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30Universidad Nacional Autónoma de México, Facultad de Medicina, Circuito Interior,
Ciudad Universitaria, Av. Universidad 3000, CP 04510. Universidad Nacional Autónoma
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Rates of biodiversity loss are higher in freshwater ecosys-

tems than in most terrestrial or marine ecosystems,

making freshwater conservation a priority. However,

prioritization methods are impeded by insufficient knowl-

edge on the distribution and conservation status of

freshwater taxa, particularly invertebrates. We evaluated

the extinction risk of the world’s 590 freshwater crayfish

species using the IUCN Categories and Criteria and

found 32% of all species are threatened with extinction.

The level of extinction risk differed between families,

with proportionally more threatened species in the Para-

stacidae and Astacidae than in the Cambaridae. Four

described species were Extinct and 21% were assessed as

Data Deficient. There was geographical variation in the

dominant threats affecting the main centres of crayfish

diversity. The majority of threatened US and Mexican

species face threats associated with urban development,

pollution, damming and water management. Conversely,

the majority of Australian threatened species are affected

by climate change, harvesting, agriculture and invasive

species. Only a small proportion of crayfish are found

within the boundaries of protected areas, suggesting that

alternative means of long-term protection will be required.

Our study highlights many of the significant challenges

yet to come for freshwater biodiversity unless conserva-

tion planning shifts from a reactive to proactive approach.

1. Introduction
Freshwater ecosystems occupy less than 1% of the earth’s sur-

face, but support approximately 10% of the world’s species

and 30% of all vertebrates [1]. These systems provide a range

of valuable services, including fisheries, domestic and commer-

cial water supply, carbon sequestration and energy; however, a

rapidly growing human population has increased the demand

on freshwater resources leading to a freshwater biodiversity

crisis [2]. While knowledge on the conservation status and dis-

tribution of freshwater taxa is disparate relative to terrestrial

species [3], there is growing evidence that freshwater taxa

(i.e. crabs, dragonflies, fish and molluscs) are at greater risk of

extinction than terrestrial vertebrates (i.e. mammals, reptiles

or birds) [3–9]. Given the disproportionately high biodiversity

harboured in freshwater ecosystems, knowledge on the distri-

bution and conservation status of freshwater species will be

essential for monitoring targets set by the Convention on Bio-

logical Diversity [3]. For example, Target 6 aims to ensure that

‘all fish and invertebrate stocks and aquatic plants are managed

and harvested sustainably by 2020’, Target 11 is to conserve

17% of inland water by 2020 and Target 12 requires that by

2020 ‘the extinction of known threatened species has been pre-

vented and their conservation status, particularly of those most

in decline, has been improved and sustained’ [10].

Limited resources available for conservation require

practitioners to prioritize areas for action. Selection of priority

areas requires knowledge on the distribution and conservation

status of a globally representative sample of species. To date,

global analyses of species diversity and patterns of threat have

been biased towards terrestrial species, particularly vertebrates

[11–13] producing the major tropical and subtropical hotspots

described by Myers et al. [11]. However, there is growing

evidence that vertebrates are a poor proxy for estimating invert-

ebrate diversity [3,14,15], highlighting a need for improved

knowledge on the distribution and status of invertebrate taxa.

Freshwater crayfish (Astacidea) exhibit a disjunct global

distribution with the majority of species diversity restricted

to temperate latitudes, and an absence of native species in con-

tinental Africa and the Indian subcontinent [16]. A number of

hypotheses explaining crayfish distribution patterns have been

proposed: competitive exclusion with the freshwater crabs that

occupy a similar ecological niche [17–19]; unsuitable clima-

tic conditions [17,19,20]; or the timing of the separation of

Gondwana [16]. However, these hypotheses have been neither

denied nor supported, and so an explanation for the absence of

crayfish in Africa and India remains inconclusive.

The major crayfish diversity hotspots are split taxonomi-

cally into two superfamilies: Astacoidea and Parastacoidea

[21]. Astacoidea is restricted to the Northern Hemisphere and

comprises two families: Cambaridae, which is the largest cray-

fish family and native to North America (409 spp.) and East

Asia (four spp.); and Astacidae, the smallest family, with

native species in Europe (five spp.) and the USA and Canada

(five spp.). Parastacoidea comprises only a single family, the

Parastacidae, which is restricted to the Southern Hemisphere

[15] with native species in Australasia (148 spp.), Madagascar

(seven spp.) and South America (12 spp.).

