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The heritability of hypertension (HTN) is widely recognized and as a result, extensive 
studies ranging from genetic linkage analyses to genome-wide association studies are 
actively ongoing to elucidate the etiology of both monogenic and polygenic forms of 
HTN. Due to the complex nature of essential HTN, however, single genes affecting blood 
pressure (BP) variability remain difficult to isolate and identify and have rendered the 
development of single-gene targeted therapies challenging. The roles of other causative 
factors in modulating BP, such as gene–environment interactions and epigenetic factors, 
are increasingly being brought to the forefront. In this review, we discuss the various 
monogenic HTN syndromes and corresponding pathophysiologic mechanisms, the 
different methodologies employed in genetic studies of essential HTN, the mechanisms 
for epigenetic modulation of essential HTN, pharmacogenomics and HTN, and finally, 
recent advances in genetic studies of essential HTN in the pediatric population.
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iNTRODUCTiON

Hypertension (HTN) is a serious public health issue affecting both children and adults. Between 
2009 and 2012, approximately 32.6% of adults in the US were reported to have HTN (1). In children 
and adolescents between 3 and 18 years of age, the prevalence of HTN has been reported to be 3.6% 
(2). Morbidity and mortality from HTN continue to be high in adults, with HTN accounting for 
an estimated 45% of deaths due to cardiac disease and 51% of deaths from strokes (3). Despite its 
widespread prevalence, however, the etiology of essential HTN remains largely unknown. A growing 
body of evidence supports the observation that HTN results from a complex interplay of genetic, 
epigenetic, and environmental factors. Genetic factors are thought to contribute to approximately 
30–60% of blood pressure (BP) variation (3, 4). However, known genetic factors explain only 3% 
of BP variance (5), underscoring the fact that many genetic variants have yet to be discovered. 
Moreover, these findings suggest that other factors, such as gene–gene interactions and epigenetics, 
may play a vital role in the etiology of HTN.

The clinical implications for deciphering the genetic factors that contribute to variations in BP 
and response to antihypertensive medications are significant. Knowledge of an individual’s predis-
position to HTN can help with early implementation of preventive measures and formulation of 
effective therapeutic plans. In addition, pharmacogenomic information can help with the selection 
of personalized medication regimens, which may optimize therapeutic responses and help to reduce 
health-care costs. In this review, we discuss the various forms of monogenic HTN, the different study 
designs used to investigate the genetic epidemiology of essential HTN, the epigenetics of essential 
HTN, HTN pharmacogenomics, and recent advances in the genetics of essential HTN in children.

http://www.frontiersin.org/Pediatrics
http://crossmark.crossref.org/dialog/?doi=10.3389/fped.2017.00285&domain=pdf&date_stamp=2018-01-22
http://www.frontiersin.org/Pediatrics/archive
http://www.frontiersin.org/Pediatrics/editorialboard
http://www.frontiersin.org/Pediatrics/editorialboard
https://doi.org/10.3389/fped.2017.00285
http://www.frontiersin.org/Pediatrics/
http://www.frontiersin.org
https://creativecommons.org/licenses/by/4.0/
mailto:syahn@childrensnational.org
https://doi.org/10.3389/fped.2017.00285
https://www.frontiersin.org/Journal/10.3389/fped.2017.00285/full
https://www.frontiersin.org/Journal/10.3389/fped.2017.00285/full
http://loop.frontiersin.org/people/136485
https://loop.frontiersin.org/people/509176


Table 1 | Summary of the various forms of monogenic HTN.

GRa aMe CaH liddle Gordon

Mode of 
inheritance

AD AR AR AD AD

Electrolyte 
abnormality

Hypokalemia/normal 
potassium
Metabolic alkalosis

Hypokalemia/normal 
potassium
Metabolic alkalosis

Hypokalemia/normal potassium Hypokalemia/normal 
potassium

Hyperkalemia/normal 
potassium
Mild metabolic acidosis

Time of onset 
of HTN

Early Early onset for severe 
phenotype

Early Early Late

HTN severity Moderate–severe Moderate–severe Severe Moderate–severe Severe

Aldosterone/
renin level

Elevated aldosterone levels. 
Low renin and angiotensin 
II levels

Very low aldosterone and 
low renin levels

Low renin and aldosterone levels Low renin and 
aldosterone levels

Aldosterone levels can vary. 
Low renin levels

Mechanism for 
HTN

Increased renal absorption of 
salt and water

Stimulation of MC receptor 
by cortisol

Excess cortisol precursors 
activate MC receptors

Increased renal 
absorption of salt 
and water

Increased Na–Cl 
cotransporter activity in the 
distal convoluted tubule

Genetic cause CYP11B1 gene fused 
with CYP11B2 gene on 
chromosome 8q

Inactivating mutation in 
HSD11B2 gene

Type IV: CYP11B1 gene
Type V CAH: CYP17A1 gene

Mutation in 
SCNN1B/
SCNN1G gene on 
chromosome 16p

WNK 1 and 4 mutation (2 
different loci on chromosome 
12 and 17)

