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ABSTRACT
Dosage, gender, and genetic susceptibility to the effects of alcohol remained 

only partially elucidated. In this review, we summarize the current knowledge of the 
mechanisms underlying the role of alcohol in liver and gastrointestinal cancers. In 
addition, two recent pathways- DNA repair and TGF-β signaling which provide new 
insights into alcohol in the regulation of cancers and stem cells are also discussed 
here.

INTRODUCTION

Normal processing of endogenous as well as 
environmental factors and agents such as alcohol, is 
central to cellular homeostasis, and the deregulation 
of these pathways leads to liver and gastrointestinal 
inflammation and injury- often caused by a complex 
interplay between genetic and environmental factors [1]. 
In addition, protection from agents such as aldehydes 
generated spontaneously during cell metabolism is vital to 
normal cell function and tumor suppression [2, 3]. Until 
recently, dosage, gender and genetic susceptibility to the 
effects of alcohol remained only partially elucidated. 
For instance, women are known to be more susceptible 
than men, yet the specific populations and the underlying 
genetic mechanisms of alcohol susceptibility remain 
unclear [4, 5]. Multiple studies have examined the role of 
alcohol as a causative agent in multiple cancer types, that 
include breast, colon, esophageal, prostate and others [1, 
6-9]. Yet few have been conducted prospectively, and the 
role of alcohol and its dosage in liver and gastrointestinal 

cancer is not completely understood [10, 11]. 
Although alcohol and illicit drugs are considered 

as different contributors to the global burden of disease, 
combined use of these substances is not an uncommon 
practice. Studies showed positive correlations between 
the incidence of alcohol and drug use [12-15]. A recent 
IARC (International Agency for Research on Cancer) 
meta-analysis examining the risk of esophageal cancer 
revealed the highest risk to be among those with 
concurrent alcohol and tobacco users, whereas the risk 
of esophageal cancer in alcohol users in the absence of 
tobacco usage was relatively lower [16]. Nevertheless, the 
risk of cancer is proportional to the dosage of used alcohol 
as many studies showed that compared to nondrinkers 
and occasional drinkers, the pooled relative risk (RR) 
was 1.03 for any, 0.97 for light, 1.04 for moderate, and 
1.21 for heavy drinkers. As a matter of fact, the RR for 
heavy drinkers compared to nondrinkers and occasional 
drinkers was 5.13 for oral and pharyngeal cancer, 4.95 for 
oesophageal squamous cell carcinoma, 1.44 for colorectal, 
2.65 for laryngeal and 1.61 for breast cancer. Heavy 
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drinkers also had a significantly higher risk of cancer of 
the stomach, gallbladder, pancreas and lung [17]. In liver 
cancer, compared to nondrinker, the pooled RR was 0.91 
for moderate drinking and 1.16 for heavy drinking [18]. 
Furthermore, for heavy drinkers, the pooled estimate RR 
was apparently higher for men than for women [19]. 

Alcohol is metabolized by alcohol dehydrogenases 
(ADHs) and aldehyde dehydrogenases (ALDHs). A 
review of case controlled studies examining genetic 
polymorphisms of the genes encoding these enzymes 
reveal a significant association between esophageal cancer 
risk and low ADH1B and ALDH2 genotypes, especially 
in east Asian heavy drinkers [20, 21]. However, specific 
populations of high-risk individuals have yet to be clearly 
defined. Two recent pathways- one in DNA repair pathway 
and the other in TGF-β signaling have provided new 
insights that we discuss more broadly here [22, 23].

ALCOHOL AND DNA REPAIR 
PATHWAYS

Since the discovery of DNA structure over 50 years 
ago, over 700 proteins and 900 distinct phosphorylation 
events have been described in the DNA damage response, 
reflecting the massive investment, cells make to preserve 
genomic integrity [24, 25]. When one considers, that 

ultraviolet light from sunlight induces up to 105 DNA 
lesions per cell per day, then the need for sensors is 
enormous. The repair mechanism involves at least six 
pathways that cover the specific steps involved in multiple 
DNA lesions [26, 27]. One of the most formidable of post 
replication DNA lesions, is the replication fork lesion, a 
barrier to chromosome duplication, which leads to mitotic 
catastrophe, complex chromosome rearrangements, and 
cell death. These lesions are managed by inter-strand 
cross link (ICL) repair systems to prevent replication fork 
progression [28]. The central components of the incisional 
and trans-lesional synthesis steps of the ICL system are 
the Fanconi complex, an E3 ligase, and at least four 
other factors. Fanconi anemia is a cancer pre-disposition 
syndrome characterized by hypersensitivity to DNA inter-
strand cross-linking agents [29]. 