Crayfish are found in a diversity of habitats, including:

permanent and seasonal rivers, streams and lakes; freshwater

caves and springs; and terrestrial burrows. Given their sig-

nificant biomass in many freshwater systems [22], crayfish

play a fundamental role in determining ecosystem structure

and function [23], and are of significant economic impor-

tance, particularly in Madagascar, Europe, China and the

US state of Louisiana [24–26]. However, in recent years,

freshwater crayfish have been increasingly recognized as in

need of ‘conservation attention’ [27,28]. Previous estimates
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suggest that 48% of North American crayfish species and 25%

of all Australian species are threatened [27–29], and that extinc-

tion rates for crayfish may increase by more than an order of

magnitude exceeding those of freshwater fishes and amphi-

bians [8]. Heightened extinction risk in crayfish is often

attributed to small range size and degradation of freshwater

habitats [30]; however, even the wide-ranging European noble

crayfish (Astacus astacus) has seen significant population

declines since the arrival of crayfish plague (Aphanomyces
astaci) [31].

Threats to crayfish are set to increase in both magnitude and

extent. Consequently, there is an urgent need to better under-

stand the extinction risk and patterns of threat in freshwater

crayfish. In this study, we address these gaps by assessing

the global extinction risk of all crayfish species described up

to 2009, using the International Union for Conservation of

Nature (IUCN) Red List of Threatened Species Categories and

Criteria [32]. We report on patterns of extinction risk across

families, analyse patterns of threat and data gaps, and make

recommendations for conservation.

2. Methods
Species-specific data were collected on taxonomy, distribution,

population trends, ecology, biology, threats and conservation

measures for all 590 species of crayfish described up to 2009.

Data were obtained from published and unpublished articles, gov-

ernment reports and personal communications. All species were

evaluated against quantitative thresholds defined in the IUCN

Red List Categories and Criteria [33] to assess extinction risk

based on: A (past, present or future declining population), B (geo-

graphical range size, and fragmentation, decline or fluctuations),

C (small population size and fragmentation, decline or fluctu-

ations), D (very small population or very restricted distribution)

and E (quantitative analysis of extinction risk). Based on the quan-

titative thresholds and available data, we assigned one of the eight

IUCN Red List categories [32]: Extinct (EX), Extinct in the wild

(EW), Critically Endangered (CR), Endangered (EN), Vulnerable

(VU), Near Threatened (NT), Least Concern (LC) and Data

Deficient (DD), of which CR, EN and VU are the threatened cat-

egories. Few invertebrate species have sufficient information on

rates of population decline, so assessments under criterion A

were based on presence/absence data over time, assuming

equal abundance across the range and linear rates of decline. Fol-

lowing Darwall et al. [34], we mapped species distributions to river

sub-basins as delineated by the HYDRO1k Elevation Derivative

Database [35] using ARCGIS v. 9.3. Where existing distribution

maps were available these were digitized, while others were cre-

ated from georeferenced specimen collection records provided

by species experts. We calculated species range either as: extent

of occurrence (EOO), by computing a minimum convex polygon

around all known, inferred and projected occurrences; or area of

occupancy (AOO), by calculating the area of all known occupied

sites. Species assessments and distribution maps were reviewed

by a panel of experts in a workshop setting, and remotely by

email. The majority of assessments (n ¼ 573) were published on

the IUCN Red List in 2010, with 17 assessments awaiting

publication.

Following Hoffmann et al. [36], we estimated the proportion

of threatened species as [(number of threatened)/(total 2 DD)],

where ‘threatened’ is the number of species assessed VU, EN

and CR, ‘total’ is the total number of species and DD is the

number of species assessed as DD. This assumes that DD species

show the same proportion of threatened species as better known

species, and represents a mid-estimate of extinction risk for the

group (see [31]). Threat levels have been reported this way in

similar studies [6,13,36], representing the current consensus

among conservation biologists about how the proportion of threa-

tened species should be presented, while also accounting for the

uncertainty introduced by DD species. We also calculated a lower

estimate on the proportion of threatened species assuming that

none of the DD species are threatened [(number of threatened)/

total] and a high estimate assuming that all DD species are threa-

tened [(number of threatened þ DD)/total]. Extinction risk was

summarized across all families and genera.