Other features Cerebral hemorrhage
Celtic ancestry

Similar presentation as 
licorice abuse

Type IV: ambiguous genitalia in 
girls, precocious puberty in boys
Type V: primary amenorrhea in 
girls, ambiguous genitalia in boys

Hypercalciuria

Treatment Glucocorticoids, amiloride, 
triamterene

Spironolactone, eplerenone, 
amiloride

Steroids, spironolactone, 
eplerenone

Low-salt diet. 
Triamterene or 
amiloride

Low-dose thiazides

GRA, glucocorticoid-remediable aldosteronism; AME, apparent mineralocorticoid excess; CAH, congenital adrenal hyperplasia; AD, autosomal dominant; AR, autosomal recessive; 
MC, mineralocorticoid; HTN, hypertension.
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MONOGeNiC HTN

Monogenic HTN syndromes refer to hypertensive disorders 
that follow Mendelian inheritance patterns due to single-gene 
mutations. Most monogenic forms of HTN are associated with 
volume expansion and low serum renin levels. A summary of the 
various types of monogenic HTN is provided in Table 1. Figure 1 
presents the different pathophysiologic mechanisms that are 
involved in monogenic forms of HTN.

Glucocorticoid-Remediable aldosteronism 
(GRa)/Familial Hyperaldosteronism (FH) 
Type i
Glucocorticoid-remediable aldosteronism, an autosomal 
dominant disorder, was the first monogenic HTN syndrome to 
be identified (6). GRA is caused by a chimeric gene formed from 
the fusion of the promoter region of the 11 β-hydroxylase gene 
(CYP11B1) with the coding regions of the aldosterone synthase 
gene (CYP11B2) on chromosome 8q (7, 8). As a result of this 
chimeric gene, aldosterone production is activated by ACTH and 
becomes independent of renin regulation (7). The development 
of hyperaldosteronism, with resultant salt and water retention, 
leads to HTN. Patients with GRA typically present with mild 
hypokalemia, metabolic alkalosis, and low plasma renin levels. 
The early onset of GRA before 21 years of age and the development 

of significant hypokalemia with a thiazide diuretic are important 
clinical features of this condition (9).

Some patients with GRA may exhibit unique features such as 
cerebral aneurysms and intracranial bleeding. Therefore, screen-
ing by brain MRI at the onset of puberty in patients with GRA has 
been recommended (10). As the name suggests, GRA is remedi-
able by glucocorticoids since they inhibit ACTH production, the 
stimulus for aldosterone production in GRA (11).

Other Rare Forms of FH
(i) FH type II: FH type II is characterized by the familial 

occurrence of aldosterone-producing adenomas or bilateral 
idiopathic adrenal hyperplasia that is unresponsive to 
glucocorticoids. This condition has a very similar clinical 
presentation to sporadic primary hyperaldosteronism (12); 
the only distinguishing feature is that a greater number of 
family members from the same kindred are affected by FH 
type II (13). The gene responsible for FH type II remains 
unknown and, therefore, diagnosis is usually challenging 
and based on exclusion of other conditions. Treatment of 
FH type II consists of administration of mineralocorticoid 
receptor antagonists and/or unilateral adrenalectomy for 
aldosterone-producing adenomas (14).

(ii) FH type III: The gene KCNJ5 encodes an inward rectifier 
potassium channel Kir3.4. In FH type III, a gain-of-function 
mutation in the KCNJ5 gene causes loss of membrane 
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FiGURe 1 | Molecular mechanisms involved in the different types of monogenic hypertension (HTN). Liddle syndrome: gain-of-function mutation in the gene 
encoding the apical epithelial sodium channel (ENaC) causes increased sodium absorption and subsequent HTN. Gordon syndrome: WNK1 normally inhibits 
WNK4, which in turn inhibits the Na–Cl cotransporter (NCC). WNK1 gain-of-function and WNK4 loss-of-function mutation increases the activity of the NCC leading 
to increased salt and water retention. AME: 11 β-hydroxysteroid dehydrogenase type II enzyme deficiency results in reduced cortisol conversion to cortisone 
(inactive form). Cortisol binds to the mineralocorticoid receptor and leads to signs of mineralocorticoid excess. GRA: a chimeric gene leads to excess aldosterone 
production, which acts on mineralocorticoid receptors. 11β HSD type II, 11 β-hydroxysteroid dehydrogenase type II enzyme; AME, apparent mineralocorticoid 
excess; GRA, glucocorticoid-remediable aldosteronism; Activation, green arrows; Inhibition, red lines with barheads. [Adapted from Simonetti et al. (18)].
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ion selectivity, triggering membrane depolarization and 
increased calcium entry into the adrenal glomerulosa cells. 
This in turn leads to hyperaldosteronism, HTN, adrenal 
hyperplasia, and severe hypokalemia (13, 15). Treatment 
usually requires bilateral adrenalectomy, especially in drug 
resistant cases.