The thirteen Fanconi anemia(FA) complementation 
members act in a common pathway that result in DNA 
repair by homologous recombination. Replication-
dependent ICL repair involves nucleolytic incisions 
flanking the ICL on one strand, trans-lesional DNA 
synthesis across the unhooked ICL, removal of the ICL 
by additional incisions, and homologous recombination. 
The central complex in this pathway is formed by the 
Fanconi anemia complementation group D2 (Fancd2), 
a core component of the Fanconi anemia complex, and 

Figure 1: Schematic diagram of TGF-β/FA pathway dependent regulation on liver stem cells. 
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FAI (FANCI) proteins forming the FANC1-FANCD2 
(ID) complex that are phosphorylated by ATR (ataxia 
telangiectasia and Rad3-related). FA is caused by bi-
allelic mutations of fifteen members of FANC pathway 
with inability to respond to cellular stress and ensuing 
DNA damage during S phase and loss of genome integrity 
[30, 31]. Patients with FA frequently develop bone marrow 
failure requiring allogeneic hematopoietic stem cell (HSC) 
transplantation, and have developmental abnormalities 
(short stature, a triangular face, and thumb abnormalities) 
[31, 32]. They also have a high risk of developing 
myelodysplasia (MDS), acute myeloid leukemia (AML) 
[31, 33-36], and hepatocellular carcinoma (HCC), 
especially with androgen treatment [37]. However, 
FANCD2 knockout mice do not develop HCC. Therefore, 
while the Fanconi anemia pathway is implicated in 
maintaining hematopoietic stem cell homeostasis, its role 
in liver stem cells and cancer remains unclear. 

The development of cancer due to the failure of 
response to agents such as alcohol producing reactive 
aldehydes, creating adducts that directly bind and damage 
DNA, has recently been observed in models with genetic 
inactivation of the Fanconi anemia members [23]. 
Fanc mutant intercrosses with ALDH2 mutant mice are 
susceptible to ethanol teratogenicity and defective DNA 
inter-strand cross link repair [23, 38]. Yet, mice with 
Fanc mutants (on their own) treated with alcohol do not 
develop any fetal-alcohol like aberrations suggesting a 
more complex process is involved in toxin induced DNA 
damage [2, 39-41] and that the essential sensors and the 
mechanisms for aberrant DNA damage from alcohol 
remain unclear. 

ALCOHOL AND TGF-Β PATHWAY

TGF-β and the Fanconi anemia pathway, two 
critical pathways involved in both stem cell maintenance 
as well as differentiation, have also been shown to play a 
pivotal role in metabolizing alcohol. TGF-β serves as an 
essential regulator of cell polarity, growth, differentiation, 
and lineage specificity as well as a tumor suppressor 
pathway in multiple cell types [42, 43]. Defective TGF-β 
signaling is implicated in liver injury, inflammation and 
multiple cancers owing to the frequent somatic mutations 
in, or deregulation of, its components, such as Smad3, 
Smad4, and TGF-β receptors 1 and 2 (TBR1 and TBR2) 
(Figure 1). Smads are the intracellular mediators of 
TGF-β signaling [44-47], and their function is modulated 
by adaptor proteins such as the Smad anchor for receptor 
activation, filamin, microtubules, and β2-spectrin (β2SP, 
gene Sptbn1) [48-50]. 

TGF-β-activated Smads also orchestrate specific 
histone modifications and chromatin remodeling to 
activate their transcriptional targets. Keratinocytes 
cultured from TGFβ1-null mice have marked genomic 
instability that could accelerate tumor progression [51]. 
More recently, studies in the Smad4 conditional knockout 
mice that develop head and neck cancers, demonstrate a 
key role for Smad4 as a guardian of the genome through 
regulation of the Fanconi anemia/Brca (Fanc/Brca) DNA 
repair pathway [52, 53]. 