Identification of taxa that are more threatened than expected by

chance can help prioritize conservation actions [37]. Using the

methods described by Bielby et al. [38], we tested to see whether

genera deviated from the expected level of threat. Chi-squared

tests were used to test for significant departures from equal threat

between genera, and binomial tests were used to find the smallest

genus size necessary to detect a significant deviation from the

observed proportion of threatened species. Genera represented by

an insufficient number of species were excluded. A null frequency

distribution of the number of threatened species was generated

from 10 000 unconstrained randomizations, by randomly assigning

Red List categories to all species, based on the frequency of occur-

rence of each category in the sample. The number of threatened

species in the focal genera was counted and compared with the

null frequency distribution. The null hypothesis (that extinction

risk is taxonomically random) was rejected if this number fell in

the 2.5% at either tail of the null frequency distribution.

Following Salafsky et al. [39], threats were categorized into:

agriculture, logging, invasive species and disease, problematic

native species, harvesting, urban development (i.e. commercial,

domestic and industrial), energy production and mining, climate

change and severe weather events, pollution, human disturbance

(i.e. war and recreational activities), transportation infrastructure

(i.e. roads, shipping lanes, railways) and water management/

dams. Threats were summarized by geographical location only

for threatened species.

We assessed the spatial congruence between threatened

species richness and DD species richness in the major centres of

diversity (i.e. Australia, Mexico and the USA). We defined centres

of richness by selecting the top 10% species-rich river basins,

with richness based on the absolute number of species, DD

species and threatened species and compared congruence using

Pearson’s correlations. We accounted for spatial autocorrelation

by implementing the method of Clifford et al. [40], which estimates

effective degrees of freedom based on spatial autocorrelation in the

data and applies a correction to the significance of the observed

correlation. We also assessed the proportions of southeast US

and Australian threatened species’ basins that intersect with pro-

tected areas (irrespective of the proportion of the basin area

covered). Protected areas were selected using the IUCN Protected

Areas Categories System [41], and included the following cat-

egories: strict nature reserve, wilderness area, national park,

natural feature, habitat/species management area, protected land-

scape and protected area with sustainable use of natural resources.

All statistical analyses were performed using the software package

R v. 3.0.1 [42]. The critical value for a was set at 0.05.

3. Results
Nearly one-third of the world’s crayfish species were assessed

as threatened with extinction assuming that DD species are

threatened in an equal proportion (32%: range 24–47%; table

1). Of the non-threatened species, 7% were assessed as NT

and 47% as LC. Twenty-one per cent of all species were

assessed as DD. Four species were assessed as EX; however

of the 51 species assessed as CR, four were highlighted as poss-

ibly extinct. Of the EX species, two were previously found in

Mexico (Cambarellus alvarezi and Cambarellus chihuahuae) and
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two in the USA, specifically Georgia (Procambarus angustatus)
and California (Pacifastacus nigrescens). Of the possibly extinct

species, two were known from Mexico (Procambarus paradoxus
and Cambarellus areolatus), and one each from the US states of

Alabama (Cambarus veitchorum) and Florida (Procambarus deli-
catus). All East Asian Cambaroides and South American

Parastacidae (10 of 12 spp.) were assessed as DD. Only two

of the seven species of Malagasy Astacoides were assessed as

threatened, whereas the remaining species were assessed as

DD (four of seven spp.) or LC (one of seven spp.).

The majority (117 of 147 spp.) of threatened species

(those classified as CR, EN or VU) were assessed using

criterion B1 (geographical range size combined with fluctu-

ations or declines). Only 13 species had adequate surveys

from which to calculate AOO and thereby carry out assess-

ments under criterion B2. Five species were assessed under

criterion A (Astacus astacus, Austropotamobius pallipes, Astacopsis
gouldi, Cambarus cracens and Engaeus granulatus); the other

species had insufficient data on rates of population decline to

meet this criterion. The assessment for Astacus astacus was

Table 1. Extinction risk summarized by family and genus. Figures for the proportion of threatened species represent the mid-estimate [(number of threatened)/
(total2DD)], lower estimate [(number of threatened)/total] and high estimate [(number of threatened þ DD)/total].

