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Abstract

Children are at increased risk of developing metabolic syndrome (MS) after kidney transplantation, which contributes to
long-term cardiovascular (CV) morbidities and decline in allograft function. While MS in the general population occurs due
to excess caloric intake and physical inactivity, additional chronic kidney disease and transplant-related factors contribute
to the development of MS in transplant recipients. Despite its significant health consequences, the interplay of the individ-
ual components in CV morbidity in pediatric transplant recipients is not well understood. Additionally, the optimal meth-
ods to detect early CV dysfunction are not well defined in this unique population. The quest to establish clear guidelines for
diagnosis is further complicated by genetic differences among ethnic groups that necessitate the development of race-
specific criteria, particularly with regard to individuals of African descent who carry the apolipoprotein L1 variant. In chil-
dren, since major CV events are rare and traditional echocardiographic measures of systolic function, such as ejection frac-
tion, are typically well preserved, the presence of CV disease often goes undetected in the early stages. Recently, new nonin-
vasive imaging techniques have become available that offer the opportunity for early detection. Carotid intima-media
thickness and impaired myocardial strain detected by speckle tracking echocardiography or cardiac magnetic resonance
are emerging as early and sensitive markers of subclinical CV dysfunction. These highly sensitive tools may offer the oppor-
tunity to elucidate subtle CV effects of MS in children after transplantation. Current knowledge and future directions are
explored in this review.

Key words: echocardiography, ethnicity, dyslipidemia, hypertension, nutrition, pediatrics

Introduction

Cardiovascular (CV) disease is the second leading cause of mor-
bidity and mortality among children after kidney transplant [1].
The development of metabolic syndrome (MS) after transplanta-
tion (MSAT) adds to the burden of CV disease in this population.
While MS in the general population develops due to excessive
caloric intake and physical inactivity, additional factors inherent

to primary kidney disease and Tx-related factors add to MSAT.
Common immunosuppression therapies used in renal transplan-
tation alter glucose and lipid metabolism and increase the risks
of obesity, hypertension, glucose intolerance and dyslipidemia,
adding to the components of MS [2]. Since obesity and MS have
become increasingly common among children worldwide, the
effects of this epidemic on CV risk in an already vulnerable pedia-
tric transplant population are of particular concern.
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It is known that the effects of obesity and MS on CV func-
tion begin during childhood, but the signs are likely to be
subtle in the early stages. Autopsy studies have identified fatty
streaks and atherosclerotic lesions attributable to obesity and
MS in the arteries of children and young adults who died of
accidental causes [3, 4]. Since major CV events are rare in chil-
dren, abnormalities may not become apparent until they are
in the late stages, thus the opportunity for early intervention
is missed. Recently, new noninvasive imaging techniques
have become available that may offer the opportunity for early
detection. Increased carotid intima-media thickness (CIMT),
impaired myocardial strain detection by speckle tracking
echocardiography and impaired myocardial strain and
oxygenation response to stress detected by cardiac magnetic
resonance imaging (CMRI) are emerging as early and sensitive
markers of subclinical CV dysfunction. These highly sensitive
tools may offer the opportunity to elucidate subtle effects of
MS in pediatric renal transplant recipients. Current knowledge
and future directions on this topic will be explored in this
review.

MSAT

MS is the name coined for a constellation of risk factors that
increase future risk of CV disease, stroke and diabetes. MS is
traditionally defined as the presence of at least three of the
following morbidities: abdominal obesity, impaired glucose
tolerance (reflecting insulin resistance), hypertension,
hypertriglyceridemia and low high-density lipoprotein (HDL)
cholesterol [5]. The basic theory underlying MS is that while
each individual component is an independent predictor of CV
disease, the combination of multiple factors creates a syner-
gistic CV risk profile that is greater than the sum of its parts. In
the general population, studies have shown that childhood MS
is a significant predictor of CV disease in adulthood [6]. The
traditional paradigm of MS is altered by a myriad of factors
associated with chronic kidney disease (CKD) and transplanta-
tion. In transplant recipients, typical risk factors for MS, such
as excess intake of processed foods and physical inactivity,
converge with transplant medication–induced effects of
dyslipidemia, glucose intolerance and hypertension to create a
hybridized version of MS unique to this population (see Figure
1). MSAT has been associated with more rapid decline in
allograft function over time [7–9] and increased risk of
atherosclerotic events [10]. As such, the exact definition of MS
has not been consistent across the transplant literature
(see Table 1). A retrospective cohort study of pediatric transplant
recipients (n¼ 234) reported that the rate of MS significantly
increased from 18% pretransplant to 37% at 1 year
posttransplant, using body mass index (BMI) rather than
abdominal adiposity to define obesity [11]. A key finding of
this study was that MS was significantly associated with the
presence of left ventricular hypertrophy (LVH) at 1 year
posttransplant {odds ratio [OR] 2.6, [95% confidence interval
(CI) 1.2–5.9]}. Another study that investigated MS in 32 children
after renal transplant did assess abdominal obesity but did not
require obesity to define MS. Of eight children determined to
have MS in this study, only three were obese. The fact that the
majority of children determined to have MS in this study were
lean suggests the involvement of individual transplant-related
risk factors other than obesity at play in recipients [12].
Therefore, MSAT differs from the classic model of MS, and the
interplay of its individual components in pediatric transplant
recipients is unclear.

