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Abstract

Background: Individuals who rapidly develop hyperthermia during heat exposure (heat-intolerant) are vulnerable to heat
associated illness and injury. We recently reported that heat intolerant mice exhibit complex alterations in stress proteins in
response to heat exposure. In the present study, we further explored the role of genes and molecular networks associated
with heat tolerance in mice.

Methodology: Heat-induced physiological and biochemical changes were assessed to determine heat tolerance levels in
mice. We performed RNA and microRNA expression profiling on mouse gastrocnemius muscle tissue samples to determine
novel biological pathways associated with heat tolerance.

Principal Findings: Mice (n = 18) were assigned to heat-tolerant (TOL) and heat-intolerant (INT) groups based on peak core
temperatures during heat exposures. This was followed by biochemical assessments (Hsp40, Hsp72, Hsp90 and Hsf1 protein
levels). Microarray analysis identified a total of 3,081 mRNA transcripts that were significantly misregulated in INT compared
to TOL mice (p,0.05). Among them, Hspa1a, Dnajb1 and Hspb7 were differentially expressed by more than two-fold under
these conditions. Furthermore, we identified 61 distinct microRNA (miRNA) sequences significantly associated with TOL
compared to INT mice; eight miRNAs corresponded to target sites in seven genes identified as being associated with heat
tolerance pathways (Hspa1a, Dnajb1, Dnajb4, Dnajb6, Hspa2, Hspb3 and Hspb7).

Conclusions: The combination of mRNA and miRNA data from the skeletal muscle of adult mice following heat stress
provides new insights into the pathophysiology of thermoregulatory disturbances of heat intolerance.
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Introduction

Excessive heat or physical exertion in hot climates can bring

about heat exhaustion or heatstroke in individuals. This is

becoming more apparent in recent years possibly due to a

combination of factors including climate change and an ageing

population [1]. It is evident that certain individuals seem to be

more vulnerable to excessive physiological strain, and greater

build-up of metabolic heat, which leads to higher core body

temperatures and eventual heat exhaustion or heatstroke [2]. This

group of individuals can be referred to as heat intolerant, and as a

consequence may suffer debilitating physical effects or life-

threatening complications [3].

Skeletal muscle is the largest of the major body tissues compared

to heart and brown adipose tissue, which contributes significantly

to the thermogenic process via central nervous system (CNS)

thermoregulatory network stimulation [4]. Repeated muscle

contraction results in net heat production as a result of inefficient

energy utilization from processes such as calcium ion sequestra-

tion, ATP production from fuel substrate oxidation and cross-

bridge cycling [5]. At the cellular level heat shock proteins (Hsps)

serve crucial roles in counteracting the undesired effects of heat

stress or heatstroke. It is thought that through their molecular

chaperone role and subsequent auto-immune responses, Hsps

provide protection and maintain protein homeostasis within the

cell [6,7]. In addition, Hsp transcription factors, such as heat shock

factor-1 (Hsf1) are also reported to be up-regulated during heat

stress, which thereby implies the involvement of transcriptional

regulation in the various pathways responsible for cellular

maintenance and defense against heat stress [8]. Numerous

studies have identified Hsp70 to be very important in the processes

contributing to heat tolerance [9–11]. However, cell culture

experiments have shown that Hsp70 is not the sole mediator of

heat tolerance [12,13]. As a result other pathways and proteins

must also exist that are able to confer heat tolerance in the absence

of Hsp70.

Currently the pathogenesis of heat stress or heatstroke is poorly

understood. Moreover the molecular mechanisms contributing to

the process of heat tolerance is even less clear. Therefore, it is

important to fully characterize the mechanisms of heat sensitivity

and ultimately develop strategies to both detect and possibly

prevent heat intolerance. We hypothesized that the predisposition
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of heat intolerance is a multi-factorial episode involving dysreg-

ulation of both genetic and adaptive biochemical stress responses.

