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ORIGINAL INVESTIGATION

The synergistic effects of saxagliptin 
and metformin on CD34+ endothelial 
progenitor cells in early type 2 diabetes 
patients: a randomized clinical trial
Fiona J. Dore1†, Cleyton C. Domingues2†, Neeki Ahmadi2, Nabanita Kundu2, Yana Kropotova2, Sara Houston2, 
Carol Rouphael2,4, Aytan Mammadova1,5, Linda Witkin1, Anamil Khiyami1,3,6, Richard L. Amdur1 
and Sabyasachi Sen1,2* 

Abstract 

Aims: Type 2 diabetes is associated with endothelial dysfunction leading to cardiovascular disease. CD34+ endothe-
lial Progenitor Cells (EPCs) are responsible for endothelial repair and neo-angiogenesis and can be used as a cardio-
vascular disease risk biomarker. This study investigated whether the addition of saxagliptin, a DPP-IV inhibitor, to met-
formin, may reduce cardiovascular disease risk in addition to improving glycemic control in Type 2 diabetes patients.

Methods: In 12 week, double-blind, randomized placebo-controlled trial, 42 subjects already taking metformin 1–2 
grams/day were randomized to placebo or saxagliptin 5 mg. Subjects aged 40–70 years with diabetes for < 10 years, 
with no known cardiovascular disease, BMI 25–39.9, HbA1C 6–9% were included. We evaluated EPCs number, func-
tion, surface markers and gene expression, in addition to arterial stiffness, blood biochemistries, resting energy 
expenditure, and body composition parameters. A mixed model regression to examine saxagliptin vs placebo, 
accounting for within-subject autocorrelation, was done with SAS (p < 0.05).

Results: Although there was no significant increase in CD34+ cell number, CD31+ cells percentage increased. Saxa-
gliptin increased migration (in response to SDF1α) with a trend of higher colony formation count. MNCs cytometry 
showed higher percentage of CXCR4 double positivity for both CD34 and CD31 positive cells, indicating a functional 
improvement. Gene expression analysis showed an upregulation in CD34+ cells for antioxidant SOD1 (p < 0.05) and 
a downregulation in CD34− cells for IL-6 (p < 0.01). For arterial stiffness, both augmentation index and systolic blood 
pressure measures went down in saxagliptin subjects (p < 0.05).

Conclusion: Saxagliptin, in combination with metformin, can help improve endothelial dysfunction in early diabetes 
before macrovascular complications appear.

Trial registration Trial is registered under clinicaltrials.gov, NCT02024477

Keywords: Diabetes, Endothelial progenitor cells, Saxagliptin, DPP-4 inhibitor, Arterial stiffness
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Background
Type 2 diabetes is a national epidemic, affecting 11% 
of adults in the United States [1, 2]. Both diabetes and 
prediabetes are associated with significant macro and 
microvascular complications, including endothelial dys-
function, oxidative stress, endothelial cell inflammation, 
cardiovascular pro-thrombotic states, and kidney disease 
[1, 3–5]. Therefore, endothelial progenitor cells (EPCs, 
defined here as CD34+ cells), which are specialized cells 
responsible for endothelial repair and neo-angiogenesis, 
play an important role in diabetes. It has been shown that 
EPCs are impaired in number, function and gene expres-
sion in hyperglycemia and diabetes related complica-
tions [6–10]. Moreover, it has been reported that EPCs 
(CD34+) from diabetic patients failed to incorporate and 
repair damaged vessels [11]. EPCs can act as a cellular 
biomarker that is more reliable than serum based mark-
ers for estimating and following endothelial dysfunction 
in early type 2 diabetes patients. Thus, investigating EPCs 
could help develop a cardiovascular disease (CVD) risk 
estimation [12–15].

Dipeptidyl peptidase-4 (DPP-4) inhibitors, a popular 
class of anti-diabetic medications, have been shown to 
achieve improved glycemic control by lowering HbA1C, 
without causing hypoglycemia, and are weight neutral 
[16]. Because DPP-4 degrades particular incretins, such 
as SDF-1ɑ, its inhibition is also linked with a potential 
mechanism to prevent vascular diseases. However, there 
is limited data demonstrating the potential cardiovascu-
lar effects of these medications. Only a few studies using 
either sitagliptin or saxagliptin have shown an increase 
in endothelial progenitor cells, and thus potential cardio-
vascular benefits, with DPP-4 therapy [12, 13, 17].

Metformin has commonly been used as the first line 
pharmacologic agent for treating diabetes and pre-diabe-
tes as per the American Diabetes Association guidelines 
[18]. Metformin improves glycemic control by decreasing 
hepatic glucose production, decreasing glucose absorp-
tion in the intestines and stomach, and increasing insu-
lin-mediated glucose uptake [19]. Metformin has shown 
cardio-protective effects by increasing endothelial pro-
genitor cells and CFU-Hill’s colonies in type 1 diabetes, 
and is known to also have cardio-protective properties in 
type 2 diabetes [20–22].

The up-regulation of SDF-1α and vascular endothe-
lial growth factor (VEGF), both chemotactic factors, in 
serum increases mobilization and recruitment of EPCs in 
the face of acute ischemic injury for repair and regenera-
tion [23–26]. It is postulated that DPP-4 inhibitors may 
increase EPCs mobilization from the bone marrow via 
their role in increased SDF-1α presence in serum [12].

Since poor viability and impaired function of EPCs 
in early diabetes will ultimately affect the repair and 

regeneration of the endothelium, a prompt interven-
tion may help to reduce or reverse cardiovascular risk 
by improving EPCs survival and function above and 
beyond adequate glucose metabolism control. In this 
12 week placebo-controlled clinical trial, we investigated 
the effect of saxagliptin, a DPP-4 inhibitor, in addition to 
metformin and exercise, on endothelial dysfunction in 
early type 2 diabetes patients who do not have any estab-
lished macro-vascular complications.