(iii) FH type IV: discovered in five unrelated families by whole-
exome sequencing, FH type IV is due to a gain-of-function 
mutation in the CACNA1H gene that encodes a T-type 
calcium channel (13). This mutated channel allows excess 
calcium entry into the adrenal glomerulosa cells and 
subsequent hyperaldosteronism (16). Mineralocorticoid 
receptor antagonists may be used for the treatment of FH 
type IV (14).

Syndrome of apparent Mineralocorticoid 
excess (aMe)
The syndrome of AME is an autosomal recessive disorder caused 
by an inactivating mutation in the HSD11B2 gene, which encodes 
the 11β-hydroxysteroid dehydrogenase type II enzyme. This 
enzyme normally converts cortisol to the less active metabolite 
cortisone. With the inactivating mutation, excess cortisol accu-
mulates and binds to the mineralocorticoid receptor, leading to 
symptoms of mineralocorticoid excess (17). Both mild and severe 
phenotypes of AME have been described. The mild AME pheno-
type manifests as mild HTN later in life with rare or no electrolyte 
abnormalities, while the severe phenotype presents early in life 

with severe HTN, failure to thrive, and early end organ damage 
(18). These phenotypic differences are likely related to differences 
in the level of enzyme expression. Whereas 11 β-hydroxysteroid 
dehydrogenase type II enzyme expression is almost absent in 
the severe phenotype of AME, it is present in varying degrees 
in the mild form of AME as a result of different mutations in the 
HSD11B2 gene (19, 20).

Other clinical features of AME include hypokalemia with an 
increased trans-tubular potassium gradient, metabolic alkalosis, 
hypercalciuria, and nephrocalcinosis (18, 19). These clinical fea-
tures are similar to those seen in licorice abuse, because licorice 
inhibits the same enzyme involved in AME. Genetic testing may 
be done to confirm the diagnosis. Treatment usually consists 
of mineralocorticoid receptor antagonists (spironolactone and 
eplerenone), epithelial Na channel blockers (amiloride), and 
thiazides (for hypercalciuria) with potassium supplementation 
as needed (18).

Geller syndrome, otherwise known as HTN exacerbated by 
pregnancy, is another mineralocorticoid excess syndrome caused 
by an activating mineralocorticoid receptor gene mutation. As a 
result of this mutation, the mineralocorticoid receptor loses its 
specificity for aldosterone and is activated by both aldosterone 
and progesterone. Inherited in an autosomal dominant manner, 
Geller syndrome leads to early HTN, which is exacerbated during 
pregnancy due to activation of the mineralocorticoid receptors 
by progesterone. Clinical features include normal serum potas-
sium levels in the setting of low serum renin and aldosterone 
levels (21).
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Congenital adrenal Hyperplasia (CaH)
Congenital adrenal hyperplasia results from defects in enzymes 
involved in cortisol synthesis (14). In type IV CAH (due to 
11 β-hydroxylase deficiency) and type V CAH (due to 17 
α-hydroxylase deficiency), the loss of cortisol feedback inhibi-
tion on the pituitary results in increased ACTH production and 
adrenal hyperplasia. This in turn leads to the accumulation of 
cortisol precursors, which cause increased salt and water uptake 
and subsequent HTN via activation of mineralocorticoid recep-
tors. As a result, aldosterone production is suppressed (18).

Characteristic features of type IV CAH are precocious 
puberty, virilization due to excess sex hormone production with 
androgenic action, and early onset HTN (22). Type IV CAH is 
treated with steroids and mineralocorticoid receptor antagonists 
such as spironolactone for HTN.

Type V CAH has features opposite to type IV CAH due to sex 
hormone synthesis blockade, which manifests as delayed sexual 
development in girls and ambiguous genitalia in boys. Type V 
CAH is treated with steroids and sex hormones, in addition to 
mineralocorticoid receptor antagonists for HTN (18).

liddle Syndrome
Liddle syndrome is an autosomal dominant condition caused 
by a gain-of-function mutation in the SCNN1B/SCNN1G gene 
(located on chromosome 16p), which encodes the β and γ subunits 
of the epithelial sodium channel ENaC. This mutation causes an 
inability of ENaC to be removed from cell surfaces of the cortical 
collecting tubules, leading to increased sodium reabsorption and 
subsequent HTN (23). Patients with Liddle syndrome typically 
present with hypokalemia, metabolic alkalosis, low renin and 
aldosterone levels, and early onset HTN. Treatment includes a 
low salt diet and ENaC inhibitors, such as amiloride and triam-
terene (18).