Individual components of MS and transplant recipients

This section will discuss the individual components of MS and
how they manifest in pediatric transplant recipients.

Obesity
Childhood obesity is a significant issue affecting the general
pediatric population, with recent estimates indicating that
16.9% of US children are obese [13]. A cross-sectional analysis of
national data representing US children 6–17 years of age
revealed that obese children are at higher risk for dyslipidemia,
glucose intolerance and hypertension compared with healthy-
weight children [14]. It is projected that by 2025, �268 million
children will be overweight, including 91 million obese world-
wide. These children are expected to have obesity-related
comorbidities, including impaired glucose tolerance, type 2 dia-
betes and hypertension [15]. Causes of obesity include poor diet
and physical inactivity, as well as genetic factors; genome-wide
association studies (GWAS) have recently identified >90 sus-
ceptibility loci for BMI [16].

Obesity is known to increase CV risk in both children and
adults. The pathology of obesity-related CV risk is related to the
secretion of inflammatory cytokines, such as tumor necrosis
factor alpha, from adipose tissue. The inflammatory cytokines
induce a variety of unfavorable effects, including endothelial
dysfunction, glucose intolerance, vasoconstriction and vascular
dysfunction, all of which increase CV risk [17].

The BMI (kg/m2) percentile for age is the most common method
used to diagnose overweight (85th–95th percentile) and obesity
(�95th percentile) in children [18]. However, abdominal obesity,
measured by waist circumference or waist:height ratio, is more
strongly associated with high metabolic and CV risk than is high
BMI in the general pediatric population [19–21]. However, each of
these anthropometric methods has limitations, particularly in
reference to the assessment of children with CKD. Studies have
shown that BMI does not accurately reflect body composition in
children with CKD, due to their altered body habitus characterized
by reduced lean mass and high fat mass, as revealed by dual X-ray
absorptiometry [22, 23]. However, waist circumference for age per-
centiles are likely to underestimate abdominal obesity in children
with CKD, since impaired growth and short stature are common.
Therefore, more sensitive anthropometric methods are needed to
accurately diagnose obesity in this population.

Obesity trends in children with CKD mirror those in the general
pediatric population. In a recent analysis of 799 children who par-
ticipated in the Chronic Kidney Disease in Children Study (CKiD),
15% were overweight and an additional 18% were obese [24]. In this
CKiD cohort, median height and weight standard deviation scores
(SDSs) were �0.55 and 0.03, respectively, and 12% had severe short
stature (SDS< �1.88). The combination of short stature with pre-
served or above average weight compounds the risk of obesity in
this population [24].

Obesity is even more common in the pediatric transplant
population, and studies show that the prevalence of obesity
doubles (from �15% to 30%) during the first year after transplan-
tation [25]. Factors contributing to posttransplant weight gain
include increased appetite and improved taste sensation with
the resolution of uremia, liberalization of renal diet restrictions,
as well as sedentary lifestyle and poor overall physical fitness,
which are pervasive in this population [25]. Obesity in pediatric
transplant recipients has been associated with decreased allog-
raft survival and increased mortality. Families should receive
intensive nutrition education and counseling to promote a
heart-healthy diet and regular physical activity, with a goal of at
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least 60 min of active play daily, to promote maintaining
healthy weight and decreasing CV risk after transplant [26].

