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ARTICLE

Brd4 binds to active enhancers to control cell
identity gene induction in adipogenesis
and myogenesis
Ji-Eun Lee 1, Young-Kwon Park1, Sarah Park1, Younghoon Jang1, Nicholas Waring1,2, Anup Dey3, Keiko Ozato3,

Binbin Lai1,2, Weiqun Peng2 & Kai Ge 1

The epigenomic reader Brd4 is an important drug target for cancers. However, its role in cell

differentiation and animal development remains largely unclear. Using two conditional

knockout mouse strains and derived cells, we demonstrate that Brd4 controls cell identity

gene induction and is essential for adipogenesis and myogenesis. Brd4 co-localizes with

lineage-determining transcription factors (LDTFs) on active enhancers during differentiation.

LDTFs coordinate with H3K4 mono-methyltransferases MLL3/MLL4 (KMT2C/KMT2D) and

H3K27 acetyltransferases CBP/p300 to recruit Brd4 to enhancers activated during differ-

entiation. Brd4 deletion prevents the enrichment of Mediator and RNA polymerase II tran-

scription machinery, but not that of LDTFs, MLL3/MLL4-mediated H3K4me1, and CBP/

p300-mediated H3K27ac, on enhancers. Consequently, Brd4 deletion prevents enhancer

RNA production, cell identity gene induction and cell differentiation. Interestingly, Brd4 is

dispensable for maintaining cell identity genes in differentiated cells. These findings identify

Brd4 as an enhancer epigenomic reader that links active enhancers with cell identity gene

induction in differentiation.
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D ifferentiation is controlled by cell-type-specific gene
expression, which is under the control of transcriptional
enhancers1. Enhancers possess recognition motifs for

sequence-specific lineage-determining transcription factors
(LDTFs), which bind to and activate enhancers2. LDTFs recruit
epigenomic regulators that remodel the chromatin landscape by
adding epigenetic modifications (i.e., methylation, acetylation,
etc.) to the histone tails of the associated nucleosomes, after
which RNA polymerase II (Pol II) is recruited and transcription
of enhancer RNA (eRNA) and nearby genes occurs2. Enhancers
are enriched with histone H3K4 mono-methylation (H3K4me1),
which is mainly deposited by H3K4 methyltransferases MLL3
(KMT2C) and MLL4 (KMT2D)3. H3K4me1 precedes the addi-
tion of the active enhancer mark H3K27ac by histone acetyl-
transferases CBP/p3004,5. CBP/p300 binding identifies active
enhancers that control cell-type-specific gene expression6. The
acetyl marks on histones act as docking sites for epigenomic
readers that have conserved bromodomains7.

The epigenomic reader Brd4 is a member of the bromodomain
and extra-terminal domain (BET) family of nuclear proteins that
also include Brd2 and Brd38,9. Brd4 is enriched on active
enhancers and promoters10,11. Cooperation between LDTFs and
CBP/p300 facilitates Brd4 recruitment to its target promoters and
enhancers11. Small-molecule competitive BET inhibitors such as
JQ1 bind to the acetyl-lysine binding pocket of the BET bro-
modomains and displaces BET proteins from chromatin12. JQ1-
mediated inhibition of Brd4 binding leads to the displacement of
the Mediator complex and Pol II from enhancers, which in turn
reduces eRNA production and associated gene expression10,13,14.

Adipogenesis and myogenesis are two model systems that are
well suited for studying cell differentiation. In adipogenesis, the
induction of early adipogenic transcription factors (TFs),
including CCAAT/enhancer binding protein-β (C/EBPβ), in turn
induces the expression of two master adipogenic TFs, peroxisome
proliferator-activated receptor-γ (PPARγ) and C/EBPα15,16.
PPARγ and C/EBPα work in cooperation to activate many
adipocyte-specific genes. The synchronized nature of adipogen-
esis in cell culture, wherein the majority of the cells in the con-
fluent population differentiate from preadipocytes to mature
adipocytes within 6–8 days, allows for a system conducive to
studying gene expression during the process of differentiation17.
Myogenesis is another model of synchronized cell differentiation.
Myogenic differentiation protein (MyoD) and myogenic factor 5
(Myf5) are required for commitment to the muscle differentiation
program, while myogenin plays a necessary role in establishing
the terminal muscle phenotype18.