taxa
native geographical
locality DD LC NT VU EN CR EX total

proportion threatened
(low estimate – high
estimate)

Astacidae 3 3 0 1 1 1 1 10 43% (30 – 60%)

Astacus Europe 1 1 0 1 0 0 0 3 50% (33 – 67%)

Austropotamobius Europe 1 0 0 0 1 0 0 2 100% (50 – 100%)

Pacifastacus USA, Canada 1 2 0 0 0 1 1 5 25% (20 – 40%)

Cambaridae 91 221 26 20 33 19 3 413 22% (17 – 39%)

Barbicambarus USA 0 1 0 0 0 0 0 1 0% (0 – 0%)

Bouchardina USA 1 0 0 0 0 0 0 1 0 (0 – 100%)

Cambarellus USA, Mexico 3 8 1 0 1 2 2 17 21% (18 – 35%)

Cambaroides East Asia 4 0 0 0 0 0 0 4 0% (0 – 100%)

Cambarus USA, Canada 15 61 9 4 5 7 0 101 19% (16 – 31%)

Distocambarus USA 3 0 0 2 0 0 0 5 100% (40 – 100%)

Fallicambarus USA, Canada 2 8 5 1 1 1 0 18 19% (17 – 28%)

Faxonella USA 0 3 1 0 0 0 0 4 0% (0 – 0%)

Hobbseus USA 3 1 0 0 3 0 0 7 75% (43 – 86%)

Orconectes USA, Canada, Mexico 9 62 3 10 4 1 0 89 19% (17 – 27%)

Procambarus USA, Mexico, Cuba,

Belize, Guatemala,

Honduras

51 77 6 3 19 8 1 165 26% (18 – 49%)

Troglocambarus USA 0 0 1 0 0 0 0 1 0% (0 – 0%)

Parastacidae 31 50 14 12 33 27 0 167 53% (43 – 62%)

Astacoides Madagascar 4 1 0 0 2 0 0 7 67% (29 – 86%)

Astacopsis Australia 0 2 0 0 1 0 0 3 33% (33 – 33%)

Cherax Australia, New Guinea 9 12 6 2 7 3 0 39 40% (31% – 54%)

Engaeus Australia 5 17 3 3 3 4 0 35 33% (29 – 43%)

Engaewa Australia 0 2 0 0 2 1 0 5 60% (60 – 60%)

Euastacus Australia 1 8 1 5 17 17 0 49 81% (80 – 82%)

Geocharax Australia 0 1 0 1 0 0 0 2 50% (50 – 50%)

Gramastacus Australia 0 0 1 0 0 0 0 1 0% (0 – 0%)

Ombrastacoides Australia 2 4 2 1 0 2 0 11 33% (27 – 45%)

Paranephrops New Zealand 0 2 0 0 0 0 0 2 0% (0 – 0%)

Parastacus South America 6 1 1 0 0 0 0 8 0% (0 – 75%)

Samastacus South America 1 0 0 0 0 0 0 1 0% (0 – 100%)

Tenuibranchiurus Australia 0 0 0 0 1 0 0 1 100% (100 – 100%)

Virilastacus South America 3 0 0 0 0 0 0 3 0% (0 – 100%)

all species 125 274 40 33 67 47 4 590 32% (24 – 47%)
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based on population data from both systematic surveys and

direct exploitation, whereas the other assessments were based

on observed declines in EOO and AOO collected from systema-

tic surveys over significant parts of the species’ ranges. The

remaining 12 threatened species were assessed under crite-

rion D2 (i.e. species with a very small range—AOO ,20 km2

or ,5 locations—and subjected to rapidly becoming CR or

EX as a result of future threat(s)). A minimum of three species

in a genus were required to establish if the genera was at greater

risk of extinction than expected by chance, and 10 species per

genera to establish if the genera was less threatened than

would be expected. This resulted in the exclusion of 18 of 30

genera from the analysis. Extinction risk was non-randomly

distributed among genera (x2 ¼ 61.15, p , 0.001, d.f. ¼ 28)

with 11 of the remaining genera being more threatened than

expected (table 2). Only the genus Cambarus showed a non-

significant difference between the proportions of expected

and observed threatened species.