Hypertension
Hypertension is a major cause of end organ damage and CV
morbidity and mortality in the general pediatric population as
well as in children with renal disease. A recent evaluation of

trends in pediatric hypertension based on a large sample of
National Health and Nutrition Examination Survey data indi-
cates that the prevalence is increasing and is associated with
the childhood obesity epidemic across the USA [27]. The strong
link between obesity and hypertension is substantiated physio-
logically. The release of angiotensinogen by adipose tissue pro-
motes an increase in blood pressure via stimulation of the
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renin–angiotensin–aldosterone system (RAAS) and increased
sodium reabsorption in obese individuals [28]. In pediatric
transplant recipients, hypertension risk is further compounded
by the effects of immunosuppressive medications.
Corticosteroids are known to increase sodium and water reab-
sorption and increase renal vascular resistance, while calcineurin
inhibitors (CNIs) induce hypertension via afferent arteriolar con-
striction, stimulation of the RAAS and secretion of inflammatory
cytokines leading to fibrosis of the allograft over time [29].

As such, the prevalence of hypertension in the pediatric
transplant population is strikingly high. In a study of 74 chil-
dren, 77% had hypertension prior to transplant and 82.4%, 71.7%
and 61% had hypertension at 1, 5 and 10 years posttransplant,
respectively [30]. Hypertensive children at 10 years
posttransplant had an 8.1 times higher risk of graft loss com-
pared with normotensive children [30]. Hypertension has been
associated with increased CIMT and myocardial strain in other-
wise healthy children [31, 32] and in pediatric transplant recipi-
ents [33]. As hypertension is a key component of MSAT,
frequent blood pressure monitoring and aggressive treatment
of hypertension are critical in mitigating CV risk in pediatric
transplant recipients.

Dyslipidemia
Dyslipidemia is a strong risk factor for CV disease, and compel-
ling evidence from autopsy and cohort studies in the general
population indicates that atherosclerotic lesions silently begin to
develop during early childhood [4, 34, 35]. Individuals with MS
typically exhibit a highly atherogenic lipid profile characterized
by hypertriglyceridemia and low HDL cholesterol, which fre-
quently occur together in association with obesity and physical
inactivity. Dyslipidemia is common in children with CKD and
after kidney transplantation. In a study of 366 children with CKD,
32% had hypertriglyceridemia and 18.3% had low HDL cholesterol

and hypertriglyceridemia independently predicted increased
CIMT, an indicator of increased risk for CV disease [36].

After transplantation, the risk of dyslipidemia is compounded
by the effects of commonly used immunosuppressive agents,
including corticosteroids, CNIs and mechanistic target of rapamy-
cin (mTOR) inhibitors. A recent registry study of 386 pediatric
transplant recipients reported hypertriglyceridemia in 71% of chil-
dren at 3 months posttransplant and 59% at 1 year posttransplant
and hypertriglyceridemia was associated with lower glomerular fil-
tration rate (GFR) [37]. Corticosteroids alter lipoprotein metabolism
and promote dyslipidemia by stimulating hepatic synthesis of
very-low-density lipoprotein (VLDL) and down-regulating LDL
receptors [38]. A dose-dependent effect of CNI on increased lipid
levels has also been demonstrated in adults; however, the use of
tacrolimus has generally been associated with a more favorable
lipid profile compared with cyclosporine [39]. In pediatric patients,
the use of immunosuppressive regimens containing cyclosporine,
mTOR inhibitor and steroids was associated with a 25-fold
increased risk of dyslipidemia compared with a regimen of tacroli-
mus, mycophenolate and steroids [37]. The overall high CV mor-
bidity in the pediatric transplant population places them at high
risk for early-onset CV disease, as categorized by the National
Heart, Lung, and Blood Institute (NHLBI) expert panel, warranting
close monitoring of lipid levels and lifestyle and dietary inter-
ventions [40]. Obese children without kidney disease are also
included in the NHLBI high CV risk category, thus compounding
the projected CV risk among obese children with MSAT. The first
line of management for dyslipidemia characterized by high trigly-
cerides with low HDL should focus on weight management, includ-
ing limited intake of saturated fats and simple sugars, and
increased physical activity [26]. Although there are no current
pharmacological treatments for lowering triglycerides in children,
limited data on the beneficial effects of omega-3 fatty acids may
hold promise as a future therapy [26]. In addition, adjustment of
the immunosuppression regimen may be considered judiciously.