The expression cascade of mRNAs and micro RNAs (miRNAs)

specific to heat tolerance remain largely unknown in mammalian

skeletal muscle. Understanding such pathways would also be

important to begin understanding rhabdomyolysis, a severe

condition characterized by skeletal muscle degeneration and

muscle enzyme leakage that develops as a result of exercise-

induced heat injuries and malignant hyperthermia [14,15]. To

provide some insight into the associated mechanisms of heat

tolerance, we utilized our mouse model of heat intolerance [16]

combined with whole genome expression and miRNA analyses. In

this work, we showed that acute heat exposure induces more

extensive stress responses in various tissues of INT mice than TOL

mice in terms of Hsps and corticosterone. Our current study

presents targeted pathways that could possibly be activated or

suppressed pharmacologically to prevent the negative effects of

heat exhaustion/stroke.

Materials and Methods

Animal Studies
The experiments were conducted using 18 adult male C57BL/

6J mice (Jackson Laboratories, Bar Harbor, ME). The mice were

10–12 weeks old and weighed 22–26 g, when heat tests were

performed. They were maintained in conventional animal facilities

(,21uC) with ad libitum food and water at the Uniformed Services

University (USU) Laboratory Animal Medicine facility. The USU

Institutional Animal Care and Use Committee approved all

procedures performed on animals.

All experimental mice were surgically implanted with a

temperature transponder (Model G2 E-Mitter, Mini Mitter Corp,

Bend, OR), as previously reported [16]. At least two weeks were

allowed for recovery. At the time of the experimental protocols, all

mice were healthy as evidenced by body weight gains ($presur-

gical levels), normal behavior and no sign of infection. Heat tests

were conducted in an environmental chamber (Model 3950,

Thermo Forma, Marietta, OH). Mice were placed in the chamber

at ,21uC (relative humidity: ,22–30%) a day before experimen-

tation. Heat exposures began the following morning after stable

baseline data were obtained. Food and water were removed from

cages before exposure. All heat tests and telemetry measurements

made to identify TOL and INT mice were performed as described

[16].

Collection and Processing of Tissues
Collection of tissues was performed under anesthesia ,18–22

hours following the heat test. Subsequently, liver, heart (left

ventricle) and gastrocnemius muscle were removed, cleaned in ice-

cold PBS, frozen immediately in liquid nitrogen and stored at

280uC. Tissue samples were homogenized and further processed

before analyses. Briefly, frozen tissues were placed into polypro-

pylene test tubes containing 1 ml of ice-cold PBS and homoge-

nized (5–10 seconds) with a Tissue Tearor homogenizer (Bartles-

ville, OK). The Tissue Tearor was cleaned in a series of fresh PBS

filled beakers before homogenizing each sample tissue. Homog-

enates were centrifuged at 14,000 RPM for 3 min. The

supernatants were obtained and placed into new 1.5 ml Eppendorf

tubes and stored at 280uC. The remaining pellets were

evaporated to dryness and weighed for data correction.

Enzyme-linked Immunosorbant Assay (ELISA)
Tissue homogenate supernatants were measured in duplicates

using commercial ELISA kits sensitive to murine samples. The

following ELISA kits were used for: Hsp72 (Stressgen, Ann Arbor,

MI), Hsp40, Hsp90 (TSZ ELISA, Framingham, MA) and Hsf1

(Enzo Life Sciences, Plymouth, PA) as per the manufacturers’

instructions. The aspirating and washing cycles were completed by

using an automatic microplate washer (Tecan Group Ltd,

Switzerland). Samples were analyzed using the Magellan Data

Analysis System (Tecan, Austria) and normalized to dry tissue

weight (dw). Sensitivity of the assays were; 35, 100, 200 and

60 pg/ml respectively. Intra- and inter-assay coefficients of

variation for ELISA concentrations were less than 5% per assay.