Sixty-five per cent of Australian threatened species were

predicted to be at risk from climate-related threats, compared

with only 5% of North American species. Similarly, invasive

species, disease, agriculture and harvesting were found to

impact a greater proportion of Australian threatened species

than for Mexican and USA species. Threatened USA species

were at greater threat from factors resulting in degradation

and loss of habitat, notably urban development and pollution

(figure 1). A similar pattern was observed in threatened Mexi-

can species, but with dams and water management impacting

a greater proportion of species. For Malagasy species, domi-

nant threats were similar to those described for Australian

species: invasive species, agriculture (i.e. land conversion for

rice paddies) and harvesting but with no threat from climate

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

human disturbance

pollution

harvesting

dams/water management

agriculture

urban development

invasive species and disease

logging

problematic native species

climate change and severe weather events

energy production and mining

proportion of threatened species

Australia (n = 72)
USA (n = 54)
Mexico (n = 16)

Figure 1. Global threats affecting threatened species within the species-rich (.10 species) geographical regions.

Table 2. Threat distribution across genera for which there were sufficient samples to determine whether species were more threatened than would be expected
by chance, or under threatened: n.s., not significant; þ, over threatened; 2, under threatened.

family
proportion
observed

proportion
expected

total species
(non-DD)

>expected threat
level p-value

<expected threat
level p-value

over or under
threatened

Pacifastacus 0.333 0.009 3 ,0.001 1 þ
Cambarellus 0.250 0.028 12 ,0.001 1 þ
Cambarus 0.186 0.171 86 0.282 0.718 n.s.

Fallicambarus 0.188 0.031 16 ,0.001 1 þ
Hobbseus 0.750 0.012 4 ,0.001 1 þ
Astacoides 0.667 0.012 3 ,0.001 1 þ
Astacopsis 0.333 0.005 3 ,0.001 1 þ
Cherax 0.400 0.066 30 ,0.001 1 þ
Engaeus 0.333 0.059 30 ,0.001 1 þ
Engaewa 0.600 0.009 5 ,0.001 1 þ
Euastacus 0.813 0.083 48 ,0.001 1 þ
Ombrastacoides 0.333 0.019 9 ,0.001 1 þ
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change. On average, USA species were found to face fewer

threats per threatened individual crayfish (2.1) than Mexican

(2.2), Australian (3.9), Malagasy (4) and European (8)

threatened species.

Crayfish were recorded in 60 countries, with 98% of

species found to be endemic to a single country (562 of 590

spp.). In the USA, the major hotspot of diversity is in the

southeast USA (notably Tennessee, Alabama and Mississippi;

figure 2a) where 53% of species (189 of 357 spp.) are known

from a single state. In Mexico, 95% (3 of 54 spp.) of species

are endemic to the country with a major hotspot of diversity

in the Gulf of Mexico region (figure 2a). In Australia, 84%

(109 of 130 spp.) of species were found in only a single

state with hotspots of diversity in the southeast and eastern

Australia (southeast Victoria, Tasmania, northeastern New

South Wales and southeastern Queensland; figure 2a). Distri-

bution of threatened species richness (figure 2b,c) largely

mirrors total species richness with higher numbers of threa-

tened species in Australia (n ¼ 60) than the USA (n ¼ 56) or

Mexico (n ¼ 16). Numbers of DD species were highest in

the USA (particularly Tennessee, South and North Carolina,

the Florida Panhandle and Mobile River basin) and the Gulf

of Mexico region (figure 2d ) with 85% of DD species having

an EOO of less than 20 000 km2. We observed relatively few

DD species in Australia (figure 2e).

There was no correlation between data deficiency and

centres of threatened species richness in Australia (r ¼ 0.11,

p ¼ 0.60, d.f.¼ 24) or Mexico (r ¼ 0.60, p ¼ 0.086, d.f. ¼ 710).