Pseudohypoaldosteronism Type ii (Gordon 
Syndrome, Familial Hyperkalemic HTN)
Gordon syndrome is characterized by autosomal dominant 
inheritance of serine–threonine kinase gene (WNK1 and 4) muta-
tions. Normally, WNK1 inhibits the function of WNK4, while 
WNK4 inhibits the expression of the Na–Cl cotransporter (NCC) 
(24). Therefore, a gain-of-function mutation in WNK1 and loss-
of-function mutation in WNK4 collectively result in increased 
NCC expression and activity in the distal convoluted tubule (14). 
This leads to salt and water retention, followed by HTN (25). 
The increased salt reabsorption reduces sodium delivery to the 
cortical collecting duct, facilitating increased potassium absorp-
tion and hyperkalemia, which is typical of Gordon syndrome. 
ROMK channels, which aid in potassium excretion, can also be 
inhibited by the WNK4 mutation, further causing hyperkalemia 
(8). Other metabolic abnormalities in Gordon syndrome include 
mild hyperchloremic metabolic acidosis, hypercalciuria, low 
urinary sodium excretion (26), low serum renin, and varying 
aldosterone levels. Metabolic abnormalities tend to occur earlier 
than HTN, which tends to present in adolescence or adulthood 
(27). Treatment of Gordon syndrome consists of low dose thi-
azide diuretics.

HTN with brachydactyly
Hypertension with brachydactyly is caused by a mutation in the 
PDE3A gene which encodes phosphodiesterase 3A (14). Patients 
affected by this syndrome have severe salt-independent HTN 
with short phalanges and metacarpals (28). The mechanism for 
HTN in this syndrome remains unknown, although it has been 
suggested that vascular smooth muscle cell hyperplasia and 
increased vascular resistance may play a role (28).

GeNeTiC ePiDeMiOlOGY STUDY 
DeSiGNS FOR eSSeNTial HTN

Traditional pedigree-based analyses are not very effective in 
genetic studies of essential HTN due to its complex nature. 
Therefore, other methodologies have been used to study the 
genetic epidemiology of essential HTN. The following section 
contains a brief description of the different study designs that 
have been employed in investigating the genetics of HTN, with 
a special focus on genome-wide association studies (GWAS) (7).

Non-Parametric linkage analysis
Linkage refers to the tendency of two genes to be inherited together 
when they are in close physical proximity to each other on a chro-
mosome (29). Based on this phenomenon, linkage analysis aims 
to locate the approximate position of a disease gene by using the 
location of a known marker gene (29, 30). The marker gene refers 
to a DNA sequence that has a known physical location and has 
a detectable phenotype. By investigating whether markers and 
disease traits co-segregate, linkage analysis can approximate the 
location of the disease gene (29). Non-parametric linkage analysis 
(or model-free analysis) is used when details regarding the disease, 
such as the genetic mode of inheritance, are not known (30). This 
method is particularly useful in studying complex diseases, such 
as essential HTN, where the mode of inheritance is unknown. 
Non-parametric linkage analysis of affected sibling pairs can 
provide significant insights into a particular HTN phenotype (7). 
However, a limitation of this method is that many affected sibling 
pairs are often required to achieve adequate power to detect 
statistically significant differences.

Discordant Sibling Pair Analysis
Discordant sibling pair analysis is a type of genetic linkage 
analysis that traces quantitative genetic trait loci. In this method, 
the square of the BP difference is measured as a function of the 
number of alleles that a sibling pair shares at known marker loci 
(31). If siblings with very discordant BPs are identified, then 
their genetic variation can be studied. The disadvantage of this 
method is that the process of identifying siblings with significant 
BP discordance can be quite challenging (7).

association Studies
Association studies are based on comparisons of a particular 
allele frequency between cases and unaffected controls/cohorts. 
These studies aim to determine whether an association is present 
between the particular allele and a disease trait (32). Association 
studies can be family-based or population-based (comprising 
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Table 2 | Novel SNPs linked to elevated BPs identified through GWAS.

locus lead SNP encoded protein function Reference

HIVEP3 rs7515635 Modulates transcription (46, 47)
CSNK1G3 rs6891344 Serine/threonine protein kinase 

involved in phosphorylation
(46, 48)