Table 1. Summary of studies on MS in pediatric transplant recipients

Author Year MS definition Prevalence Results/associations

Ramirez-Cortez
et al. [11]

2009 �3 criteria:
WC> 75 cm
BP> 95th percentile
HDL-C � 10th percentile
TG� 90th percentile or on statin
Glucose >140 mg/dL (3 h OGTT)

25%
(8/32)

Higher proportion of deceased
donor grafts

Increased frequency of acute
rejections and use of steroid pulses

BMI pre-transplant

Wilson et al. [12] 2010 �3 criteria:
BMI > 97th percentile
BP> 95th percentile or on BP med
HDL-C < 5th percentile or on statin
TG> 95th percentile or on statin
Fasting glucose >100 mg/dL or on insulin

18.8% at transplant
(34/181)
37% at 1 year post-transplant
(67/181)

Higher odds of LVH
[OR 2.6 (95% CI 1.2–5.9)]

Higher odds of eccentric hypertrophy
[OR 3.0 (95% CI 1.2–7.6)]

Maduram et al. [8] 2010 �3 criteria:
BMI > 97th percentile
BP> 95th percentile or on BP med
HDL-C < 5th percentile
TG> 95th percentile
Fasting glucose > 100 mg/dL

68% in steroid group
(17/25)
15% in steroid withdrawal group
(5/33)

Lower GFR in children at 1 year
post-transplant (65) versus those without
MS (65 versus 88 mL/min/1.73 m2)

Tainio et al. [7] 2014 �3 criteria:
>120% median weight
BP> 95th percentile or on BP med
HDL-C < 40 mg/dL
TG> 150 mg/dL
Fasting glucose > 100 mg/dL

19% at 1.5 year post-transplant
(28/147)
14.2% at 5 year post-transplant
(18/127)

Lower GFR at 1.5 years but no
difference at �5 years post-transplant

BP, blood pressure; HDL-C, high-density lipoprotein cholesterol; OGTT, oral glucose tolerance test; TG, triglycerides; WC, waist circumference.
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Impaired glucose tolerance
Impaired glucose tolerance can lead to vascular endothelial dys-
function, dyslipidemia, hypertension and vascular inflamma-
tion and hence promote the development of CV disease. In a
study of moderately obese adults with varying degrees of insu-
lin sensitivity, those with the highest insulin resistance were
found to have the highest CV morbidity [41]. After transplanta-
tion, glucocorticoids induce peripheral insulin insensitivity
while CNIs cause an acquired defect in insulin synthesis and
secretion from pancreatic beta cells [42], setting the stage for
impaired glucose tolerance. In children, it has been reported
that 26.2% have impaired glucose tolerance and 8.1% develop
new-onset diabetes after transplantation by 6 months post-
transplant [43]. New-onset diabetes after transplantation is
associated with abdominal obesity and MSAT and has also been
linked with increased risk of CV events after transplant [42, 44–
46].

The Kidney Disease Outcomes Quality Initiative pediatric
guidelines recommend that patients should be counseled on a
diet low in simple sugars, avoiding juices, soda and other sweet-
ened beverages to minimize the risks of excess weight gain and
hyperglycemia posttransplant [26].

Ethnic differences in MS and CV risks

Individuals of African descent generally carry a higher risk for
MS, CV disease and kidney disease than other races [13, 47–49].
The reasons for these disparities are not completely understood
and are likely multifactorial in nature. Genetic factors are
known to play a role, due to the strong association of the apoli-
poprotein L1 (APOL1) gene with the risk of CKD in individuals of
African ancestry. Relationships of APOL1 renal risk variants
with increased risk of CV disease among those of African
descent are also starting to emerge [50]. In the Women’s Health
Initiative study of 749 postmenopausal African American
women, those with two APOL1 alleles had a lower GFR and
higher risk for incident CV disease compared with those with
zero APOL1 alleles (OR 1.98; P ¼ 8.37 � 10�3) [51]. New insights
into the role of genetic factors and obesity are also being uncov-
ered as GWASs delve into this area. Recently the first GWAS for
BMI in individuals of African descent identified a novel BMI
locus known as SEMA4D, which appears to promote obesity
through regulation of a transcription start site, and may explain
some of the increased burden of obesity among this population
[52]. Beyond genetics, other variables contributing to differences
in cardiometabolic risk among ethnic groups may include envi-
ronmental exposures, cultural beliefs, psychosocial factors and
access to healthy foods and health care.