1–
2

3–
5

6–
10

11
–1

5

16
–2

0

21
–2

5
26

–3
0

31
–4

0

41
–5

0
>50

no. species

(a)

(b) (d)

(c) (e)

threatened species richness

1 2 3 4 5 6 7 8 9 >9 1 2 3 4 5 6 7 8 9 >9

data-deficient species richness

Figure 2. Distribution of: (a) all species; (b) North American threatened species; (c) Australian threatened species; (d ) North American data-deficient species; and
(e) Australian data-deficient species. (Online version in colour.)
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However, there was a marginally non-significant correlation

between data-deficiency and threatened species richness in

the USA (r ¼ 0.21, p ¼ 0.06, d.f.¼ 141). There was low spatial

overlap for both the USA (2%) and Australian (6.6%)

threatened species and protected areas.

4. Discussion
(a) Patterns of threat and extinction risk
We found nearly one-third of the world’s crayfish species are

threatened with extinction. This level of threat exceeds that of

most terrestrial and marine taxa, but is similar to that of the

freshwater crabs and amphibians [5–7,13,43–45], highlighting

the imperilled status of freshwater species. The taxonomically

non-random distribution of extinction risk in crayfish suggests

that certain intrinsic biological traits and external geographical

factors might combine to influence risk. However, understand-

ing the factors that drive high extinction risk and the synergistic

effect of threats is complicated by a lack of spatial overlap

between families [46], and by geographical variation in domi-

nant threats; the biological traits that predict high risk under

one threat type may not do so under another threat [47].

Notable differences in extinction risk between the genera

of the Australian Parastacidae and the North American

Cambaridae might be explained by levels of trait diversity,

with both exhibiting considerable trait diversity across

genera. For example, Parastacidae genera known only from

Australia tend to exhibit small highly fragmented ranges,

whereas South American and New Zealand genera exhibit

large contiguous ranges (more than 20 000 km2). Differences

in range size might be explained by the cooler climatic con-

ditions of the Late Cretaceous and widescale flooding in both

South America and New Zealand [48–50] both of which

have facilitated crayfish dispersal. However, the Australian

species-rich genera exhibit low trait diversity within genera,

relative to genera of the Cambaridae [51]. For example, slow

growth, apparent limited tolerances to increased temperatures

[52], late sexual maturity and/or restricted ranges are all

characteristic traits of the Australian genus Euastacus [53]

(traits that tend to predict high risk of extinction in other taxa

[33,34,54]), whereas the Australian Gramastacus and Geocharax
are relatively small, have short lifespans and early sexual matur-

ity, and can tolerate a wide range of environmental conditions as

they occur in permanent and ephemeral freshwater systems [55].

Conversely, species of the North American genus Orconectes
range from the cave-dwelling and long-lived (approx. 22

years) southern cave crayfish (Orconectes australis [56]), to the

river- and lake-dwelling invasive spiny-cheek crayfish (Orco-
nectes limosus) which lives for only 4 years [57].

Differences in the level of extinction risk between crayfish

families might be partly explained by taxon age. A recent

study of the world’s marine lobsters dated the origin of

Parastacidae to approximately 260 Ma and Cambaridae to

approximately 160 Ma [58]. Older taxa might be expected to

exhibit higher levels of extinction risk as all taxa must even-

tually go extinct [59]. A positive relationship between taxon

age and extinction risk has been observed in birds [60]. How-

ever, in South Africa, the opposite relationship has been

observed in plants where extinction risk is greater in the

younger taxa [61]. The authors attribute this to the inheren-

tly small range size of rapidly diversifying lineages, a key trait

for assessing extinction risk using the IUCN Red List Categories

and Criteria [33]. There has been rapid diversification in the

Cambaridae, resulting in 12 genera and 413 species (at the

time of assessment; species lists are still growing), relative to

the older Parastacidae (14 genera and 167 species). Congruence

between areas of high human density and crayfish diversity

might explain why the only known recent crayfish extinctions

are from the USA and Mexico. With human density projected

to increase within North America [62], continued loss and

degradation of habitat (namely urban development, pollution,

damming and water management) is likely not only to increase

extinction rates but to impede future diversification.

While human density is lower in Australia than North

America [62], Australian species face on average a greater

number of threats. This complicates identifying the contri-

bution of each threat to rates of decline as many threats act

synergistically. For example, increasing temperatures and

land conversion from natural state to agricultural use have

increased the rate of irrigation, prompting water shortages

and salinization of freshwater wetlands [63]. Similarly,

increased logging of mature forests has increased the fre-

quency of forest fires in southeast Australia [64]. While

threats acting independently of one another may pose little

danger to a species, threats acting synergistically can signifi-

cantly increase rates of decline. In a recent study [65], declines

in the population size of rotifers were 50 times faster when

threats acted together. Uncertainty in the nature of depen-

dency between threats poses a significant challenge to the

effective allocation of conservation resources, and therefore

may require action on multiple threats simultaneously.