Methods
This Phase 4, single-site, double-blind, placebo-con-
trolled, randomized clinical trial was approved by The 
George Washington University Institutional Review 
Board, and was conducted in accordance with Good 
Clinical Practices of the National Institutes of Health.

Data were analyzed in accordance to the pre-deter-
mined statistical plan. To minimize potential bias, the 
study team, in addition to the research subjects, remained 
blinded to each subject’s randomized group, until every 
subject had finished the research study, and all data had 
been compiled, locked, and analyzed. Un-blinding was 
performed by the study statistician 6  months after all 
subjects had completed the study.

Participants
42 adults with Type 2 Diabetes diagnosed within 
10  years, currently on metformin (1000–2000  mg/day) 
were enrolled. Subjects were between 40 and 70 years of 
age, with a BMI of 25–39.9 kg/m2, and a HbA1C between 
6.0 and 9.0%. Additional inclusion/exclusion criteria can 
be found in Additional file  1: Appendix S1. This study 
consisted of a single site at The GW Medical Faculty 
Associates.

Study design and treatment
Once subjects signed the informed consent, and were 
found eligible, there was a 1 month “wash in” period, dur-
ing which subjects adjusted their exercise level in order 
to achieve 150 min of moderate-intensity physical activ-
ity per week. Diet counseling was also provided. At visit 
1, baseline values of the following measures were gath-
ered: blood biochemistries, vitals, biophysical param-
eters, resting energy expenditure (REE), arterial stiffness 
measures, and endothelial progenitor cells analysis. Sub-
jects were then randomized to one of two arms: saxaglip-
tin 5  mg/day or placebo, in a blinded manner. Subjects 
took either saxagliptin (n = 21) or placebo (n = 21) for 
12 weeks, while engaging in 150 min of moderate inten-
sity physical activity per week. Visits were conducted 
every 6 weeks, ending at week 12 (visit 3).
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Endothelial progenitor cells analysis
Peripheral blood samples (approximately 60  ml) were 
drawn from patients and diluted in phosphate buffered 
saline (1:1). Mononuclear cells (MNCs) were then iso-
lated from whole blood using a Ficoll density centrifu-
gation method. MNCs were counted and an aliquot was 
used for CFU-Hill colony formation assay following the 
manufacturer’s instructions (Stem Cell Technologies, 
Vancouver, BC, Canada). At day 5 colony forming units 
(CFU) were counted. A fraction of MNCs were stained 
with (FITC, PE, APC)-conjugated antibodies (Miltenyi 
Biotec GmbH, Bergisch Gladbach, Germany) in order to 
analyze specific endothelial cell surface markers (CD34, 
CD31, CXCR4) by flow cytometry.

To isolate EPCs (CD34+), MNCs were magnetically 
sorted through a column after cells were stained with 
CD34 microbeads antibody (Miltenyi Biotec GmbH, Ber-
gisch Gladbach, Germany). According to the manufac-
turer and based on flow cytometry analysis, the purity of 
CD34+ cells post sorting is 67% (before gating on white 
blood cells). An aliquot of CD34+ cells were then stained 
with trypan blue and counted using an Auto Cellometer 
Mini (Nexcelom Bioscience, Lawrence, MA).

CD34+ gene expression analysis was performed by 
quantitative reverse transcriptase polymerase chain 
reaction (qRT-PCR). CD34+ total mRNA was extracted 
and purified using the RNeasy mini kit (Qiagen). mRNA 
was then converted into cDNA by using the high capac-
ity cDNA reverse transcription kit (Applied Biosystems). 
Possible gene expression changes promoted by Saxa-
gliptin were assessed by a CFX96 real-time qPCR sys-
tem (Bio-Rad) using TaqMan Universal Master Mix II 
(Applied Biosystems) and inventoried probes. The gene 
expression analysis included antioxidants, apoptosis, 
endothelial function, chemotaxis, inflammation, and 
endothelial lineage cell surface markers. The expression 
of individual gene was normalized to either housekeep-
ing 18S or GAPDH and calculated by using the  2−∆∆Ct 
method considering the difference in cycle threshold 
between visit 2 or visit 3 and baseline (visit 1). Gene 
expression of CD34− cell population was also analyzed 
along with CD34+ cells.

The migratory capacity of CD34+ was evaluated using 
the CytoSelect 24-well Cell Migration Assay kit (Cell 
Biolabs, Inc., San Diego, CA). Cells were suspended in 
serum-free media and seeded at 100,000 cells per insert. 
Migration of the cells through a 3  µm polycarbonate 
membrane to the wells containing serum-free media 
(control) and chemoattractant SDF-1α (10 or 100  ng/
mL) was assessed after cells were kept overnight in a 
 CO2 incubator at 37 °C. Migratory cells were dissociated 
from the membrane and subsequently lysed and quanti-
fied by fluorescence (480 nm/530 nm) using CyQuant GR 

dye (Cell Biolabs, Inc., San Diego, CA). The fluorescence 
ratios between cells exposed to the chemotactic factor 
and cells exposed to chemoattractant-free media (con-
trol) along the visits were used to analyze the migratory 
capacity of the cells.

Clinical and laboratory measures
Arterial stiffness was assessed through pulse wave analy-
sis (PWA), and pulse wave velocity (PWV). PWA was 
obtained from the radial artery while the subjects were 
seated at rest. Investigators tried to obtain a minimum 
of three measures, with an operator index score ≥ 80. 
PWA measures include: augmentation index (AI), Aug-
mentation Index adjusted for a heart rate of 75 (AI-75), 
augmentation pressure (AP), and both systolic and dias-
tolic blood pressures (SBP, DBP) measured both centrally 
and peripherally. PWV measures the velocity of the pulse 
as it moves from a “proximal” artery to a “distal” artery. 
The designated proximal artery was the carotid, how-
ever, occasionally the radial artery was used if no carotid 
measurement could be obtained. The designated distal 
artery was the femoral artery, with no alternative used. 
PWV was obtained with subjects supine, at rest. Investi-
gators tried to obtain a minimum of two measures, each 
with a standard deviation of less than 10%. These meas-
ured were gathered using the AtCor SphygmoCor CP 
system.