African American adults, including young adults, have
higher rates of adverse CV events and CV death compared with
other ethnic groups [53, 54]. Evidence shows that African
Americans have higher left ventricular (LV) mass compared
with other ethnic groups [55]. Looking at subclinical markers of
CV disease, studies have shown that CIMT is higher among
healthy adults and children of African ancestry compared with
other ethnicities [56, 57]. A recent cross-sectional study by
Lefferts et al. [58] examined racial differences in CIMT and aortic
stiffness measured by pulse wave velocity in healthy children.
This study reported higher pulse wave velocity and CIMT in
African American children compared with Caucasian children
after adjustment for age, sex, blood pressure and socioeconomic
status. The etiology of increased CIMT in this population is
unknown. It remains to be seen whether it may be related to
environmental exposures, genetic polymorphisms or other

causes. One study suggests that higher CIMT among individuals
of African ancestry may be related to physiological differences
in the size of CV structures and lean body mass, which vary
among different ethnic groups [59], while another study con-
cluded that a blunted nocturnal cortisol increase, caused by
psychosocial stress, may account for increased risk for athero-
sclerosis and CIMT in obese African American youth [60].

Few studies have investigated ethnic differences in myocar-
dial strain. The Multi-Ethnic Study of Atherosclerosis, a pro-
spective, observational cohort study of 6814 healthy adults
representing four ethnic groups (Caucasian, African American,
Hispanic and Chinese American), investigated racial and ethnic
differences in subclinical myocardial function using CMRI.
African Americans were found to have the least favorable sys-
tolic strain, even after correcting for hypertension and LV mass
[55]. Another study assessed LV strain by speckle tracking echo
cardiography in a tri-ethnic (African American, Hispanic and
Caucasian) healthy population with normal ejection fraction
(EF) and similarly found that African Americans had the great-
est degree of subclinical LV systolic dysfunction detected by lon-
gitudinal strain [61].

Recent evidence suggests that the relationship and degree of
synergy between individual metabolic risk factors vary greatly
among different ethnic groups [62]. Little is known about race-
specific factors impacting MSAT in pediatric transplant recipi-
ents. Given the high rate of metabolic derangement, CV morbid-
ity and end-stage renal disease among those of African
ancestry, future studies should investigate how the effects of
transplant-related factors on cardiometabolic risk differ among
pediatric transplant recipients of different ethnicities. These
differences add another layer of complexity and should be fur-
ther investigated in order to establish race-specific guidelines
for defining MSAT and evaluating CV risk in a diverse popula-
tion of pediatric transplant recipients.

Evaluation of CV disease

Traditional evaluation by standard echocardiography
The detection of overt abnormalities in standard measures of
systolic LV function by echocardiography, such as EF or frac-
tional shortening, is rare in the pediatric population [25]. Even
among children with obesity and MS, EF is typically found to be
normal [63]. The presence of abnormal EF or fractional short-
ening in a child would indicate that advanced CV disease is
already present. Evaluation of LV mass by traditional echocar-
diography is also of limited use in detecting CV dysfunction in
children with CKD, due to its lack of accuracy in young children,
underestimation of LVH in overweight patients and lack of reli-
ability in fluid overloaded patients. Recent evidence is emerging
to suggest that subclinical CV abnormalities do develop early in
children with CKD and may portend adverse outcomes. Thus
there is a need for newer, more sensitive tools such as speckle
tracking echocardiography, CMRI and CIMT for early detection
of CV dysfunction in pediatric transplant recipients.

LVH
LVH has traditionally been considered important in the identifi-
cation of CV risk. LVH can develop early in the course of CKD,
and often persists after transplantation, particularly in associa-
tion with MSAT. A retrospective study of 234 pediatric trans-
plant recipients reported a 40% prevalence of LVH and 2.6 times
greater risk of LVH in recipients with MS than in those without
MS [11]. However, there is no consensus on the best way to
define LVH in young children, due to the significant changes in
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the relationship of their height to body and heart size with rapid
growth, or in the pediatric transplant population, due in part to
their abnormal body composition and short stature [64]. LV
mass normalized to height2.7 is a commonly used method to
evaluate LVH, as it describes the relationship between heart
and body size without obscuring the effects of obesity. In child-
ren �10 years of age, LVH is defined as >40 g/m2.7 in girls and
>45 g/m2.7 in boys. However, this method is not reliable in chil-
dren <10 years of age and, in addition may underestimate rela-
tive left ventricular mass (LVM) in thin children and
overestimate LVM in overweight children [65–67]. To address
this limitation, Khoury et al. [66] developed normal age-specific
percentiles for LVM/height2.7, using LVM/height2.7 >95th per-
centile for age to define LVH. Subsequently, Foster et al. [68]
developed new LV mass reference percentiles expressing LV
mass relative to lean body mass, which is the strongest deter-
minant of LV mass. Thus, while some studies have reported
improvement in LVH after transplant, findings have been incon-
sistent across the pediatric literature due in part to the limita-
tions discussed.