Of all the geographical localities, European crayfish face

the greatest number of threats, of which the most widespread

is invasive species. Despite their large geographical ranges,

declines of between 50% and 80% have been observed in

the white-clawed crayfish (Austropotamobius pallipes) [66],

and 50% and 70% in the noble crayfish (Astacus Astacus)

[67]. The effect of interacting threats is particularly evident

in the northern part of both species’ ranges where populations

have disappeared as rising temperatures have facilitated the

range expansion of signal crayfish (Pacifastacus leniusculus)

[68] and crayfish plague (Aphanomyces astaci) [69]. At present,

invasive crayfish are not a widespread threat across the USA,

although the invasive rusty crayfish (Orconectes rusticus)

is currently expanding its range by up to 30 km per year

[70]. The threat of invasive species was most evident in

Australia, though invasive crayfish are a relatively minor

threat relative to other species. Most of the Euastacus species

are threatened by invasive predators such as cane toads

(Rhinella marina) and feral pigs (Sus scrofa) which prey on

young crayfish and destroy riparian habitat [53]. While inva-

sive species are a prevalent threat to Australian crayfish, the

impact of invasive species was often only attributed to

localized declines [53].

(b) Deficits in knowledge
A high proportion of DD species can create taxonomic and

geographical biases in the knowledge of extinction risk and

the distribution of threat [46]. The proportion of DD crayfish

was relatively similar to many previously assessed vertebrate

groups (mammals, reptiles, amphibians and fish) [36], but

low compared with other invertebrates, such as the fresh-

water crabs, dragonflies and freshwater molluscs [5–7].

Improved knowledge on the status of DD species is unlikely
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to significantly alter spatial patterns of extinction risk in the

crayfish as there is already high spatial overlap between

threatened and DD species in North America, and there are

only small numbers of DD species elsewhere. However, the

spatial overlap between threatened and DD North American

species means there could be many more threatened species.

An advantage of this close proximity means opportunities

may exist to collect data on DD species while carrying out

surveys on better known species, or species receiving

survey attention because of conservation concern. Similarly,

actions taken to protect better known species may positively

benefit a number of these DD species. The majority of North

American DD species have ranges smaller than 20 000 km2

and so may qualify for a threatened assessment under criterion

B, if they are also found to be undergoing declines or fluctu-

ations. However, a lack of information on whether threats

are driving declines or fluctuations in range size, number

of mature individuals or habitat quality prevented a threat

assessment. There are entire genera for which there is little

information on population trends, namely the Samastacus,
Virilastacus and Cambaroides. Many of these species exhibit

large continuous ranges and are therefore unlikely to qualify

for a threat assessment under criteria B or D: threat assessments

would only be possible under criterion A which would require

detailed information on rates of population decline, or data

sources from which to derive adequate proxies.

(c) Conservation
Despite the growing evidence for a freshwater biodiversity

crisis, freshwater species remain a low priority on the conserva-

tion agenda. Freshwater species, particularly invertebrates,

continue to be under-represented within protected area net-

works. In Africa, approximately one-third of threatened

freshwater molluscs and freshwater crabs have 70% or more

of their catchments within a protected area, compared with

75% of birds and 98% of mammals [3]. In this study, we

observed even fewer crayfish within the boundaries of pro-

tected areas. Furthermore, our analysis was based on species

ranges intersecting with protected areas which will overesti-

mate the value of protected areas [71], so the proportion of

species with greater than 70% of their catchments within pro-

tected area boundaries is almost certainly less. Even where

species are within protected areas, these are unlikely to be

managed for the preservation of freshwater biodiversity [72].

Similarly, freshwater invertebrates are under-represented

on national endangered species lists. In the USA, 20% of

mammals are listed on the Endangered Species Act list, com-

pared with only 9% of molluscs and 1% of crayfish [73]. In

Australia, 25% of terrestrial mammals are listed on the

Environment Protection and Biodiversity Protection Act list,

but only 5% of freshwater bivalves and 9% of crayfish [74].