Basal metabolic rate, otherwise known as resting 
energy expenditure (REE), was measured using the 
KORR REEVUE. Subjects were resting, sitting in an exam 
chair prior to beginning the test. Tests ran between 10 
and 15  min. Values gathered include: Measured REE, 
Predicted REE, estimated total energy expenditure, VO2, 
and calories per day.

Body composition parameters were gathered both 
manually and using a Tanita BF-350 body composition 
scale. Manual measurements include: height, weight, 
BMI, waist circumference, hip circumference. The Tan-
ita scale works via bio-impedance, and provides meas-
ures on: weight, BMI, percent body fat, fat mass (kg), 
fat free mass (kg), percent body water, water mass (kg), 
basal metabolic rate (kcal), daily calorie intake (kcal), and 
impedance.

A venous blood draw was performed for both biochem-
ical analyses and serum ELISA. Standard of care labo-
ratory measures were collected at each visit to monitor 
trends and changes. The following values were ordered 
either as plasma, serum, or whole blood through Labo-
ratory Corporation of America: basic metabolic panel, 
lipid panel, leptin, HbA1C, C-reactive protein, IL-6, Adi-
ponectin, and Insulin. ELISA was performed in order 
to analyze serum total GLP1 and SDF-1α. GLP-1 was 
analyzed using a competitive ELISA Immunoassay Kit 
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(Raybiotech, Norcross, GA), and SDF-1α using a sand-
wich ELISA (EHCXCL12A, Thermo Scientific).

Vitals gathered were congruent with those gathered as 
a part of standard of care: Resting blood pressure, pulse, 
and temperature.

Finally, subject’s level of exercise exertion was meas-
ured using Actigraph wGT3X-BT activity monitors. Sub-
jects were instructed to wear the Actigraphs during all 
waking hours for a total of 7 consecutive days. Subjects 
were provided dietary and exercise advice, as a part of the 
study. For exercise, all subjects were instructed at screen-
ing to achieve 150 min/week of moderate intensity physi-
cal activity, as per the ADA guidelines. Actigraphs served 
as a measure of this exercise compliance, and to verify for 
exercise as a confounding variable.

Statistical analyses
Variable distributions were examined using frequency 
histograms and outliers were excluded. In gene expres-
sion variables, outliers with expression values > 50 were 
dropped, and values were natural-log transformed due 
to skewness [using log(expression + 1)]. Expression val-
ues that still had outliers after log transformation were 
capped at a value of 2.

For each dependent variable (dv), we used a random 
effects mixed model with robust standard errors to esti-
mate the group (saxagliptin/placebo) main effect, the 
visit (1, 2, 3) main effect, and the group x visit interac-
tion. The main effect of group tells whether the saxaglip-
tin patients vs controls differed on the dv independently 
of visit. The visit main effect tells us whether the dv mean 
changed across visits, independently of treatment group. 
The treatment x visit interaction was of primary inter-
est, since this tells us whether the treatment and control 
groups had different slopes over visits, i.e. whether the 
pattern of scores over time differed based on treatment. 
Because there was a slight change in the laboratory pro-
cedure for CFU and migration outcome measurements 
after subject 20, we also considered this variation and 
included 3-way interaction tests (group x visit x early/
late) in the model for these parameters. Since subjects 
were randomized to treatment, baseline subject vari-
ables that differed between treatments could not act as 
confounds (i.e. could not cause a spurious association 
between treatment and outcome, because they could 
not affect treatment assignment). Therefore, randomized 
controlled trials do not usually adjust for baseline differ-
ences. However, as a sensitivity analysis, for dependent 
variables with significant effects, we included as a covari-
ate in the mixed model, any baseline variable that differed 
between treatment groups with p < 0.10.

SAS (Version 9.3 or 9.4, Cary, NC) was used for data 
analysis with p < 0.05 considered significant.

Results
Patient disposition was similar between saxagliptin and 
placebo groups (Table 1), with no statistical significance 
at baseline. There was a trend-level difference noted in 
HbA1C (p = 0.06), so it was controlled for in sensitivity 
analysis. There was no significant difference in attrition at 
visits 2 or 3 between groups.

Primary outcomes: cellular
CFU‑Hill’s colonies
The CFU-Hill’s colonies formation was improved in 
the saxagliptin treatment group. The ascendant curve 
in Fig.  1 shows that CFU numbers increased across 
12  weeks (visit 1–3) of saxagliptin treatment, while a 
decline in the curve was found in the placebo group. 
Despite these results being close to statistical signifi-
cance (p = 0.07), they clearly indicate a positive effect of 
the drug on the functionality of the endothelial cell line-
age, and the lack of full significance is likely due to a small 
sample size.