PSMD5 rs10760117 Subunit of ATP-dependent protease (46, 49)
MAP4 rs319690 Involved in assembly of microtubules (14, 50)
MOV10 rs2932538 Part of RNA helicase (14, 51)
ULK4 rs3774372 Serine/threonine kinase (14, 52)
CSK rs1378942 Tyrosine kinase involved in actin 

remodeling
(53, 54)

SNP, single-nucleotide polymorphism; GWAS, genome-wide association studies.
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unrelated individuals) and may use a case–control or cohort 
approach. Population-based studies are more widely used than 
family-based studies, since fewer resources are required to enroll 
cohorts than family-based studies. Population-based studies 
may also require less genotyping (33). One advantage of family-
based association studies, however, includes protection against 
population substructure-related bias. This is a selection bias that 
occurs when study subjects come from population subgroups 
with different ancestries (34). This results in spurious differences 
in allele frequency between cases and controls/cohorts (35). In 
family-based association studies, study subjects within each fam-
ily come from the same source population, minimizing selection 
bias. Another advantage of family-based association studies is the 
higher likelihood of true linkage and association when significant 
findings are identified (33).

Genome-wide association Studies
Based on the concept of linkage disequilibrium at the popula-
tion level, GWAS attempt to identify the association between 
genetic variants or single-nucleotide polymorphisms (SNPs), and 
common disease traits in populations (36). SNPs are located in 
particular genetic loci and refer to variations in single nucleotides 
(14, 37).

The Wellcome Trust Case Control Consortium (WTCCC) 
study, conducted in 2007, was the first study that attempted to 
identify variants associated with HTN using GWAS; however, 
no significant association was identified (38). Small sample 
size and the use of HTN as a discrete variable are some of the 
reasons for the failure of the WTCCC to identify an association 
between SNPs and BP (14, 39). The use of HTN as a discrete vari-
able (presence or absence of HTN), as opposed to a continuous 
variable (systolic BP or diastolic BP), decreases study power and 
has therefore become an important consideration in subsequent 
GWAS designs (40).

In 2011, the International Consortium for BP GWAS identi-
fied 29 SNPs that were associated with HTN (41, 42). Since then, 
more than 60 SNPs have been identified that affect BP via mecha-
nisms of sodium handling, kidney function, vasoconstriction, 
and molecular signaling (43–45). Examples of some novel SNPs 
linked to systolic BP and diastolic BP in both children and adults 
that have been identified through GWAS are listed in Table 2.

Despite the identification of multiple SNPs associated with 
HTN, each of the common variants that have been discovered to 

this point appear to have only a small overall effect on BP (about 
1 mmHg for systolic BP or 0.5 mmHg for diastolic BP) (41), with 
some rare variants noted to have a larger effect on BP (>1.5 mmHg) 
(55). These findings suggest that several genes may act in concert 
to modulate BP, and that other factors, such as gene–gene and 
gene–environment interactions, may contribute to BP variability.

A challenge of GWAS includes the difficulty in identifying 
the gene affected by the SNP, since the area of influence of the 
SNP may lie in distant genes (56). Some SNPs with genome-wide 
significance also exhibit pleiotropy and demonstrate strong 
independent links to more than one disease. For example, 
rs13333226 is independently associated with HTN and chronic 
kidney disease (57, 58).

Selection of cases and controls may also introduce a confounding 
bias in GWAS. False associations can be identified if the cases and 
controls are selected from different populations that have differ-
ent baseline allele frequencies. This phenomenon is referred to as 
population stratification and may result when study subjects have 
different ancestries (35). Methods to address this issue include 
using genomic information to control for population structure, or 
using family-based study designs (29, 59). The selection of unaf-
fected family members as controls in family-based study designs 
has the additional advantage of reducing environmental exposure 
confounders (60).

The recruitment of a large number of controls can be costly 
in GWAS due to the extent of genotyping involved. Thus, more 
studies are using genotypic information from subjects already 
enrolled as controls in other studies (60).

ePiGeNeTiCS OF HTN

Epigenetic phenomena refer to changes in gene expression in the 
absence of alterations of the DNA sequence itself, and include 
posttranslational histone modification, DNA methylation, and 
non-coding microRNAs (miRNAs) (61). Although epigenetic 
modifications are heritable and can be passed on through several 
generations, they can also be influenced by nutritional, pharma-
ceutical, fetal, and environmental factors, and may be reversible. 
Epigenetic events play critical roles in physiological processes 
such as cellular differentiation, by ensuring that only certain 
genes are expressed in specific cell types (3). Abnormalities in 
epigenetic events can lead to the development of HTN, and in 
fact, HTN has been linked to several epigenetic phenomena as 
discussed below (62).