Novel imaging tools for early detection of CV morbidity
Carotid intima-media thickness. CIMT has emerged as a reproduci-
ble surrogate marker for early atherosclerosis [69]. Noninvasive
imaging of the carotid arteries is used to demonstrate the status
of the IMT of the vessel. Prospective studies have demonstrated

that an increase in CIMT is associated with an increase in the
relative risk for stroke and myocardial infarction in the general
adult population [70, 71]. Increased CIMT has been found to be
associated with MS and its components (hyperlipidemia, hyper-
tension, obesity, type 1 diabetes) in the general pediatric popu-
lation [72]. Woo et al. [73] conducted a study investigating the
effect of diet and exercise on noninvasive markers of athero-
sclerosis in otherwise healthy obese children and found a sig-
nificant improvement in CIMT and percent body fat after 1 year
of intervention, suggesting that a significant change in CIMT
can be detected after a 1-year period. Studies of CIMT in pedia-
tric transplant recipients are summarized in Table 2. Two recent
studies investigating CIMT in pediatric renal transplant recipi-
ents found that CIMT was significantly greater compared with
healthy controls and CIMT correlated with the duration of dialy-
sis prior to transplantation [80, 78]. Litwin et al. [76] reported
that the CIMT of children with CKD or on dialysis increased by
0.7 SD over a period of 1 year, while CIMT improved by an aver-
age of 0.6 SD within 1 year in those who received a transplant.
The impact of MSAT on the CIMT of children after transplant is
not well known and should be investigated in future studies. In
addition, the CIMT of pediatric transplant recipients of African
ancestry has not been reported. Only two of the nine previous
studies summarized below included a small number of African
American patients and the CIMT of the African American recipi-
ents was combined with other races in the analysis.

Table 2. Summary of studies on CIMT in pediatric transplant recipients[TQ4]

Author Year Design Population (location) A-A (n) Results Associations

Mitsnefes et al. [25] 2004 Cross-sectional 31 transplant/31
control
(Cincinnati,
OH, USA)

7 CIMT higher in
transplant versus
controls

SBP, number of BP
meds

Litwin et al. [74] 2005 Cross-sectional 34 transplant/55
CKD/37 dialysis/
270 control
(Germany, Poland)

0 CIMT higher in all
patient groups
versus control

Higher calcium �
phosphorus,
dialysis

Bilginer et al. [75] 2007 Cross-sectional 24 transplant/20
control (Turkey)

0 CIMT higher in
transplant versus
controls

Calcium � phospho-
rus, duration of
dialysis

Litwin et al. [76] 2008 Cohort, 12-month
duration

32 ESRD; 19 under-
went transplant
during study
(Germany, Poland)

0 CIMT decreased over
time by 0.7 SD

Phosphorus, dura-
tion of dialysis, BP

Krmar et al. [77] 2008 Cohort, mean 4.1-
year duration

31 transplant/21
control (Sweden)

0 CIMT stable over
time in transplant,
higher versus
controls

No association
between BP and
CIMT

Delucchi et al. [78] 2008 Cross-sectional 12 transplant/8 dial-
ysis/20 control
(Chile)

0 CIMT in dialysis and
transplant higher
versus controls

Duration of dialysis

Siirtola et al. [79] 2010 Cross-sectional 13 transplant/26
control (Finland)

0 CIMT higher in
transplant versus
controls

GFR <60 mL/min/
1.73 m2,
triglycerides

Basiratnia et al. [80] 2010 Cross-sectional 66 transplant/66
control (Iran)

0 CIMT higher in
transplantversus
controls

Calcitriol dose

Tawadrous et al. [81] 2012 Cross-sectional 14 transplant/15
dialysis/15 control
(Brooklyn, NY,
USA)