The major role of β2SP in maintaining genomic 
stability following alcohol-induced DNA damage 
is supported by the fact that β2SP defective mouse 
embryos display some symptom of human fetal alcohol 
syndrome (Figure 2) [22]. Furthermore, the development 

Figure 2: A. β2SP-/- mouse embryos display some symptom of human fetal alcohol syndrome, microcephaly (white arrow), anencephaly 
and anophthalmia; B. Alcoholic hepatitis is induced by alcohol in β2SP+/- mice compared to wild type normal controls. Alcoholic hepatitis-
like picture in β2SP mutant mice: effect of alcohol on β2SP+/- mice liver. Mice were treated with alcohol at dose of 30ml/day. I) Masson’s 
Trichrome stain for alcohol treatment group; II) H&E stain for alcohol treatment group.
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of hepatocellular cancers (HCCs) in β2SP heterozygote 
mutants establishes β2SP as a functional tumor suppressor. 
As a matter of fact, β2SP have been observed to associate 
with Fanconi proteins (G and D) as well as with DNA inter-
strand cross-links [23, 41]. In addition, Smads have been 
identified as regulators of Fanconi genes [54]. Similarly, 
by virtue of its involvement in Smad3/4 localization and 
subsequent activation of Smad3/4, β2SP may enhance 
TGF-β tumor suppressor function. Indeed, loss of β2SP 
leads to decreased Fancd2 levels and sensitizes β2SP 
mutants to DNA damage by ethanol treatment, leading 
to phenotypes that closely resemble those observed in 
animals lacking both ALDH2 and Fancd2 and resemble 
human fetal alcohol syndrome. Sptbn1-deficient cells 
are hypersensitive to DNA crosslinking agents and have 
defective DNA double-strand break repair that is rescued 
by ectopic Fancd2 expression. Taken together, TGF-β/
β2SP signaling acts as a potential guardian of genomic 
stability from genotoxic metabolites through modulation 
of the Fanconi anemia DNA repair pathway, yet the exact 
mechanisms remain to be elucidated. 

ALCOHOL AND TLR4

TLR4 is a receptor for endotoxin which participates 
in many inflammatory processes such as M1 activation 
of hepatic macrophages in alcoholic liver disease [55]. 
However, its role in liver carcinogenesis via ectopic 
expression and activation has only recently been revealed 
in alcohol/HCV-associated HCC models [55]. Alcohol 
feeding to mice expressing the HCV Ns5a in a hepatocyte 
specific manner aggravates liver inflammation via 
activation of overexpressed TLR4 in the parenchymal 
cells [56]. Long-term alcohol feeding produces liver 
tumors in these transgenic mice in a manner dependent 
on TLR4. From these mice, tumor-initiating stem cell-
like cells (TICs) have been isolated. These TICs exhibit 
self-renewal and tumorigenic activities driven by TLR4-
dependent upregulation of the stem cell factor NANOG. 
A defective TGF-β tumor suppressor pathway is identified 
in the TICs and mediated by NANOG target genes 
IGF2BP3 and YAP1. Conversely, mice with an attenuated 
TGF-β pathway due to haploinsufficiency of β2- Spectrin, 
spontaneously develop liver tumors and alcohol feeding 
increases tumor incidence in a TLR4-dependent manner 
[57]. This reciprocal antagonism between TLR4 and 
TGF-β pathways may serve as a novel therapeutic target 
for HCC.

Whilst the phenotypes in the TGF-β deficient mutant 
mice are dramatic and restricted to specific compartments 
[58-60], it is clear that multiple tiers of control are present 
in the human disease- LOI at chromosome 11 leading to 
raised levels of TERT, IGF2, etc. The heterozygous TGF-β 
deficient mutants develop cancers spontaneously on a 
C57BL/6 background and in this regard the heterozygotes 

resemble sporadic cancer formation in humans [61-63]. 
There are limitations to all models, but over the last few 
years many of these have been selected and have been 
continually refined to optimize readouts. This has been 
successful to date and enabled the identification of new 
fundamental elements of two-tier control [64-66]. Finally, 
there are well established models of tumorigenesis 
available to study cancer progression in mice, as well as 
xenografts of cancer cell lines into recipients that many 
scientists have been able to employ successfully [57, 67].

CONCLUSION

Collectively, the alcohol dosage and specific risk 
factors of alcohol use as the underlying cause of cancer 
remain unclear. Therefore, there is an urgent need for 
strong fundamental and clinical studies to examine the 
specific dosage, sex and genetic risk factors that confer 
cancer risk to alcohol intake. 
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