Brd4 is a prominent drug target for cancers but its role in
normal cell differentiation and tissue development is largely
unexplored. In this study, we use adipogenesis and myogenesis as
model systems to explore the role of Brd4 in differentiation and
development. Using tissue-specific Brd4 KO mice, we provide
in vivo evidence that Brd4 is essential for adipogenesis and
myogenesis. During adipogenesis, Brd4 preferentially binds to
active enhancers and controls the induction of cell-type-specific
genes. Furthermore, we determine the sequential actions of
LDTFs, enhancer epigenomic writers MLL3/MLL4 and CBP/
p300, Brd4, transcription coactivator complex Mediator and
general transcription factor TFIID, Pol II, and transcription
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Fig. 1 Brd4 is required for the development of brown adipose tissue and muscle. Brd4f/f mice were crossed with Myf5-Cre mice. a Schematics of wild-type
(WT) allele, conditional KO (flox) allele, and KO allele of Brd4f/f mice. In the flox allele, exon 3 was flanked by two loxP sites. b Genotype of progeny from
crossing between Brd4f/+;Myf5-Cre and Brd4f/f mice at E18.5. Brd4f/f;Myf5-Cre mice survived at E18.5 but died within minutes after cesarean section due to
muscle defects around rib cage. Similar phenotypes were observed in 14 Brd4f/f;Myf5-Cre mice. c Representative morphology of E18.5 embryos. d
Histological analysis of E18.5 embryos. Sagittal sections of cervical/thoracic area were stained with H&E (upper panels) or with antibodies against the
brown adipose tissue (BAT) marker UCP1 (green) and the muscle (M) marker myosin (red) (lower panels). Scale bars= 80 μm

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/s41467-017-02403-5

2 NATURE COMMUNICATIONS |8:  2217 |DOI: 10.1038/s41467-017-02403-5 |www.nature.com/naturecommunications

www.nature.com/naturecommunications


elongation factor p-TEFb in enhancer activation and cell identity
gene induction during differentiation. We further show that
unlike its critical role in cell differentiation, Brd4 is largely dis-
pensable for the maintenance of cell identity gene expression in
differentiated cells.

Results
Brd4 is required for adipose tissue and muscle development.
Two independently developed Brd4 conditional knockout (KO)
mouse strains, Brd4f/f and Brd4f/f #2, were used in this study. In
the Brd4f/f strain, the exon 3 was flanked by two loxP sites
(Fig. 1a), while in the Brd4f/f #2 strain, the exon 5 was floxed
(Supplementary Fig 1a). To study the role of Brd4 in adipose
tissue and muscle development, we crossed Brd4f/f with Myf5-Cre
mice to delete Brd4 gene in progenitor cells of brown adipose
tissue (BAT) and muscle lineages19,20. The resulting Brd4f/f;Myf5-

Cre mice survived until birth. E18.5 Brd4f/f;Myf5-Cre embryos
were obtained at the expected Mendelian ratio but were unable to
breathe and died immediately (Fig. 1b). They showed an abnor-
mal hunched posture due to severe reduction of back muscles
(Fig. 1c). Immunohistochemical analysis of cervical regions of
E18.5 embryos revealed that the deletion of Brd4 leads to severe
reduction of BAT and muscle mass, indicating that Brd4 is
essential for BAT and muscle development (Fig. 1d).

Brd4 controls cell identity gene induction. To investigate how
Brd4 regulates adipose tissue development, we isolated primary
Brd4f/f preadipocytes from BAT. After immortalization, cells were
infected with adenoviruses expressing green fluorescent protein
(GFP) or Cre (Fig. 2a, b and Supplementary Fig 2). Deletion of
Brd4 by Cre did not affect the growth rate of SV40T-
immortalized brown preadipocytes (Fig. 2c), but prevented adi-
pogenesis and the induction of adipocyte marker genes such as
Pparg, Cebpa, and Fabp4 (Fig. 2d, e). We confirmed the essential
role of Brd4 in adipogenesis in an independent brown pre-
adipocyte cell line derived from Brd4f/f #2 mice (Supplementary
Fig 1b–d). Consistent with the phenotypes observed in both Brd4
knockout cell lines, knockdown of Brd4 in 3T3-L1 white pre-
adipocytes impaired adipogenesis (Supplementary Fig 3).
Knockdown of Brd4 in C2C12 myoblast inhibited myogenesis
and myocyte gene expression (Supplementary Fig 4a–d).