Endothelial progenitor cells (CD34+)
The percentage of CD34+ cells purified from the MNCs 
population did not show any significant difference nei-
ther at baseline nor along the study between treatment 
and control groups. Although EPCs (CD34+) number 
did not differ by treatment group (2.8% ± 0.5 for sax-
agliptin group vs 2.0% ± 0.3 for placebo group), the 
migratory response of  CD34+ cells to the chemotactic 
factor SDF-1α (100  ng/mL) was significantly greater 
(p = 0.04). This functional improvement can be better 
appreciated at visit 2 (Fig.  2). For lower concentration 

Table 1 Baseline demographics and disease 
characteristics

* No significant differences were observed

Saxagliptin* Control*

N 21 21

Age (years), mean ± SD 58.3 ± 5.7 56.4 ± 8.5

Female, n (%) 11 (52%) 7 (33%)

Race, n (%)

 African American 15 (71%) 13 (62%)

 White 5 (24%) 6 (29%)

 Other 1 (5%) 2 (10%)

Weight (lbs), mean ± SD 202.7 ± 24.5 202.3 ± 38.7

BMI (kg/m2), mean ± SD 32.3 ± 4.2 31.5 ± 4.8

Duration of diabetes (years), mean ± SD 3.7 ± 2.4 3.5 ± 1.8

HbA1C mean ± SD 7.0 ± 0.8 6.6 ± 0.5

Fasting glucose (mg/dL), mean ± SD 127.4 ± 35.9 114.8 ± 25.0

eGFR (mL/min/1.73), mean ± SD 98.9 ± 14.5 93.7 ± 16.7
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of SDF-1α (10  ng/mL) there was no significant differ-
ence between the groups.

The functional improvement of CD34+ cells 
described above (Fig. 2) reflects the higher percentage 
of CD34+ CXCR4+ expression (visit 1 = 5.6% ± 1.0; 
visit 2 = 8.5% ± 1.1; visit 3 = 7.1% ± 1.2) present in the 
MNCs after saxagliptin treatment. Therefore, a 12-week 
trial of saxagliptin therapy led to a significant increase 
in circulating EPCs expressing CXCR4 (measured by 
flow cytometry; p < 0.01) facilitating the migration pro-
cess promoted by SDF-1α (Fig.  3). Remarkably, there 
was a dramatic increase in CD34+ CXCR4+ cell num-
bers particularly at visit 2 (at 6 weeks of treatment), in 
spite of lower levels in saxagliptin group at the onset or 
visit 1. Similarly, in Fig. 4, we noted increased number 

of circulating endothelial cells, identified as CD31+ 
cells on flow-cytometry, across visits 2 and 3.

The number of CD34+ cells present in the MNCs pool 
is relatively low in patients with diabetes. Thus, in this 
study the number of CD34+ cells obtained for isolation 
of mRNA was not always sufficient or adequate in order 
to obtain confident gene expression analysis. As an alter-
native we looked at mRNA gene expression from CD34− 
cells (Mononuclear cell population (MNC) minus 
CD34+ cells). CD34− cell population is largely reflective 
of the MNC population (minus approx. 1% CD34+ cells).

Gene expression analysis was performed for antioxi-
dants (SOD1, SOD2, GPX1, CAT), apoptosis (BCL-2, 
CDKN1A, TP53, CASP-3), endothelial function (VEGFA, 
VEGFR2, EDN-1, eNOS, IGF1), cell chemotaxis (SDF-1α, 
CXCR4), inflammation (IL-6, TNFα), progenitor marker 
(CD34) and endothelial lineage cell surface markers 
(PECAM1). For CD34+ cells, upregulation (2.1-fold) 
was observed for SOD1 (p < 0.05); while for CD34− cells, 
downregulation was observed for IL-6 (approximately 
40%) and IGF-1 (approximately 60%) (p < 0.01) (Fig.  5). 
There was also a trend for upregulation (p = 0.1893) for 
GPX1 expression for CD34+ cells. Both GPX1 and SOD1 
are cytosolic anti-oxidants, which appear to increase in 
expression post saxagliptin therapy. For CD34− cells 
a trend for downregulation was noted for caspase 3 
(p = 0.08) (Fig. 5), a well-known pro-apoptotic gene.

Secondary outcomes: clinical
The study population was representative of subjects 
with uncontrolled type 2 diabetes, but with no preexist-
ing macro-vascular complications. All adverse effects 
that occurred throughout the duration of the study were 
either not related to the study medication and design, or 
fell within the expected side effects profile for saxagliptin.

Table  2 shows blood biochemistries and arterial stiff-
ness measures across the three visits.

Actigraph energy monitor use was analyzed to account 
for any exercise or activity level difference between the 
placebo and the saxagliptin treatment group. Post Acti-
graph analysis, we noted no difference between the two 
groups for the amount of hours per day spent in any level 
of physical activity intensity (sedentary, light, moderate, 
moderate-to-vigorous, or vigorous).

Body composition measures showed no statistically 
significant changes. A high correlative effect was seen in 
the Tanita body composition scale measures for fat free 
mass (FFM, p = 0.07) and percent body fat, (p = 0.08). 
Mean FFM, by visit, drops more from visit 1 to visit 2 in 
the saxagliptin group, than the control group at a trend 
level significance (Fig. 6a). Percent body fat, while being 
higher on average in the saxagliptin group than the pla-
cebo group, showed a decline after visit 2. Conversely, 

Fig. 1 CFU-Hill’s colonies as an indicator of vascular health. 
Experiments were performed in duplicate and values are given as 
mean ± SD (p = 0.07, for the visit x treatment interaction t-test in a 
random effects mixed model)
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Fig. 2 Migration of CD34+ cells in response to SDF-1α (100 ng/mL). 
Results are expressed as fluorescence ratio between cells exposed 
to the chemotactic factor and cells exposed to chemoattractant-free 
media (control) followed by lysis in presence of CyQuant GR dye. 
Experiments were performed in duplicate and results are given as 
mean ± SD (p < 0.05)
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the placebo group had an increase after visit 2 (Fig. 6b). A 
trend was also noticed in total body water (TBW, p = 0.1), 
which was seen to decline from visit 1 to visit 2, and then 
a rise again at visit 3 in the saxagliptin group (Fig. 6c). In 
the control group, however, TBW remains stable until 
visit 2, when it begins to fall for visit 3.