Establishing effective conservation actions for many of the

more threatened species is made complicated by the types

of habitats occupied by some species. Many of the more

threatened crayfish and freshwater molluscs are found in

intermittent water bodies. Intermittent streams can support

distinct and diverse biological communities, but despite

their prevalence in the USA [75] they receive no protection

under the US Clean Water Act [76].

Conservation of freshwater biodiversity is partly impeded

by an inadequate understanding of the economic value of

freshwater species and the services they provide [7]. To date,

the majority of conservation effort is targeted towards charis-

matic species or those with a recognized economic value [77].

However, an economic valuation of biomes found freshwater

systems were 34 times more valuable than terrestrial systems

per unit area [78]. While placing an economic value on

nature has its risks [79], realistic economic valuations of fresh-

water biodiversity and its services could be an important tool

for moving freshwater conservation up the agenda.

Incorporating economics into conservation planning will

aid the development of cost-effective measures. Conservation

costs increase with extinction risk [80], and so actions focused

on prevention rather than mitigation could present significant

cost-saving opportunities. Invasive species are predicted to

significantly increase extinction rates over the next century

[81]. Every year, invasive species cost the USA economy

$138 billion [82]. While the cost of eradication and control

is often significantly higher than the cost of prevention [83],

invasive species prevention is greatly under-funded [84].

A recent study estimated the cost of preventing zebra mussel

(Dreissena polymorpha) invasion into one USA lake at $324 000

a year [84]. At present, the US Fish and Wildlife Service allo-

cates $825 000 for the control and prevention of all invasive

species in all lakes across the USA [84]. While it is not feasible

to prevent invasion at all sites, not all sites are vulnerable to

invasion. Prioritizing sites for protection from invasive species

requires knowledge on the mechanisms of species coloniza-

tion, suitability of habitat for invasive species, and the

potential impact of the species [85]. A recent study employed

machine learning methods for predicting sites most vulnerable

to biological invasion by crayfish [85]. Methods such as these

could be used to prioritize sites for protection by identifying

hotspots of freshwater diversity that are most vulnerable to

invasion by a range of aquatic invaders.

It is unlikely that actions against climate change can be

implemented in a timescale that would avert significant biodiver-

sity loss. A key strategy for tackling the effect of climate change

will require the maintenance of ecological resilience—that is,

the capacity of an ecosystem to withstand or recover from dis-

turbance [86]. For many freshwater species, this will require

maintenance of natural connectivity between freshwater habitats

allowing for distributional shifts in response to changing

environmental conditions. Two-thirds of Australian crayfish

species are at risk from climate-mediated threats, a threat that is

exacerbated by poor connectivity between areas of suitable habi-

tat. However, identifying species most at risk is impeded by a

lack of data on species’ thermal limits and environmental

parameters (e.g. moisture availability and temperature) [87].

Studies are needed to establish thermal tolerances in crayfish,

whether thermal stress is already evident in Australian species,

and establish current environmental parameters (primarily

temperatures) for a representative selection of Australian ‘indi-

cator’ species. These indicator species should include ‘at risk’

species from the various genera, and include the CR species of

Euastacus that have been previously identified as ancient ‘climate

refugees’ [52]. It would be prudent to develop management

plans for the most CR species, and the need to consider maintain-

ing captive populations and/or the relocation of species to more

suitable habitats might be unavoidable given the nature and scale

of the threats. With climate change now identified as one of the

most significant threats affecting Australian freshwaters, devel-

oping baseline levels for a range of freshwater environmental

parameters has been identified as a research priority [6,87–90].

Without action, it is predicted that climate change will increase
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in extent and intensity over the next century [91], and so many of

the research gaps discussed here need to be considered in other

freshwater biodiversity hotspots. Without efforts to address

these data gaps, identification of ‘at risk’ species will be difficult

and will limit future efforts to protect the ecological integrity

of freshwaters.

This study highlights the major research gaps that hamper

effective conservation planning for crayfish, many of which

would positively benefit a range of freshwater taxa. Conserva-

tion planning needs to shift from a reactive to proactive

approach if we are to safeguard freshwater systems against

anthropogenic environmental damage.
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