6 CIMT higher in dialy-
sis versus trans-
plant and controls

None identified

ESRD, end-stage renal disease; SBP, systolic blood pressure.
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Myocardial strain by speckle tracking echocardiography. Assessment
of myocardial strain by speckle tracking echocardiography uti-
lizes new technology to analyze myocardial motion by tracking
natural acoustic markers (or speckles) as they move during
myocardial contraction [82]. Strain is emerging as an important,
noninvasive tool for the assessment of LV systolic function. Its
key advantage is the ability to detect early signs of LV dysfunc-
tion that are not evident by standard echo cardiography. In
addition, strain analysis is load independent, making it well
suited for evaluation of myocardial function in children with
kidney disease. Recent evidence indicates that subclinical myo-
cardial dysfunction, detected by impaired myocardial strain but
not by standard echocardiography, is present in otherwise
healthy children and young adults with obesity, hypertension
and type 1 diabetes [63, 83–87]. Impaired strain has also been
shown to be indicative of early myocardial dysfunction in septic
shock in children [88], of prognostic value for myocardial recov-
ery after myocardial infarction [89] and an accurate predictor of
cardiac events and CV mortality, superior to EF [90].
Longitudinal strain was a strong independent predictor of mor-
tality in a recent study of adult hemodialysis patients with pre-
served EF, further supporting the utility of speckle tracking
echocardiography in identifying early subclinical CV risk [91].
Little is known about the myocardial strain of pediatric trans-
plant recipients. To date, three studies investigating myocardial
strain in children with CKD have been published in the litera-
ture. The Cardiovascular Comorbidity in Children with CKD (4C)
study investigated myocardial strain in 272 children with CKD
in 14 European countries compared with 61 healthy controls
[92]. The study found that despite having a normal EF, the myo-
cardial strain of children with CKD was impaired in the radial
and circumferential directions. In addition, LVH was more com-
mon in children with CKD compared with controls (55% versus
7%; P ¼ 0.001) and the LVH geometry was preferentially concen-
tric. There were no differences noted in longitudinal strain
between the CKD and control groups. The authors hypothesize

that the concentric LVH may have occurred as a response to
impaired circumferential function, possibly suggestive of intrin-
sic structural abnormalities of the heart muscle in children with
CKD. Another recent cross-sectional study investigated myocar-
dial strain in children with end-stage renal disease (19 dialysis
patients and 17 transplant patients) compared with 33 healthy
controls [93]. This study similarly found no differences in EF
between patients and controls, but significantly increased LV
wall thickness and impaired myocardial strain in the dialysis
and transplant patients compared with controls. The myocar-
dial dysfunction in the dialysis and transplant groups was char-
acterized by impaired longitudinal strain, while circumferential
and radial strain did not differ from controls. This is in contrast
to the findings of circumferential dysfunction in the CKD popu-
lation reported by the 4C study and may reflect different LV
mechanics during different stages along the continuum of renal
disease. Looking closer at this continuum, Rumman et al. [94]
conducted a retrospective analysis of myocardial strain in 48
children at three different time points: CKD, dialysis and 1 year
posttransplant compared with 192 healthy controls. Results of
this study indicated that the EF of children was similar to con-
trols and remained normal throughout dialysis and transplan-
tation. Longitudinal and circumferential strain parameters were
similar to controls during CKD. Longitudinal strain worsened
during dialysis [b¼ 2.0 (95% CI 0.4–3.6)], but the association was
not significant after adjustment for blood pressure and CKD.
Following transplantation, longitudinal strain improved back to
CKD levels.

The existing data on myocardial strain are limited, but sug-
gest that children with CKD have subclinical myocardial dys-
function that develops during the course of CKD, worsens
during dialysis and may persist after kidney transplantation. In
children, the signs of myocardial dysfunction are typically not
apparent by standard echocardiography, but subclinical abnor-
malities are detectable by speckle tracking echocardiography.
The investigation of strain in the pediatric transplant

Table 3. Summary of studies of CMRI in transplant recipients

Author Population Technique Results/conclusions

Malatesta-Muncher
et al. [96]

Pediatric: ESRD (10 dialysis/10
transplant) versus 24 healthy
controls

CMRI and CMRS CMRI and MRS detected subclinical
cardiac dysfunction, decreased
energy metabolism and myocar-
dial microcomposition in ESRD
patients, despite normal EF

Schaefer et al. [97] Pediatric: 15 children (2 CKD, 6 PD,
7 HD, 18 transplants)