Venous blood biochemistries were gathered both 
through Labcorp of America and through serum ELISA. 
Both standard of care, and research values were collected. 
In the Labcorp values, only adiponectin (p = 0.01) was 
statistically significant across the saxagliptin and placebo 
groups. The placebo group had a steady increase across 
visit 1 through 3, but the saxagliptin saw an overall stable 
value of adiponectin (Fig. 7a). Serum creatinine remained 
relatively stable throughout the study in the saxagliptin 
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Fig. 3 Representative image (a and b) indicating the CD34+ CXCR4+ expression in MNCs by flow cytometry. CD34+ CXCR4+ expression is higher 
for the saxagliptin group at visit 3 than visit 1 (7.95 and 4.64%, respectively). c Double positivity for CD34 and CXCR4 along the visits for placebo and 
saxagliptin groups (p < 0.01)
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group, but showed a drastic decrease after visit 1 in the 
placebo group, before the values leveled out (p = 0.12, 
Fig.  7b). There was no correlating significant or trend 
level significant noticed in eGFR (p = 0.36), or BUN. 
There were no statistically significant changes between 
groups in either GLP1 or SDF-1α, performed by ELISA.

For basal metabolic rate, there were no values that 
showed any statistically significance, when compared to 
the control group for any of the parameters.

When analyzing the arterial stiffness, augmentation 
index that was adjusted for a heart rate of 75 (AI-75), 
was found to be statistically significant (p = 0.04), with 
the values for the control group increasing across visit 
1 through 3. Saxagliptin subjects have a slight decline 
across the three visits (Fig.  8a). Systolic blood pressure, 
measured radially, was found to be statistically significant 
(Fig.  8b; p = 0.009). There was a trend level significant 
reduction for systolic blood pressure, measured arterially 
(Table  2; p = 0.061), however not all subjects had PWV 
measured, therefore lack of statistical difference (though 
there was a trend) between the groups may not be a true 
reflection.

In general, it was noted that adding HbA1c as a time-
varying covariate had little impact on the results.

Discussion
Primary outcomes: cellular
We have defined EPCs as CD34+ cells. Werner et  al. 
defined EPCs as CD34/KDR positive cells [27]. However, 

Table 2 Blood biochemistry and arterial stiffness 
before and after saxagliptin treatment

Visit 1 Visit 2 Visit 3 p-value*

Blood biochemistries

Glucose

Placebo 114.8 ± 5.3 113.8 ± 5.5 112.1 ± 4.8 0.233

Saxagliptin 125.9 ± 7.8 113.5 ± 7.6 117.1 ± 5.8

BUN

Placebo 14.0 ± 0.9 13.0 ± 0.8 13.7 ± 0.7 0.205

Saxagliptin 13.1 ± 0.7 13.9 ± 0.8 13.5 ± 0.8

Serum creatinine

Placebo 1.2 ± 0.3 1.0 ± 0.1 0.9 ± 0.1 0.118

Saxagliptin 0.9 ± 0.0 0.9 ± 0.0 0.8 ± 0.0

eGFR

Placebo 93.7 ± 3.6 93.0 ± 3.8 92.7 ± 3.9 0.357

Saxagliptin 98.3 ± 3.1 93.4 ± 2.7 26.9 ± 2.9

Cholesterol

Placebo 174.5 ± 9.9 166.0 ± 7.1 164.3 ± 7.0 0.299

Saxagliptin 170.1 ± 8.1 168.8 ± 6.6 171.8 ± 8.5

Triglycerides

Placebo 106.2 ± 7.3 112.0 ± 10.0 107.8 ± 7.3 0.972

Saxagliptin 122.3 ± 13.7 126.5 ± 13.1 121.7 ± 11.3

LDL/HDL

Placebo 2.3 ± 0.2 2.1 ± 0.2 2.1 ± 0.2 0.160

Saxagliptin 1.8 ± 0.1 1.8 ± 0.1 1.8 ± 0.2

HbA1C

Placebo 6.6 ± 0.1 6.6 ± 0.1 6.5 ± 0.1 0.164

Saxagliptin 7.0 ± 0.2 6.8 ± 0.2 6.7 ± 0.2

C-reactive protein

Placebo 2.4 ± 0.6 2.9 ± 0.8 2.9 ± 0.7 0.156

Saxagliptin 2.8 ± 0.5 2.7 ± 0.4 2.4 ± 0.4

IL-6

Placebo 2.7 ± 0.6 4.0 ± 0.7 4.3 ± 0.9 0.629

Saxagliptin 3.1 ± 0.4 3.9 ± 0.7 3.8 ± 0.8

TNF-α

Placebo 3.1 ± 0.9 2.8 ± 1.1 1.6 ± 0.2 0.213

Saxagliptin 1.7 ± 0.2 1.9 ± 0.2 2.9 ± 1.3

Leptin

Placebo 14.1 ± 2.1 13.1 ± 1.8 13.8 ± 2.4 0.409

Saxagliptin 19.4 ± 3.7 17.4 ± 2.8 20.4 ± 3.5

Adiponectin

Placebo 4.6 ± 0.6 4.9 ± 0.6 5.5 ± 0.6 0.010*

Saxagliptin 4.2 ± 0.6 4.9 ± 0.7 4.0 ± 0.5

GLP1 (ELISA)

Placebo 271.9 ± 67.2 241.1 ± 63.8 295.7 ± 78.5 0.400

Saxagliptin 245.9 ± 59.0 245.3 ± 55.5 234.0 ± 58.7

SDF-1ɑ (ELISA)

Placebo − 1.84 ± 0.27 − 1.83 ± 0.27 − 1.80 ± 0.27 0.245

Saxagliptin − 1.99 ± 0.27 − 1.61 ± 0.27 − 1.87 ± 0.25

* p-values are for the treatment group by visit interaction in the mixed model. 
This indicates whether the treatment groups had different slopes over time