To find out how Brd4 regulates gene expression during
adipogenesis, we performed RNA-Seq analyses before (day 0, D0)
and during (D2) adipogenesis of Brd4f/f preadipocytes infected
with adenoviral GFP or Cre. Using a 2.5-fold cutoff for
differential expression, we defined up-regulated (816/16,323),
down-regulated (1045/16,323), and unchanged (14,462/16,323)
genes from D0 to D2 of differentiation (Fig. 2f). Among the 816
up-regulated genes, 351 were induced in a Brd4-dependent
manner. Interestingly, only Brd4-dependent up-regulated genes
were strongly associated functionally with fat cell differentiation
and lipid metabolism (Fig. 2g). During C2C12 myogenesis, Brd4-
dependent up-regulated genes were preferentially associated
functionally with muscle development and function (Supplemen-
tary Fig 4e, f). These results suggest that Brd4 controls cell
identity gene induction during adipogenesis and myogenesis.

Brd4 binds to cell identity genes. Next, we performed ChIP-Seq
to map the genomic binding of Brd4 before (D0), during (D2),
and after (D7) adipogenesis. To exclude false-positive genomic
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Fig. 2 Brd4 controls cell identity gene induction during adipogenesis. a–e
Brd4 is required for adipogenesis of brown preadipocytes. SV40T-
immortalized Brd4f/f brown preadipocytes were infected with adenoviral
GFP or Cre, followed by adipogenesis assay. a qRT-PCR confirmation of
Brd4 deletion in preadipocytes. b Deletion of Brd4 was confirmed by
western blot analysis. RbBP5 was used as a loading control. c Deletion of
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means± SD. Three technical replicates from a single experiment were
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Brd4 binding sites due to off-target effect of the antibody, ChIP-
Seq was also done in Brd4 KO cells. To identify high-confidence
Brd4 binding sites, we first removed false-positive signals
obtained from Brd4 KO cells and then selected overlapping peaks
from two biological replicates. In total, we identified 37,111,
13,676, and 27,351 Brd4 binding regions at D0, D2, and D7,
respectively (Fig. 3a). Brd4 protein levels decreased only mildly at
D2 (Fig. 3b), but the genomic binding of Brd4 redistributed
dramatically from D0 to D2 (Fig. 3c). Around 89% of D0 Brd4
binding regions were lost at D2, although some of the lost regions
were re-occupied by Brd4 at D7. We also performed Brd4 ChIP-
Seq in C2C12 myocytes. The Brd4 binding regions in adipocytes
and C2C12 myocytes were largely non-overlapping (Fig. 3d).

To characterize Brd4-associated genes in different stages and
cell types, we assigned each Brd4 binding region to the nearest
annotated gene. Gene ontology (GO) analysis revealed that at D0
before differentiation, Brd4 binds to genes associated with general

biological functions. However, Brd4 moves to adipogenesis-
related genes at D2 and D7 of differentiation (Fig. 3e). In C2C12
myocytes, preferred target genes of Brd4 were those involved in
muscle cell differentiation. Accordingly, we observed differentia-
tion-stage- and cell-type-specific genomic binding of Brd4 on
Pparg and Myod1 loci, which encode the master adipogenic TF
PPARγ and myogenic TF MyoD, respectively (Fig. 3f). Together,
these results indicate cell-type- and differentiation-stage-specific
genomic binding of Brd4 on cell identity genes.

Brd4 co-localizes with LDTFs on active enhancers. Next, we
performed motif analysis of the top 3000 Brd4 binding regions at
each time point and in different cell types (Fig. 4a). In pre-
adipocytes (D0), Brd4 binding regions were enriched with motifs
of AP-1 family of TFs Jun, Jdp2, and JunD. This is consistent with
the previous finding that Brd4 interacts directly with c-Jun21.
During (D2) and after (D7) adipogenesis, Brd4 binding regions
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were enriched with motifs of adipogenic TFs such as C/EBPα, C/
EBPβ, and PPARγ as well as ATF4, which was recently identified
as a novel TF that promotes adipogenesis22. ChIP-Seq analyses of
C/EBPα, C/EBPβ, and PPARγ at D2 of adipogenesis confirmed
the genomic co-occupancy of Brd4 with these adipogenic TFs
(Fig. 4b, c). Particularly, over 50% of the Brd4 binding regions
showed co-occupancy with C/EBPα/β. Consistent with previous
reports that Brd4 interacts with C/EBPα/β11,21, we observed a
physical interaction between Brd4 and C/EBPβ during adipo-
genesis (Fig. 4d). In C2C12 myocytes, Brd4 binding regions were
enriched with motifs of myogenic TF MyoD and its binding
partner TCF3 (Supplementary Fig 5a)23. We also confirmed
genomic co-localization of Brd4 with MyoD in C2C12 myocytes
(Supplementary Fig 5b, c).

