Systematic Literature Review of Indoor School Exposure to PM_{2.5} in Children Presenter: Brittany Wagner | Advisor: Dr. Ami Zota

STUDY QUESTION

Does exposure to indoor PM 2.5 in school children increase the risk of asthma or worsen existing asthma in children already diagnosed?

PECO STATEMENT

Population: School aged Children 5-18

Exposure: Indoor PM_{25} air pollution in schools

Comparator: Children in schools with less indoor PM₂₅ exposure

Outcome: Asthma

BACKGROUND, OBJECTIVES & METHODS

BACKGROUND: Air pollution in schools effects a vulnerable population who are indoors for large amounts of their daily schedule.

OBJECTIVES: I conducted a systematic literature review regarding indoor school exposure to indoor PM2.5 (Particulate Matter) and asthma prevalence in children.

METHODS: I searched articles published between 1 January 2002 and 15 September 2017, and included original studies that assessed indoor school exposure PM₂₅ in school children. I evaluated the risk of bias of individual studies and the overall quality and strength of the evidence according to the Navigation Guide systematic review methodology. I established criteria a priori to identify studies that could be included for synthesis.

METHODS

Systematic Search and Study Selection Process using the Navigation Guide

RESULTS

Risk of Bias Heat Map

	Sarnat	Rabinovitch	Ferreira	Maesano	Jeong
Recruitment					
Blinding					
Confounding					
Exposure Assessment					
Incomplete					
Outcomes					
Selective Reporting					
Other bias					
Conflict of interest					

*Generally **Probably Low Risk of Bias** for each individual study and across studies as a whole

Summary & Comparison of Methods/ Results

Source	Location	(n)	Age	Exposure measure	Outcome measure	Results
Sarnat	Texas, USA & Mexico	58	6-12 y/o	48 hour samplings via Harvard cascade impactors	eNO- exhaled nitric oxide (biomarker or airway inflammation)	With increased PM _{2.5} , there was a 2.7% (Cl 1.4, 3.9) change in eNO
Rabinovitch	Colorado, USA	30	7-13 y/o	Continuous active personal aerosol nephelometer monitor, 4 day intervals	uLTE-urine samples to measure outcome, Doser-albuterol usage monitor and surveys	Increase of 5 µg/ m3 of PM _{2.5} resulted in 13.3% (CI -5.7, 36.0) increase in albuterol use and LTE4 levels by 10.6 -9.0, 34.4) on lag day 0
Ferreira	Portugal	1019	6-10 y/o	30 minutes VelociCalc 9555-P	Questionnaire	Prevalence of asthma was 11.8% in study population; no significant association with exposure
Maesano	France	4643	9-10 y/o	5 day intervals using filter-based samples	Skin prick test, exercise- induced asthma and questionnaire	OR 1.28 (CI 1.00, 1.65) PM _{2.5} and asthma; OR 1.41 (CI 1.16, 1.73) PM _{2.5} and allergic asthma
Jeong	Korea	1226	8-10 y/o	GT-331 monitor	Skin prick test, questionnaire	Prevalence of asthma not significant (13.13% Incheon, 13.38% in Jeju); Prevalence of wheezing in Incheon 24.96 and Jeju 18.80 which was significant (higher PM2.5 in Incheon)

THE GEORGE WASHINGTON UNIVERSITY

WASHINGTON, DC

DISCUSSION: Five studies met the complete inclusion criteria. I rated studies generally with probably low risk of bias and rated the overall body of evidence as moderate quality with limited evidence. I concluded the body of evidence was of moderate quality for asthma with limited evidence for an association of asthma with PM_{2.5}. Chance, bias, and confounding could not be ruled out with reasonable confidence (Lam et al 2017).

CONCLUSIONS: I concluded there was limited evidence supporting an association between indoor school PM₂₅ exposure and increased prevalence of asthma. Preventing childhood asthma could help prevent loss of missed school and increased respiratory health over a lifetime.

1.	Fer [Qu Pne
2.	Jec alle Pec
3.	Ma and
л	
4.	par util
4.	par util Heo Sar par Heo
4. 5. 6.	par util <i>Heo</i> Sar par <i>Heo</i> Pic

Public Health

Particulate Matter

DISCUSSION

NEXT STEPS

Future research focusing on the indoor environments, particularly schools, in Industrialized nations. Further exploration of asthma as an outcome of poor indoor air quality needs to be better understood and documented.

REFERENCES

rreira, A. M. C., et al. (2014). Indoor air quality and health in schools. ualidade do ar interno e saúde em escolas] Jornal Brasileiro De *eumologia, 40*(3), 259-268.

ong, S. H., et al. (2011). Comparison of air pollution and the prevalence of ergy-related diseases in Incheon and Jeju city. Korean Journal of diatrics, 54(12), 501-506. Retrieved from SCOPUS database.

aesano, I., et al. (2012). Poor air quality in classrooms related to asthma d rhinitis in primary schoolchildren of the French 6 cities udy. *Thorax, 67*(8), 682-688.

abinovitch, N. et al., (2016). Within-microenvironment exposure to rticulate matter and health effects in children with asthma: A pilot study ilizing real-time personal monitoring with GPS interface. *Environmental* ealth: A Global Access Science Source, 15(1), 1-10.

rnat, S. E., et al. (2012). Air pollution and acute respiratory response in a anel of asthmatic children along the U.S.-Mexico border. *Environmental* ealth Perspectives, 120(3), 437-444.

1: <u>http://pedilung.com/pediatric-lung-diseases-disorders/asthma/</u> 2: <u>ttps://www.epa.gov/pm-pollution/particulate-matter-pm-basics#PM</u>

Contact Information

brittanydwagner@gmail.com