Table 2 (continued)

Visit 1 Visit 2 Visit 3 p-value*

Arterial stiffness

Diastolic blood pressure (radial)

Placebo 82.7 ± 1.8 82.4 ± 2.3 82.0 ± 2.0 0.3723

Saxagliptin 84.9 ± 1.5 84.3 ± 1.2 81.9 ± 1.1

Diastolic blood pressure (arterial)

Placebo 84.4 ± 1.4 83.4 ± 2.2 83.1 ± 2.0 0.568

Saxagliptin 85.4 ± 1.5 84.6 ± 1.1 82.8 ± 1.1

Systolic blood pressure (radial)

Placebo 131.8 ± 3.6 126.0 ± 4.3 134.0 ± 3.5 0.009*

Saxagliptin 132.7 ± 2.5 133.1 ± 1.8 127.7 ± 2.3

Systolic blood pressure (arterial)

Placebo 118.7 ± 3.0 130.0 ± 7.9 121.2 ± 3.3 0.061

Saxagliptin 121.8 ± 1.7 117.5 ± 2.2 122.6 ± 2.6

Augmentation index-75

Placebo 18.4 ± 2.4 26.0 ± 3.9 23.3 ± 2.3 0.037*

Saxagliptin 24.1 ± 2.1 22.5 ± 2.0 23.1 ± 2.1
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if an investigator uses two markers to isolate EPCs from 
mononuclear cells (MNCs) rather than one, the percent-
age of positive cells drops by almost 10-fold. In this study, 
only 60–80 mls of whole blood such a drop makes a cell 
based clinical trial difficult to interpret. Therefore, we 
have used only one marker, CD34+ve, so that we get con-
sistently close to 1% population of MNC, as EPCs.

In this study we show for the first time that saxagliptin, 
in addition to metformin, positively modulates CD34+ 
EPCs, as a marker of vascular endothelial function, in 
early onset type 2 diabetes subjects who have no overt 
cardiovascular complications. Vascular complications are 
common in subjects with diabetes and a reduced number 
of EPCs in these subjects can predict early onset of vas-
cular complications [28–31]. Therefore, in order to assess 
cardiovascular risk using a cell as a biomarker rather than 
serum biochemistry, it is important to investigate the 
number and functionality of endothelial progenitors and 
whether these cells can adequately promote or help with 
endothelial repair and angiogenesis [32]. Metformin, a 
very common medication for diabetes, has been shown 

to contribute to the improvement of EPCs in both type 1 
and type 2 diabetes on its own and similarly, saxagliptin 
has been shown to increase EPC number and function 
[17, 22, 33]. Curiously, no differences in EPCs number 
were observed between the metformin and saxagliptin 
groups [17]. However, here we have demonstrated an 
additional improvement of EPCs by adding saxagliptin to 
on-going metformin treatment.

Based on the CFU-Hills’s colony count and migratory 
response to SDF-1α results (Figs.  1, 2, respectively), we 
demonstrated that saxagliptin enhances EPCs function-
ality. Considering that CFU-Hill’s colonies number is 
inversely related to Framingham risk score, these results 
also indicate a decrease in CVD risk promoted by the use 
of saxagliptin and metformin combination, in addition to 
exercise.

Our data also indicated a trend for an increase of 
CD34+ cell number for the saxagliptin group. On the 
other hand, other results recently published showed a 
significant increase of EPCs number (CD34+ CD133+ 
KDR+) when patients were subjected to either 
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saxagliptin or metformin alone [17, 22, 33]. These results 
indicate that the combination of these two drugs may not 
promote additional increase in number of CD34+ cells in 
the periphery blood. It is possible that the subjects may 
have reached the maximum threshold already by using 
metformin. Metformin has a dual effect by simultane-
ously increasing VEGFA and reducing both CXCL10 and 
TIMP1 in CD34+ cells in a model of the diabetic state 
combined with hypoxia, and also shows a proangiogenic 
activity [34, 35].

Although we did not observe a statistically significant 
increase in CD34+ cells, the higher percentage of CD34+ 
CXCR4+ (double positive cell) for patients undergoing 
saxagliptin treatment was confirmed by our flow cytom-
etry results (Fig. 3). We also noted increased CD31 posi-
tive cells that were CXCR4 positive (Fig. 4). CXCR4 is the 
receptor to SDF1α ligand. Similarly, other investigators 
have shown increase in the number of CD31+ cells as a 
positive outcome marker for cardiovascular risk assess-
ment [36, 37]. It was noted that both CD34+ cells (a pro-
genitor endothelial cell pool) and CD31+ cells (a mature 
circulating endothelial cell pool) had increased in double 
positivity with SDF1α receptor CXCR4 indicating posi-
tive effect of saxagliptin on endothelial lineage cells both 
immature and mature. It has been reported that CD34+ 
cells from patients with type 2 diabetes have defective 
chemotaxis to SDF-1α resulting in reduced vasculogenic 
potential [38]. Here, we showed that migratory response 
to SDF-1α of CD34+ cells is improved by saxagliptin. 
These results corroborate with the fact that CD34+ cells 
expressed more CXCR4 receptor and thereby facilitat-
ing the responsiveness to the SDF-1α ligand. Altogether, 
these results indicate that colony formation ability 
and mobilization of EPCs can be improved in patients 
with type 2 diabetes subjected to saxagliptin treatment. 

Similarly CD31+/CXCR4+ cell number also increased 
post saxagliptin therapy. While saxagliptin and met-
formin promoted similar beneficial effects on endothe-
lial function when used separately, our results indicate 
a synergistic positive effect of saxagliptin to the entire 
endothelial lineage [17].