Next, we characterized the genomic features of Brd4 binding
regions. Based on histone modifications, four types of regulatory
elements were defined as described19: active enhancer, primed
enhancer (previously described as silent enhancer), active
promoter, and silent promoter (Fig. 5a). Interestingly, Brd4
binding sites were mainly located on active enhancers at D0 and
D2 but on active promoters at D7 (Fig. 5b). Consistently, Brd4

co-localized with adipogenic TFs on active enhancers at D2
(Supplementary Fig 6). Adipogenic enhancers were defined as
active enhancers that are bound by C/EBPs or PPARγ19.
Consistent with the genomic distribution, Brd4 was highly
enriched on adipogenic enhancers at D2 but enriched on
adipogenic promoters, which associate with adipogenic enhan-
cers, at D7 (Fig. 5c). At D2, Brd4 binding was observed on 43.9%,
41.7%, and 78.8% of C/EBP+PPARγ−, C/EBP−PPARγ+, and C/
EBP+PPARγ+ adipogenic enhancers, respectively (Fig. 5d).
Together, these results indicate that Brd4 co-localizes with
LDTFs on active enhancers during adipogenesis.

LDTFs, MLL3/MLL4, and p300 recruit Brd4 to active enhan-
cers. Next, we investigated the mechanisms that recruit Brd4 to
active enhancers during adipogenesis. Notably, 73.8% (6129/
8309) of Brd4 binding sites within active enhancers were occu-
pied by enhancer epigenomic writers MLL4 and/or p300, indi-
cating a substantial overlap (Fig. 6a). Among the 8309 Brd4+
active enhancers, substantially more of them were co-occupied by
both epigenomic writers (p300 or MLL4) and LDTFs (C/EBPs or
PPARγ) than by either alone (Fig. 6b, c).
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Since MLL3/MLL4 facilitate CBP/p300 binding to enhancers
during cell differentiation24,25 and CBP/p300 facilitate Brd4
binding to active enhancers11, we hypothesized that MLL3/MLL4
are required for Brd4 recruitment to enhancers during differ-
entiation. To test this hypothesis, we performed Brd4 ChIP-Seq in
Mll3/Mll4 double KO cells at D2 of adipogenesis. Although
deletion of Mll3/Mll4 did not affect Brd4 protein levels (Fig. 6d),
it led to the loss of 90.3% of total Brd4 binding sites at D2
(Fig. 6e). Consistently, we observed a marked decrease in Brd4
binding levels on MLL4+ active enhancers in Mll3/Mll4 KO cells

(Fig. 6f). Decreased binding of Brd4 in Mll3/Mll4 KO cells could
be due to reduced binding of LDTFs to enhancers. Indeed, 60%
(3725/6158) of C/EBPβ+ MLL4+ active enhancers showed
decreased C/EBPβ binding in Mll3/Mll4 KO cells, which
consequently led to decreases in p300 and Brd4 binding (Fig. 6g).
However, on the remaining 40% (2433/6158) of C/EBPβ+ MLL4+

active enhancers, deletion of Mll3/Mll4 in preadipocytes did not
affect C/EBPβ binding but prevented p300 and Brd4 binding at
D2 of adipogenesis. Deletion of Mll3/Mll4 also reduced p300 and
Brd4 binding to enhancers on Pparg gene locus during
adipogenesis (Fig. 6h). Together, these results suggest that LDTFs
and epigenomic writers MLL3/MLL4 and p300 coordinate to
recruit Brd4 to active enhancers during adipogenesis.

Brd4 is required for Pol II binding on active enhancers. We
next asked how Brd4 regulates cell identity gene induction during
adipogenesis. For this purpose, we selected several adipogenic
enhancers (e1–e8) on cell identity genes Pparg, Cebpa, and Fabp4,
which are bound by Brd4 during (D2) adipogenesis (Fig. 7a). We
examined the occupancy of the early adipogenic TF C/EBPβ,
MLL4, MLL3/MLL4-mediated H3K4me1, CBP/p300-mediated
H3K27ac, Brd4, the MED1 subunit of the Mediator coactivator
complex, the TBP subunit of the general transcription factor
(GTF) TFIID26, Pol II, and the catalytic subunit CDK9 of the
positive transcription elongation factor b (p-TEFb)27 on these
enhancers during adipogenesis. We did not observe changes in C/
EBPβ and MLL4 binding as well as H3K4me1 and H3K27ac levels
on Brd4+ adipogenic enhancers in Brd4 KO cells. However,
deletion of Brd4 markedly reduced MED1, TBP, Pol II, and
CDK9 binding on Brd4+ adipogenic enhancers but not on
enhancers near constitutively active genes Arid1a and Jak1 (n1
and n2) (Fig. 7b). Accordingly, deletion of Brd4 decreased eRNA
production from Brd4+ adipogenic enhancers (Fig. 7c). These
data suggest a model that sequential binding of LDTFs, epige-
nomic writers MLL3/MLL4, and CBP/p300 facilitates Brd4
binding on active enhancers, which is required for enhancer
binding of Mediator, TFIID, Pol II and p-TEFb, eRNA produc-
tion, and cell identity gene induction during adipogenesis
(Fig. 7d).

