal computer, with n = 32, calculating (27) and (28)
to 14 digit accuracy took close to 42 seconds.

Inspection of Table 1 reveals that a more accurate result is obtained
for (29)1 than for (29)2. This is probably due to the nature of the inte-
grands. The theoretical error ratio is consistently close to 2. This value
confirms that, due to its development, the quadrature rule is at least of first
order. The numerical error ratios are somewhat larger, these values suggest
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n Equation (29)1 Equation (29)2 Theoretical
Relative Err Err Ratio Relative Err Err Ratio Error Ratio

2 1.64(-2) 7.27(-2)
4 4.53(-3) 3.64 2.62(-2) 2.78 1.70
8 1.23(-3) 3.69 8.47(-3) 3.09 2.81
16 3.29(-4) 3.73 2.57(-3) 3.30 2.08
32 8.77(-5) 3.75 7.52(-4) 3.41 2.05
64 2.33(-5) 3.77 2.15(-4) 3.50 2.03

Table 1: The relative error in evaluating (29) using (24), where n is the
number of intervals.

an asymptotic form of the error bound

|R(f, ξ, x)| ∼ O

(
1

nγ

)
, where γ ≤ 2. (30)

In Table 2 the errors in employing the product-trapezoidal rule are pre-
sented. The error ratios are consistently close to 4 which simply reflects the
fact that the rule is of second order. This rule was developed by employing a
linear approximation for the weighted integrand—a higher order approxima-
tion than that used here. This rule performs better than (24) for (29)1 since
the integrand is well behaved and its magnitude decreases as its derivatives
increase. In contrast, the product-trapezoidal rule is inferior to (24) for (29)2.
This integrand is not well behaved and its integral is better suited to (24)
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n Equation (29)1 Equation (29)2

Relative Error Error Ratio Relative Error Error Ratio

2 7.12(-3) 4.29(-1)
4 1.98(-3) 3.60 8.08(-2) 5.30
8 5.17(-4) 3.83 1.90(-2) 4.25
16 1.32(-4) 3.92 4.74(-3) 4.01
32 3.33(-5) 3.96 1.18(-3) 4.00
64 8.35(-6) 3.98 2.96(-4) 4.00

Table 2: The relative error in evaluating (29) using the product trapezoidal
rule [1, p. 310], where n is the number of intervals.

which was developed for a more general class of function.

We note that the product-trapezoidal rule employs a uniform mesh and
the behaviour of the weight function, w(t), is accounted for in the quadrature
rule weight. Rules of this type were explored in [6], where a one-point, second
order product rule was developed. In this paper, Roumeliotis et al., showed
that, for the log weight, employing a non-uniform mesh, similar to (28) in-
creases accuracy by a factor of more than two for f ′′ ∈ L∞[a, b].

Finally, we note that the rule developed here is composite in nature and
identifies an “optimal” partition for an arbitrary weight. This contrasts
with Gauss quadrature [7] which is not composite and hence provides no
information as to how one should partition.
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5 Concluding Remarks

The approach described enables the user to predetermine the partition re-
quired to assure the result to be within a certain error tolerance. This ap-
proach is somewhat different from that commonly used of systematic mesh re-
finement followed by a comparison of successive approximations which forms
the basis of a stopping rule. See [1, 3, 4] for a comprehensive treatment of
traditional methods.

Although the bounds were obtained in terms of the behaviour of the first
derivative the methodology may be extended to involve higher derivatives.
It may be advantageous to rely on the behaviour of lower derivatives as
demonstrated in the evaluation of (29)2 in which the higher derivatives are
badly behaved.
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