Effects of sitagliptin, another DPP-4 inhibitor, on EPCs 
have been previously reported [12, 13]. In type 2 dia-
betic patients, sitagliptin promoted increase in circulat-
ing EPCs followed by upregulation of SDF-1α [12]. In a 
mouse model, SDF-1α was also increased and in addition 
to increased EPCs number those results indicated that 
sitagliptin has a great potential as a promoter of neo-
vascularization [13]. However in our study, saxagliptin 
therapy did not show an increase in SDF-1α plasma levels 
(measured by ELISA). There are still no data showing the 
minimum period of time for administration of saxaglip-
tin in order to demonstrate an increase in SDF-1α levels. 
Therefore, our results could be secondary to a short-term 
intervention of 12 weeks and it is likely that plasma levels 
did not show increase as optimal time for detecting a sta-
tistical difference between placebo and saxagliptin. Inter-
estingly, SDF-1α mRNA expression of EPCs was also not 
upregulated, in spite of increased CXCR4− expressing 
CD34+ cell number. In fact, there was a trend towards 
down-regulation of SDF-1α in the mRNA expression 
from cells that were exposed to saxagliptin, which may 
indicate that saxagliptin is rescuing the cells from dam-
age and dysfunction, as SDF-1α is a factor that is pri-
marily produced from damaged cells rather than healthy 
cells. Therefore the gene expression of SDF-1α ligand in 
healthy EPCs may actually decrease [29, 31]. The lack of 
effects of saxagliptin on SDF-1α plasma levels needs to be 
confirmed in larger and longer outcome studies.
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Regarding gene expression, we looked at pathways 
involving inflammation, oxidative stress, apoptosis, EPC 
chemotaxis pathways and endothelial function markers, 
in both CD34+ and CD34− cells obtained post mag-
netic column separation of MNCs. The mRNA expres-
sion results that stand out (statistically significant) are 
the antioxidants such as SOD1 (superoxide dismutase) 
and GPX1 (glutathione peroxidase) with clear upregula-
tion, post Saxagliptin exposure, compared to placebo. 
This is concurrent with reduced inflammatory and apop-
tosis cascade markers such as IL6 and Caspase-3 mRNA 
expressions in CD34− cells indicating an overall reduc-
tion in inflammation and apoptosis pathway, which could 
be secondary to upregulation in antioxidants. This is par-
ticularly interesting as there is sufficient evidence from 
our previous work, to suggest significant patho-physio-
logical role of ROS (anti-oxidant expression may increase 
in response to increased intracellular ROS presence) in 
not only EPCs but also in MSCs in a setting of hyper-
glycemia, as seen in diabetes [10, 39]. The decrease of 
IGF-1 mRNA expression in CD34− cells in the saxaglip-
tin intervention group compared to placebo may indicate 
reduced insulin resistance at the levels of MNCs, which 
also supports reduction of cellular inflammation.

Secondary outcomes: clinical
All subjects were on a stable dose of metformin 
(1–2 grams/day) for 3 months or greater prior to enroll-
ment. Subjects were instructed to engage in 150 min of 
moderate intensity physical activity per week, as per the 
American Diabetes Association guidelines, prior to being 
randomized into either the saxagliptin or placebo group. 
The Actigraph energy monitor data analysis showed no 
difference in activity across all exercise intensity lev-
els between saxagliptin and placebo. This indicates that 
no changes for any outcome measure in the saxagliptin 
group can be attributed to exercise alone.

Saxagliptin is a weight neutral medication, and thus 
it was not expected that we would find a difference 
between groups in the weight [40]. There also was no 
change in waist or hip circumference measurements, 
which is consistent with other studies involving saxa-
gliptin and linagliptin, although these studies did not 
have concomitant metformin therapy [17, 41]. Previous 
studies involving mice have shown that treatment with 
DPP-4 inhibitors in hyperglycemic, obese mice resulted 
in reductions in adiposity, both in body fat percentage, 
and abdominal fat mass [42]. This was attributed to an 
increase in energy expenditure, which was measured via 
monitoring metabolic rate and food intake. Our research 
subjects taking saxagliptin had reductions in both fat free 
mass (kg) and percent fat as compared to placebo, how-
ever, there was no difference between groups in resting 

energy expenditure values or exercise levels. The changes 
in fat mass, therefore, could likely be attributed to saxa-
gliptin. The reduction in fat mass could be secondary to 
increased fat oxidation in lean and obese conditions [43]. 
Total body water showed a rise from visit 2 to 3 in the 
saxagliptin group, whereas the control group remained 
steady. One reason might be related to the increase of 
heart failure rate noticed in the SAVOR-TIMI trial, how-
ever this trial, unlike ours, involved a population with 
pre-existing CVD [44]. Interestingly, reduction in fat 
mass and increase in TBW would keep the weight of the 
subjects neutral as seen in most trials with DPP4 inhibi-
tors, however this may not be clinically relevant in sub-
jects with no overt heart failure [16].

Previous studies investigating DPP-IV inhibitor ther-
apy, mainly sitagliptin and vildagliptin, in a type 2 dia-
betes population found that there was no significant 
reduction in HbA1C values with treatment [45]. This is 
consistent with our results, upon comparing the saxaglip-
tin and placebo groups. In the saxagliptin group HbA1c 
decreased by 0.3% (less than expected), and the baseline 
HbA1c value was higher than placebo group. The differ-
ence in the baseline HbA1c value between groups and 
the little HbA1c reduction on the saxagliptin group is 
unlikely to explain the positive effect of saxagliptin on 
CD34+ EPC primarily based on HbA1C changes. There-
fore, the positive changes that we see such as in migra-
tion response of EPCs to SDF1a and flow cytometry is 
unlikely to be secondary to improvement in glycemic 
indices. One study conducted by Li et al. found a signifi-
cant improvement in HbA1C with saxagliptin therapy 
over 12  weeks, but these subjects were naïve to anti-
diabetic therapy prior to entering the study [17]. Blood 
biochemistries, however, did find a significant difference 
both in adiponectin and serum creatinine between saxa-
gliptin and placebo. While the meta-analysis conducted 
by Liu et al. found that treatment with DPP-4 inhibitors 
resulted in an increase in adiponectin, as compared to 
control, our results showed the opposite [46]. A reason 
for this may be that in our study we actually noticed a 
reduction in percent fat, and overall fat mass. We how-
ever did not see a decrease in leptin values.