DNa Methylation
DNA methylation involves the covalent binding of a methyl 
group to cytosine, forming 5-methylcytosine (5mC) within CpG 
dinucleotide sequences (61). The methyl groups come from 
S-adenosylmethionine, the availability of which is dependent 
on folate metabolism. This association with folate metabolism 
provides the basis for the strong link between DNA methylation 
and nutrition (61). DNA methylation of CpG dinucleotides (often 
located in the promoter regions) results in inhibition of transcrip-
tion and therefore gene silencing (63). The onset and severity of 
HTN have been reported to be associated with the extent of DNA 
methylation (64). Smolarek et al. quantified the amount of 5mC 
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in DNA from patients with essential HTN and found that lower 
levels of 5mC corresponded to higher stages of HTN (65). Lin 
et al. reported that hypomethylation of the angiotensin II type I 
receptor gene correlated with higher systolic and diastolic BPs. 
Smokers with HTN were also observed to have a lower level of 
methylation (66).

Interestingly, Meems et al. discovered that vitamin D-deficient 
parental rats had offspring with increased systolic and diastolic 
BPs (67). The offspring were found to have hypermethylation 
of the promoter region of the Panx1 gene. Furthermore, the 
offspring rats showed impaired endothelial relaxation, consist-
ent with the fact that Panx1 encodes a hemichannel that plays 
a role in endothelial relaxation (67). These findings suggest that 
in  utero nutritional status may affect childhood BPs; however, 
further research will be needed to determine whether prenatal 
and postnatal nutritional status have effects on the development 
of HTN in children (68).

Histone Modification
Posttranslational modification of the N-terminal tail of histone 
proteins through processes such as methylation and acetylation 
can lead to changes in chromatin dynamics. This in turn leads to 
either decreased or increased gene expression (63). Both animal 
and human studies have shown associations between histone 
modifications and HTN. One such study reported that histone 
modifications resulted in angiotensin-converting enzyme 1 
(ACE1) upregulation in organs from hypertensive rats (69). 
In human endothelial cells, cell-specific histone modifications 
were found to regulate mRNA levels of endothelial nitric-oxide 
synthase (70). Endothelial nitric-oxide synthase plays a role in BP 
regulation by modulating vascular tone through the production 
of nitric oxide in the vascular endothelium.

Interestingly, Wang et al. reported that ascorbic acid prevented 
the development of HTN in rat offspring prenatally exposed to 
lipopolysaccharide (LPS) (71). LPS exposure induced histone H3 
acetylation in the ACE1 promoter region, resulting in increased 
ACE1 gene expression and HTN in rat offspring. Prenatal treat-
ment with ascorbic acid, however, reversed the histone modifica-
tion and led to less ACE1 gene expression (71). These findings 
suggest potential targets for novel antihypertensive therapies that 
can prevent or treat HTN early in life.

Non-Coding RNas
Non-coding RNAs are increasingly recognized as crucial regula-
tors of gene expression and may influence cell-specificity of gene 
expression (61). Among non-coding RNAs, miRNAs have been 
the most widely studied in association with HTN. miRNAs are 
small non-coding RNAs, approximately 22 nucleotides in length, 
that silence mRNA expression through mRNA degradation 
or interference of mRNA translation (72). miRNAs have been 
reported to modulate BP through various mechanisms. One such 
mechanism is through the renin–angiotensin system pathway. 
In human kidneys, hsa-miR-663 was observed to regulate the 
mRNA levels of renin (REN) and apolipoprotein E (APOE) by 
binding to their 3′ untranslated regions (73). In addition, hsa-
miR-181a was also found to regulate the mRNA expression of 
REN and apoptosis-inducing factor mitochondrion-associated 1 

(AIFM1). Both miRNAs were downregulated in HTN, leading to 
increased expression of renin mRNA (73).

Studies are also ongoing for potential treatments for HTN 
based on epigenetic modifications. Mutations in mitochondrial 
DNA (mtDNA) have been linked to the development of HTN, 
proposedly through the action of reactive oxygen species (74). 
Consistent with these findings, Li et al. observed a decrease in 
mtDNA-encoded cytochrome b (mt-Cytb) and corresponding 
increase in reactive oxygen species in hypertensive rats (75). 
Interestingly, they found that when miR21, an miRNA that was 
found in higher levels in the hypertensive rats compared with 
controls, was injected into the hypertensive rats via a recombi-
nant adeno-associated virus, there was an increase in mt-Cytb 
levels and lower BPs (75). The authors hypothesized that miR21 
plays a compensatory role in HTN. Studies such as these are 
promising for the development of novel therapies that utilize 
epigenetic mechanisms, such as miRNAs, to treat HTN.