Brd4 is largely dispensable for maintaining adipocytes. Term-
inally differentiated adipocytes express high levels of cell identity
genes including master adipogenic TFs Pparg and Cebpa. We
asked whether Brd4 is required to maintain adipocyte gene
expression. To this end, we crossed Brd4f/f mice with Adipoq-Cre
mice to generate adipocyte-specific Brd4 KO mice28. Deletion of
Brd4 was successful in adipose tissues (Fig. 8a, b). However, we
did not observe any discernable differences in adipose tissue mass
(Fig. 8c, d) or the expression of adipocyte identity genes Pparg,
Cebpa, Fabp4, or BAT marker gene Ucp1 (Fig. 8e). RNA-Seq
analysis of BAT and epididymal white adipose tissue (eWAT)
from Brd4f/f;Adipoq-Cre mice confirmed that the deletion of Brd4
in adipose tissues does not affect adipocyte and BAT-enriched
gene expression (Fig. 8f, g). Our data suggest that while Brd4 is
essential for adipose tissue development, it is largely dispensable
for the maintenance of adipose tissues and related gene
expression.

JQ1 blocks PPARγ-stimulated adipogenesis. Since Brd4 is
essential for the induction of PPARγ in the early stage of adi-
pogenesis, we tested whether forced expression of PPARγ could
rescue adipogenesis in Brd4 KO cells. Indeed, adipogenesis defects
in Brd4 KO cells could be rescued by retroviral vector-mediated
expression of ectopic PPARγ (Fig. 9a, b). Interestingly, the
expression levels of Brd2 and Brd3 increased in Brd4 KO cells,
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suggesting a functional redundancy among BET family proteins
(Fig. 9b). Inhibiting BET proteins by JQ1 treatment completely
blocked PPARγ-stimulated adipogenesis (Fig. 9a, b). These results
indicate that Brd4 is the major functional BET protein before the
induction of PPARγ and suggest that Brd4 is functionally
redundant with Brd2/Brd3 in promoting adipocyte gene expres-
sion downstream of PPARγ. Consistent with these results, inhi-
biting BET proteins by JQ1 treatment inhibited the synthetic
PPARγ ligand rosiglitazone (Rosi)-induced expression of PPARγ
target genes Cebpa, Adipoq, and Fabp4 in undifferentiated pre-
adipocytes expressing ectopic PPARγ (Fig. 7c), indicating that
BET family proteins are required for PPARγ target gene
expression.

Discussion
Using two independently developed Brd4 conditional KO mice
and derived cell lines, we demonstrate that Brd4 is essential for
adipogenesis and myogenesis in culture and in vivo. Using RNA-
Seq, we show Brd4 promotes cell-type-specific gene expression
during cell differentiation. Using ChIP-Seq, we show Brd4 pre-
dominantly binds to active enhancers during adipogenesis but
preferentially on active promoters after adipogenesis. Further,
enhancer epigenomic writers MLL3/MLL4 are required for Brd4
binding to active enhancers during adipogenesis. Finally, Brd4
facilitates enhancer binding of Mediator, TFIID, Pol II, and p-
TEFb, and eRNA transcription during adipogenesis. Our findings
identify Brd4 as an enhancer epigenomic reader that connects
active enhancers with cell identity gene induction during
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differentiation. Together with previous findings in the literature,
our data suggest a model in which sequential actions of LDTFs,
H3K4 mono-methyltransferases MLL3/MLL4, H3K27 acetyl-
transferases CBP/p300, epigenomic reader Brd4, transcription
coactivator Mediator, and Pol II transcription machinery on
enhancers control cell identity gene expression during
differentiation.