We noted a stable serum creatinine in the saxaglip-
tin group compared to the placebo group. The eGFR 
was not statistically significant (p = 0.36), which may 
be because the eGFRs for the placebo group were ini-
tially lower and remained stable throughout the study. 
On the other hand, despite creatinine starting higher, 
it improved significantly in the 1st phase of the study. 
Therefore, improvement in plasma creatinine may be 
an acute effect rather than persistent or chronic effect. 
This maybe an interesting finding considering the fact 
that diabetes related kidney disease is a progressive 
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disease. This could be explained by the fact that saxa-
gliptin most likely has a renal protective effect. A 
higher percentage of CD34+ CXCR4+ cells may which 
help by homing-in on the kidney vasculature to repair 
the endothelial dysfunction present and thereby help 
prevent progressive kidney damage [47, 48].

Arterial stiffness, is a measure of compliance of 
one’s arteries, and their ability to constrict and dilate 
in response to blood pressure [49–51]. It is measured 
non-invasively by assessing PWV) and PWA, and has 
been noted to increase naturally with age [49]. PWV 
is measured as a velocity in m/s. Higher values of AP, 
AI, AI-75, and PWV are correlated to higher levels of 
arterial stiffness. PWV, in addition to PWA measures 
such as blood pressure and augmentation index, have 
been found to be a predictor of increased CVD risk 
in the general population, and especially in those at 
an increased risk, such as patients with type 2 diabe-
tes [49, 51]. Arterial stiffness, being a direct measure 
of the radial, carotid and femoral arteries, would be 
expected to change with significant alterations to the 
endothelium.

Our study shows a reduction in arterial stiffness in the 
saxagliptin group, as seen through a reduction in AI-75. 
This was also seen with other DPP-4 inhibitors, sitag-
liptin and vildagliptin, which resulted in a reduction in 
AI-75 [45]. Arterial stiffness, as measured via AI-75, is a 
strong predictor of CVD in Type 2 Diabetes [52, 53]. The 
reduction in AI-75 may be attributed to a multi-platform 
effect. DPP-4 inhibitors cause an increase in systemic 
incretin levels, which can cause a relaxation of the arter-
ies via nitric oxide (NO) [54, 55]. This could be attributed 
to a reduction in arterial stiffness. Also, the increase in 
CFU and higher percentage of CD34+ CXCR4+ that was 
reported in our cellular analysis may indicate that EPCs 
are having a regenerative effect on the subjects’ arteries 
across the 12-week time-period. Finally, DPP-4 inhibi-
tors help patients achieve a better level of glycemic con-
trol, and, as observed from our body composition results, 
a decrease in both percent fat and fat free mass. This 
decline in adiposity may also contribute to the improve-
ment (reduced PWA) in arterial stiffness.

ELISA was performed on patient serum samples to 
check for the presence of GLP1, and SDF-1α, in order 
to confirm that the saxagliptin was effectively blocking 
DPP-4 in the body. We were anticipating an increase in 
serum GLP1and SDF-1α in the saxagliptin group, indi-
cating that DPP-4 was successfully inhibited. However, 
our results found no statistical significance between saxa-
gliptin and placebo groups. It is likely that metformin 
leads to a significant increase of GLP-1 as seen in obese 
non diabetic and type 2 diabetes subjects, therefore 
the addition of saxagliptin would not show any further 

appreciable changes [56, 57]. Alternatively, it is pos-
sible that the dose of 5 mg of saxagliptin or duration of 
only 12 weeks was not sufficient to show a difference, or 
increase in values.

Limitations
Limitations of our study may include the relatively 
short duration of 12  week saxagliptin therapy, which 
may have been inadequate to see significant changes in 
certain clinical and cellular parameters. This may have 
been because of the small sample size, and due to the 
difficulty in obtaining all measures, in some patients. 
Further studies with a larger population and longer 
duration would be helpful to further explore and con-
solidate the mechanisms behind our findings.

Conclusion
There appears to be a synergic effect of using saxaglip-
tin (DPP-4 inhibitor) and metformin together, which 
promote functional improvement of circulating EPCs 
(defined as CD34+ cells), which subsequently improves 
metabolic parameters, renal function, arterial stiffness 
and systolic blood pressure.

We conclude that CD34+ cell function improves post 
saxagliptin therapy compared to a matched placebo in 
an early onset type 2 diabetes population that did not 
have any known cardiovascular disease or complica-
tions. We believe CD34+ cells can act as a valuable 
biomarker for assessment of endothelial function, in a 
setting of diabetes and can help provide valuable infor-
mation using cellular data, to support or refute findings 
from other cardiovascular outcome trials in diabetes 
[44, 58–60].
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analysis; PWV: pulse wave velocity; qRT-PCR: quantitative reverse transcriptase 
polymerase chain reaction; REE: resting energy expenditure; SBP: systolic 
blood pressure; SDF1α: stromal cell-derived factor-1α; SOD1, SOD2: super 
oxide dismutase 1 and 2; TBW: total body water; TNFα: tumor necrosis factor 
α; TP53: tumor protein p53; VEGF: vascular endothelial growth factor; VEGFA: 
vascular endothelial growth factor A; VEGFR2: vascular endothelial growth 
factor receptor 2; VO2: maximal oxygen consumption; 18S: 18S ribosomal RNA.
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