PHaRMaCOGeNOMiCS aND HTN

Pharmacogenomics refers to the study of genes that can affect a 
patient’s response to drugs. The goal of pharmacogenomics is to 
develop tailored medications and doses that take into account 
the differences in each individual’s response to drugs. Extensive 
research has been performed on the genetic aspect of responses 
to antihypertensive medication, which include drug interac-
tion with the target sites, drug transport, and metabolism. 
The Clinical Pharmacogenetics Implementation Consortium 
(CPIC), formed in 2009, establishes guidelines that aid with 
application of results from pharmacogenetic studies to action-
able prescription of drugs (76). However, due to inconsistent 
results across studies and therefore insufficient evidence, there 
are no CPIC guidelines to date for antihypertensive medications 
(77, 78).

The International Consortium for Antihypertensive 
Pharmacogenomics Studies was established in 2012 to facilitate 
research of genetic variants that are responsible for interpatient 
variability in responses to antihypertensive medications (http://
icaps-htn.org). To date, the most consistently reproducible phar-
macogenomic data have been based on β-blockers and thiazide 
diuretics (78). Three genes, ADRB1, NEDD4L, and YEATS4, have 
been consistently linked with responses to antihypertensive drugs 
in various studies. The ADRB1 gene encodes the β-1 adrenergic 
receptor, which is targeted by the β-blockers. Common SNPs in 
the ADRB1 gene include the variants Ser49Gly (rs1801252) and 
Arg389Gly (rs1801253) (78). Patients who were homozygous for 
Arg389 and patients possessing the Ser49Arg389/Ser49Arg389 
diplotype were reported to have a greater reduction in BP with 
metoprolol compared with those who were Gly allele carriers 
and those who had the Gly49Arg389/Ser49Gly389 diplotype, 
respectively (79, 80).

NEDD4L encodes a protein that downregulates the expres-
sion of ENaC in the distal nephron, thereby regulating sodium 
reabsorption in the kidneys (81). Several studies have shown 
that the more common G allele of rs4149601, located within the 
NEDD4L gene, is linked to greater systolic and diastolic BP reduc-
tion in response to thiazide diuretics (82, 83). These findings are 
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Table 3 | Genes associated with responses to antihypertensive medications 
[modified from Burrello et al. (14)].

associated gene 
(single-nucleotide 
polymorphisms)

antihypertensive drug response Reference

ADRB1 (rs1801252, 
rs1801253)

Greater response to metoprolol Liu et al. (80); 
Johnson  
et al. (79)

ADRB1 (rs 1801253) Greater reduction in diastolic blood 
pressure (DBP) with carvedilol

Si  
et al. (87)

ADRB2 (rs2053044) Reached target mean arterial  
pressure faster with ramipril

Anthony  
et al. (88)

NEDD4L (rs4149601) Greater systolic blood pressure  
(SBP) and DBP reduction in  
response to thiazide diuretics

Svensson-
Färbom et al. 
(82); McDonough 
et al. (83)

CAMK1D (rs10752271) Greater reduction in SBP in  
response to losartan

Frau  
et al. (89)

YEATS4 (rs317689, 
rs315135, rs7297610)

ATC haplotype associated with 
greater reduction in DBP with 
thiazide diuretics

Turner  
et al. (84)
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consistent with the role of NEDD4L in reducing tubular sodium 
reabsorption.

Single-nucleotide polymorphisms (rs317689/rs315135/
rs7297610) close to the YEATS4 gene have also been associated 
with varying responses to thiazide diuretics (84). The YEATS4 
gene encodes a protein, GAS41, which is involved in regulation 
of cellular proliferation (78). Through GWAS, the rs317689/
rs315135/rs7297610 haplotype was found to be significantly asso-
ciated with diastolic BP response to hydrochlorothiazide (HCTZ) 
in African-Americans. The ATC haplotype was linked to a good 
response to HCTZ, while the ACT and the ATT haplotypes were 
associated with a poor response to HCTZ (84). The data on gene 
polymorphisms affecting responses to calcium channel blockers, 
ACE inhibitors, and angiotensin II receptor blockers are conflict-
ing, and no candidate gene has shown consistent results (85, 86). 
A summary of recent pharmacogenomic findings on responses to 
antihypertensive medications is provided in Table 3.