Brd4 inhibitors are promising drug candidates for treating
cancers and other diseases29,30. However, few studies have looked
at the role of Brd4 in cell differentiation and animal development,
except that Brd4 is required for the differentiation of erythroid
and osteoblast in cell culture31,32, that inducible knockdown of
Brd4 in mice results in skin hyperplasia and loss of cell diversity
in intestine33, and that myeloid lineage-specific deletion of Brd4

leads to the compromised innate immune response34. By crossing
Brd4f/f with Myf5-Cre mice, we demonstrate that Brd4 is required
for adipose tissue and muscle development in vivo. By knocking
down Brd4 in 3T3-L1 white preadipocytes and C2C12 myoblasts
and knocking out Brd4 in brown preadipocytes, we confirmed
that the essential role of Brd4 in adipogenesis and myogenesis is
cell-autonomous. Our finding on Brd4 in adipogenesis is con-
sistent with a previous report that JQ1 inhibits differentiation of
mesenchymal C3H10T1/2 cells toward adipocytes in culture35.
JQ1 treatment cannot distinguish functional roles of BET proteins
in adipogenesis. Our genetic study distinguishes the roles of BET
family members in adipogenesis and indicates that Brd4 is the
major BET protein controlling PPARγ induction in the early
phase of adipogenesis while the functionally redundant Brd2,
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Brd3, and Brd4 control the induction of PPARγ downstream
adipocyte genes.

Brd4 localizes on both active promoters and active enhancers
in human and mouse tumor cells10,11. In this study, we show
dynamic changes of Brd4 binding regions at various stages of
differentiation. In our adipogenesis model system, Brd4 mainly
localizes on active enhancers that are associated with cell identity
genes induced during differentiation. After differentiation, Brd4
binding on active enhancers largely remains but with reduced
binding intensity. Interestingly, Brd4 binds to ~75% of all active
promoters in differentiated cells, while only ~8% of all active
promoters are occupied by Brd4 during differentiation. These
results suggest distinct functions of Brd4 during and after cell
differentiation. In differentiating cells, Brd4 localization on active
enhancers controls cell identity gene induction necessary for
terminal differentiation. The role of Brd4 on active promoters in
terminally differentiated cells remains to be understood.

LDTFs bind to cell-type-specific enhancers and recruit H3K4
mono-methyltransferases MLL3/MLL419. MLL3/MLL4 are
required for enhancer binding of H3K27 acetyltransferases CBP/
p300 and enhancer activation during adipogenesis and embryonic

stem cell differentiation24,25. It has been shown that hemato-
poietic LDTFs and CBP/p300 facilitate Brd4 recruitment to active
enhancers in leukemia cells11. Similarly, our data show that adi-
pogenic TFs and p300 cooperatively recruit Brd4 to active
enhancers during adipogenesis. Furthermore, we demonstrate
that MLL3/MLL4 are critical for Brd4 binding on enhancers.
Consistent with our data, a recent study showed that Brd4 is
required for binding of Mediator and CDK9 on enhancers
including the Myc super-enhancer in mouse acute myeloid leu-
kemia (AML cells)13. Brd4 may regulate Mediator binding to
enhancers through its physical interaction with Mediator com-
plex27. On the other hand, since PPARγ physically associates with
Mediator complex as well36, it is also possible that decreased
Mediator binding in Brd4 KO cells is due to the decreased
expression of PPARγ, a direct target of Brd4. Physical and
functional association between Brd4 and CDK9, a component of
p-TEFb, has been well documented27,37. Our data suggest that
Brd4 is a molecular bridge between cell-type-specific enhancers
and general transcription machinery. Taken together, we propose
a model that adipocyte gene expression is induced by sequential
actions of LDTFs C/EBPα, C/EBPβ, and PPARγ, enhancer
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epigenomic writers MLL3/MLL4 and CBP/p300, enhancer epi-
genomic reader Brd4, Mediator, and Pol II transcription
machinery on enhancers (Fig. 7d).

Methods
Plasmids and antibodies. The lentiviral shRNA plasmids pLKO.1 targeting mouse
Brd4 (clone IDs TRCN0000311976, TRCN0000088480, and TRCN0000088481)

were purchased from Sigma. Anti-RbBP5 (A300–109A), anti-Brd4
(A301–985A100), and anti-MED1 (A300–793A) were from Bethyl Laboratories.
Anti-C/EBPα (sc-61X), anti-C/EBPβ (sc-150X), anti-PPARγ (sc-7196X), and anti-
p300 (sc-585X) were from Santa Cruz Biotechnology. Anti-H3K4me1 (ab8895),
anti-H3K4me2 (ab7766), and anti-H3K27ac (ab4729) were from Abcam. Anti-Pol
II (17-672) was from Millipore. For western blot analysis, all antibodies were
diluted to 1 μg ml−1. Uncropped blots are available in the Supplementary Figure 7.