CMRI (before and after transplant All CMRI parameters (EF, end dia-
stolic LV volume index, end sys-
tolic LV volume index and LVMI)
improved after transplant

Parnham et al. [98] Adult: 12 CKD, 11 dialysis, 10 trans-
plant, 10 HTN controls, 10
healthy controls

BOLD CMRI CKD, dialysis and transplant had
impaired myocardial response
to stress in comparison to HTN
and normal controls

Arnold et al. [99] Pediatric: 25 CKD (14 post-
transplant)

CMRI versus standard
echocardiography

Echo underestimates LVM com-
pared to CMRI

CMR-LVMI but not echo-LVMI pre-
dicted future GFR decline

Gimpel et al. [100] Pediatric: 20 CKD/transplant ver-
sus 12 healthy controls

CMRI tissue phase mapping Reduced regional LV wall velocities
in CKD and transplant, with nor-
mal LVH

ESRD, end-stage renal disease; HD, hemodialysis; HTN, hypertension; LVMI, left ventricular mass index; MRS, magnetic resonance spectroscopy; PD, peritoneal

dialysis.

142 | K. Sgambat et al.

Downloaded from https://academic.oup.com/ckj/article-abstract/11/1/136/3957951
by George Washington Univ user
on 13 February 2018

Deleted Text: 83
Deleted Text: -
Deleted Text:  
Deleted Text: -
Deleted Text: ,
Deleted Text: 89
Deleted Text: 90
Deleted Text: 91
Deleted Text: 92
Deleted Text: kidney transplant
Deleted Text: with 
Deleted Text: 93
Deleted Text:  
Deleted Text: ESRD
Deleted Text: 94
Deleted Text: with 
Deleted Text: to 
Deleted Text: 3 
Deleted Text: ,
Deleted Text:  
Deleted Text:  [<xref ref-type=
Deleted Text: ejection fraction
Deleted Text: :
Deleted Text: -
Deleted Text: ,
Deleted Text: kidney transplant


population is of particular importance, as it may provide an
opportunity to identify those children at highest risk and pro-
vide an opportunity for early intervention. The studies dis-
cussed above were limited primarily to Caucasian populations.
Pediatric transplant recipients of African ancestry are an under-
represented group that should be included in future studies.

CMRI
CMRI is another highly sensitive imaging technology that is
emerging as a new technique to provide insight into subclinical
CV dysfunction in transplant recipients. Advantages of CMRI, in
which heart contours are individually traced, include high
reproducibility and ability to measure LVM independent of vol-
ume and geometric assumptions [95]. As this technique is in its
infancy, only a few studies have investigated CMRI in transplant
recipients (see Table 3). CMRI was recently shown to be a supe-
rior method for measurement of LVM in children with CKD and
transplant compared with standard echocardiography [99]. In
addition to LVM, CMRI has also been used to detect signs of
early CV dysfunction by impaired myocardial circumferential
strain in pediatric dialysis and transplant patients with normal
EF [96]. Another study utilized CMRI to conduct tissue phase
mapping in 20 children with CKD (before or after transplant)
and found reduced regional LV wall velocities compared with
controls, in the absence of LVH. Finally, blood oxygen level–
dependent CMRI has been used to detect myocardial ischemia
by assessing the tissue oxygenation of myocardial segments at
rest and under stress by blood oxygen level–dependent signal
intensity. A recent study employing this technique found that
patients with CKD, dialysis and renal transplant had impaired
myocardial response to stress compared with hypertensive and
normal control subjects [98]. More research is needed to learn
about the ways that this promising and versatile technique can
be applied to the detection of subclinical CV dysfunction in the
pediatric transplant population.

Conclusion

MSAT occurs in pediatric transplant recipients when obesity
and transplant-related factors converge, leading to high CV risk
and adverse long-term prognosis. Improved understanding of
the interplay of factors that create MSAT in this population as
well as more aggressive focus on prevention and early detection
are important for improving patient outcomes. Identification of
subclinical CV damage, detected by methods such as CIMT,
strain by speckle tracking echo cardiography and CMRI are
important for early CV risk stratification in this population.
Investigation of the effects of ethnic differences in MSAT and
CV risk are critical to creating accurate risk prediction models
for diverse pediatric transplant recipients. Further research on
the pathophysiology, prevention and early detection of MSAT
are important steps toward the ultimate goal of delaying or
avoiding the occurrence of major CV events and prolonging the
life expectancy of children after kidney transplantation.
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