GeNeTiCS OF eSSeNTial HTN iN 
CHilDReN

Pediatric genetic studies on HTN are scarce in comparison to 
adult studies and are often limited by small sample size. A recent 
study investigated the parental effects of 33 SNPs previously iden-
tified by GWAS on the BP of young offspring (53). Based on 1,525 
subjects from the Family Atherosclerosis Monitoring In early life 
study, significant parental effects, albeit small, were reported for 
the SNPs rs11191548 (CYP17A1) and rs17367504 (MTHFR) (53). 
The paternal genotype of rs11191548 was found to be associated 
with elevated systolic and diastolic BP among offspring, whereas 
there was no association with the maternal genotype. Both the 
maternal and paternal genotypes of rs17367504 were associated 
with elevated systolic and diastolic BP among offspring. This 
study also observed that the SNP rs1378942 (CSK) demonstrated 
an association with systolic BP from birth to 5 years of age (53). 

CSK is a tyrosine kinase that plays a role in actin remodeling, 
which in turn has been shown to affect constriction of the arte-
rial endothelium in murine newborns (54). Although limited by 
sample size, this was the first study to investigate the effect of 
parental SNPs on young offspring, and SNPs that affect BP in the 
early years of life.

In another study, the polymorphism T585C of the Y2 receptor 
(Y2R) gene was reported to be associated with systolic and dias-
tolic BPs in obese children (90). Y2R is a receptor for neuropeptide 
Y, which is a potent constrictor of vascular smooth muscle cells. 
Y2R has also been observed to regulate neurogenic vasoconstric-
tion in spontaneously hypertensive rats (91). Obese children 
homozygous for the T585 allele in Y2R showed significantly 
lower systolic and diastolic BPs compared with heterozygotes and  
C allele homozygotes (90).

Genetic predisposition for BP elevation spanning from child-
hood to adulthood was assessed in a longitudinal study that 
employed a combined genetic risk score formulated from 13 SNPs 
previously associated with HTN in adults (92). Subjects with a 
higher risk score at the age of 9  years had significantly higher 
diastolic BPs than subjects with a lower risk score. These subjects 
also had a higher risk for HTN in adulthood (92). Although the 
effect size was small (β = 0.68 mmHg) (92), this study provides 
a method for detecting individuals with a genetic predisposition 
for HTN early in childhood and may be used to identify those 
patients in which early preventive measures can be implemented.

The association between SNPs and BP in certain ethnic pedi-
atric populations has also been reported in several recent studies. 
In a study of Chinese children, rs17249754 (ATP2B1) was found 
to be significantly associated with an increased risk for HTN (93). 
This polymorphism has also been previously linked to HTN in 
adults. ATP2B1 encodes a calcium-transporting ATPase that 
modulates cellular calcium levels in the vascular endothelium, 
thereby regulating the contraction of vascular smooth muscle 
cells (94). In a study of Lithuanian children, the insertion/dele-
tion (I/D) polymorphism (rs4340) for ACE was found to have 
a gender-specific association with BP (95). Boys with the ACE 
I/D and ACE I/D  +  D/D genotype had significantly increased 
odds for developing HTN (95), consistent with previous findings 
that adults homozygous for the D allele have higher plasma ACE 
concentrations than heterozygotes (96). Similar to these findings, 
the D-allele of the ACE I/D polymorphism was also associated 
with HTN in obese Brazilian boys (97).

Childhood HTN is a significant risk factor for HTN and car-
diovascular disease in adulthood (98–100). Therefore, pediatric 
studies that identify genetic risk factors and modifiable epigenetic 
factors for HTN are further needed to formulate preventive strat-
egies that can reduce childhood HTN, and therefore morbidity 
and mortality later in life. Moreover, drug pharmacokinetics 
differ between children and adults (101). Pediatric-based phar-
macogenomic research would be beneficial in identifying the 
genes responsible for each child’s response to antihypertensive 
drugs. Antihypertensive drugs have multiple side effects that can 
have a negative impact on a child’s quality of life. Identifying the 
genes that predispose a child to poor or adverse drug responses 
would be beneficial in avoiding complications and optimizing 
therapeutic responses.
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CONClUSiON

Hypertension results from a complex interplay of genetic, 
epigenetic, and environmental factors. Due to this multifacto-
rial interaction, elucidating single, specific genetic factors that 
contribute to the development of HTN has been challenging. 
Nevertheless, novel gene mutations and epigenetic factors causing 
BP variability continue to be discovered and have enhanced our 
understanding of BP modulation and the genetic programming 
of HTN. Interpatient variability in response to antihypertensive 
medication is well established, and the field of pharmacogenomics 
promises to provide guidelines for precision medicine and indi-
vidually tailored antihypertensive regimens that would improve 
medication efficacy. The majority of genetic studies on HTN to 

date have been focused on adults, and there are currently few 
studies that have been conducted in the pediatric population. In 
view of the prevalence of HTN in the pediatric population, more 
studies on the genetic risk factors in this population are needed 
to enhance our understanding of the etiology of childhood HTN 
and to provide better preventive and therapeutic strategies for 
the future.
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