Generation of mouse strains. Two Brd4 conditional KO mouse lines were used in
this study. In the first Brd4 conditional KO mouse line (Brd4f/f), the first coding
exon of Brd4 gene, exon 3, is flanked by loxP sites. Genotyping the Brd4 alleles,
PCR was done using the following primers: 5′-GCCTA-
GATCAGTGCCTCCATTG-3′ and 5′-ACTGGAACTACATGGCAGCCTG-3′.
PCR amplified 244 bp from the wild-type and 344 bp from the floxed allele. Brd4f/f

mice were crossed with Myf5-Cre (Jackson no. 007893, C57BL/6 J and 129S4/
SvJaeSor mixed background) or Adipoq-Cre (C57BL/6 background)28 to generate
Brd4f/f;Myf5-Cre or Brd4f/f;Adipoq-Cre mice. For characterization of Brd4f/f;
Adipoq-Cre mice, we used six 12-week-old male mice per genotype. Animals were
not randomized and the researchers were not blinded during the experiment and
when assessing the outcome. No animals were excluded from the analysis.

To establish the second Brd4 conditional KO mouse line (Brd4f/f #2), the
heterozygous conditional Brd4 gene trap mice (Brd4tm1a(EUCOMM)Wtsi) were
obtained from the KOMP2 program at Baylor College of Medicine and crossed with
FLP1 mice (Jackson no. 003946) to delete the neomycin cassette. In the resulting
Brd4f/f #2 mice, the exon 5 of Brd4 gene is flanked by loxP sites. Genotyping of the
Brd4 alleles was done using the following primers: 5'-GGACATGGTGACAGAG
TGG-3' and 5'-TCAAATGAATTCACTAGAACTAC-3'. PCR amplified 168 bp
from the wild-type and 284 bp from the floxed allele. Brd4f/f #2 mice were crossed
with Cre-ER (Jackson no. 008463) to generate Brd4f/f #2;Cre-ER mice.

All mouse experiments were performed in accordance with the NIH Guide for
the Care and Use of Laboratory Animals and approved by the Animal Care and
Use Committee of NIDDK, NIH.

Histology and immunohistochemistry. E18.5 embryos were isolated by Cesarean
section, fixed in 4% paraformaldehyde, dehydrated in a methanol series, and
embedded in paraffin for sectioning. Paraffin sections were stained with routine
H&E or subjected to immunohistochemistry using anti-Myosin (MF20; Develop-
mental Studies Hybridoma Bank, 1:20 dilution) and anti-UCP1 (ab10983; Abcam,
1:400 dilution) antibodies19.

Cell culture and differentiation assays. Primary brown preadipocytes were
isolated from interscapular BAT of newborn Brd4f/f, Brd4f/f #2;Cre-ER and
immortalized by infecting retroviruses expressing SV40T38. Adipogenesis of
immortalized brown preadipocytes was induced with DMEM supplemented with
10% fetal bovine serum (FBS), 0.02 μM insulin, 1 nM T3, 0.5 mM IBMX, 2 μg ml−1

DEX, and 0.125 mM indomethacin for 2 days39. After this period, the culture
medium was supplemented with FBS, insulin, and T3 only. 3T3-L1 cells were from
Daniel Lane.

C2C12 myoblasts were purchased from ATCC and cultured in growth medium
of DMEM containing 15% FBS. Myogenesis was induced by replacing growth
medium to DMEM containing 2% horse serum when cells were ~70% confluent.
Before changing the medium, cells were washed with plain DMEM twice.

qRT-PCR. Total RNA was extracted using TRIzol (Invitrogen) and reverse tran-
scribed using ProtoScript II first-strand cDNA synthesis kit (NEB), following
manufacturer’s instructions. qRT-PCR of Brd4 exon 3 was done using SYBR green
primers: forward 5′-CCCAGAGACCTCCAACCCTAA-3′ and reverse 5′-
AACTGGTGTTTCCATAGTGTCTTGAG-3′. qRT-PCR of Brd4 exon 5 was done
using the primers: forward 5′-TGACATCGTCTTAATGGCAGAAG-3′ and reverse
5′-CCTTTTGCCTGGACTATCATGAT-3′.

ChIP-Seq and RNA-Seq. For ChIP-Seq analysis, formaldehyde was added directly
to cell culture medium to a final concentration of 2%. After 10 min of incubation at
room temperature, glycine was added to a concentration of 125 mM to quench
crosslinking reaction. Approximately 2 × 107 cells were washed with 20 ml cold
PBS in culture dish twice and scraped off in 10 ml Farnham lysis buffer (5 mM
PIPES, pH 8.0, 85 mM KCl, 0.5% NP-40, supplemented with protease inhibitors),
then pelleted by centrifugation at 3000×g for 5 min at 4 °C. Cell pellet was resus-
pended in 10 ml lysis buffer and pelleted again to remove cytosolic proteins.
Resulting nuclear pellet was sonicated in 2 ml TE buffer (10 mM Tris-Cl, pH 8.0,
1 mM EDTA, supplemented with protease inhibitors) to achieve DNA fragments of
200–500 bp. Detergents were added to digested chromatin fractions to make 1×
RIPA buffer (10 mM Tris-Cl, pH 7.6, 1 mM EDTA, 0.1% SDS, 0.1% sodium
deoxycholate, 1% triton X-100). After centrifugation, supernatant was collected in a
new tube. For each ChIP, 8–10 μg antibodies were pre-incubated with 50 μl
Dynabeads Protein A (Life Technologies) in 1 ml PBS overnight at 4 °C under
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Fig. 9 JQ1, but not the single KO of Brd4, blocks PPARγ-stimulated
adipogenesis. a, b Brd4f/f brown preadipocytes were infected with
adenoviral GFP or Cre. Cre-infected cells were further infected with
retroviruses expressing vector alone or PPARγ. After hygromycin selection,
cells were induced for adipogenesis assay in the presence or absence of
0.5 μM BET inhibitor JQ1. a Oil red O staining at D7 of adipogenesis. Scale
bars= 15 μm. b qRT-PCR of Cebpa, Fabp4, Brd4, Brd2, and Brd3 at D7 of
adipogenesis. c BET family proteins are required for ligand-induced PPARγ
target gene expression. Subconfluent Brd4f/f preadipocytes expressing
ectopic PPARγ were pretreated with JQ1 (0.5 μM) for 3 h followed by
treatment with 1 μM rosiglitazone (Rosi) for 24 h in the presence of JQ1.
The data are presented as means± SD. Three technical replicates from a
single experiment were used

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/s41467-017-02403-5

10 NATURE COMMUNICATIONS |8:  2217 |DOI: 10.1038/s41467-017-02403-5 |www.nature.com/naturecommunications

www.nature.com/naturecommunications


gentle rotation. Next day, 1 ml chromatin from 1 × 107 cells was mixed with
antibody-beads complex and incubated overnight at 4 °C with gentle rotation.
Chromatin immunoprecipitates were washed twice with 1 ml RIPA buffer, twice
with 1 ml RIPA containing 300 mM NaCl, twice with 1 ml LiCl buffer (50 mM
Tris-Cl, pH 7.5, 250 mM LiCl, 0.5% NP-40, 0.5% sodium deoxycholate), and twice
with 1 ml TE buffer. Samples were reverse-crosslinked in 100 μl elution buffer (1%
SDS, 0.1 M NaHCO3, and 100 μg proteinase K) overnight at 65 °C. DNA was
purified by QIAquick PCR Purification Kit (QIAGEN) and quantified using Qubit
dsDNA HS Assay Kit (Thermo Fisher Scientific)19,24.

For RNA-Seq, mRNAs were purified using Dynabeads mRNA Purification Kit
(Invitrogen), and then they were used to synthesize double-stranded cDNAs using
SuperScript Double-Stranded cDNA Synthesis Kit (Invitrogen). Sequencing
libraries were constructed using NEBNext Ultra II DNA Library Prep Kit for
Illumina (NEB). All ChIP-Seq and RNA-Seq samples were sequenced on the
Illumina HiSeq 2500.

Computational analysis. To identify Brd4 binding regions, we used ‘SICER’
method with a window size of 50 bp and a gap size of 50 bp40. To eliminate non-
specific binding of Brd4 antibody, we compared Brd4 ChIP-Seq data from Brd4 KO
cells with that from two biological replicates of control (Pparγf/f) cells24, and kept
only the identified Brd4 binding regions with enrichment level significantly higher
in control cells than in the Brd4 KO cells, with an estimated false discovery rate
(FDR) of <10−3. Then, we chose only the overlapping Brd4 binding regions from
two biological replicates. For Brd4 ChIP-Seq data inMll3−/− Mll4f/f cells, an FDR of
<10−10 was used to find the high-confidence ChIP-enriched regions. Other pub-
lished ChIP-Seq data sets were downloaded (GSE74189, GSE50466, and
GSE44824)19,24,41.

For motif analysis of Brd4 binding regions (Fig. 4a), we used SeqPos motif tool
in Galaxy Cistrome (http://cistrome.org/ap/root)42. The algorithm used in this
motif tool is previously described in detail43. We selected the top 3000 Brd4
binding regions to screen enriched TF motifs at each time point.

Data availability. All data sets described in the paper have been deposited in NCBI
Gene Expression Omnibus under accession number GSE99101.

Received: 26 July 2017 Accepted: 28 November 2017
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