Western Blot Analysis
Homogenized tissue samples (25 ml, equivalent to 50 mg protein)

were subjected to denaturing and reducing gel electrophoresis for

45 minutes in BioRad Tris glycine/SDS buffer (25 mM Tris,

192 mM glycine and 0.1% SDS) on BioRad 4–15% Tris–HCl (10

well/50 ml) precast Mini-Protean TGX gel cassettes by using a

BioRad Mini-Protean Tetra Cell module at 200 V. This was

followed by electrophoretic blotting onto a BioRad nitrocellulose

membrane (0.2 mm) by using a BioRad Trans-Blot Turbo transfer

system (Hercules, CA). Hsp40, Hsp72, Hsp90, and Hsf1 proteins

were detected using primary mouse anti -Hsp40, -Hsp72, -Hsp90

and -Hsf1 antibodies (Santa Cruz, CA) diluted 1:200 respectively

and a horseradish peroxidase-conjugated goat anti-mouse IgG

secondary antibody (GE Life Science, NJ) diluted 1:1000. Selected

blots were re-probed using a b-tubulin monoclonal antibody

diluted 1:200 (Santa Cruz, CA) to assess gel well loading efficiency.

Microarray and Data Analysis
Total RNA was extracted from gastrocnemius muscle tissue by

using a polytron homogenizer (Brinkman, Westbury, NY).

MicroRNA was extracted from total RNA with a miRVana

isolation kit (Ambion, Austin, TX) according to manufacturer’s

instructions; quality was assessed using Agilent 2100 Bioanalyzer

(Santa Clara, CA).

For mRNA expression, cDNA synthesis and amplification were

completed as described by the manufacturer (Illumina Inc., San

Diego, CA). Messenger RNA microarrays were performed using

Illumina Gene Expression BeadChip Arrays (MouseWG-6v2)

technology. Arrays were scanned using the HiScanSQ system and

decoded images analyzed by GenomeStudio gene expression

module (Illumina Inc.). Genomics Suite 6.5 (Partek Inc., St. Louis,

MO) was used for statistical analyses and data visualization, and

this software automatically applies Robust Multi-array Analysis

(RMA) normalization algorithm and performs log2 transformation

for the generated expression values. Additionally, the GenomeS-

tudio report table was used in Hierarchical Clustering Explorer 3.0

(HCEv3) for probe-set filtering, power analysis and Chip-based

unsupervised clustering [17].

For miRNA expression, microarrays were performed using

Affymetrix GeneChip miRNA 2.0 Arrays kit as described by the

manufacturer (Affymetrix, Santa Clara, CA). The arrays were

washed and stained on the Affymetrix Fluidics station 450 and

scanned with an Affymetrix gene chip scanner 3000 7 G and

analysis performed with AffymetrixH miRNA QC tool 1.1.1.0

(Affymetrix, Santa Clara, CA) for data summarization, normali-

zation and microarrays quality control. Expression values were

analyzed using Affymetrix Expression Console Summarization

probe-set algorithm for miRNA using RMA and Detection Above

the Background method. The signal values were filtered based on

absent/present calls. Only miRNAs with present calls .10% were

accepted for further analyses.

Partek Genomics Suite 6.5 was used for the statistics and data

visualization analyses for differentially expressed genes. Partek

Heat Tolerance Pathway Analysis
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Integration Tool (Partek Inc., St. Louis, MO) for mRNA and

miRNA integration was used to determine mRNA targets for

miRNA seed sequences. For all microarray data one-way ANOVA

and t-test were applied to verify significance of the comparative

results with p#0.05 being considered significant for further

analyses. All original microarray data are deposited in the NCBI

GEO database (accession number: GSE48271).

Pathway and Network Analysis
To determine significant molecular pathways and networks we

used Ingenuity Pathways Analysis (IPA) software tool (Ingenuity

systems Inc.). IPA generates networks for differentially expressed

genes that can be related to previously known associations between

genes or proteins. Every resulting gene interaction has supporting

literature findings available online. IPA computes a score for each

network according to the fit of the user’s set of significant genes.

The core analysis function was used to interpret mRNA and

miRNA statistically significant microarray data from Partek in the

context of biological processes, pathways, and networks. More-

over, mRNA and miRNA integration networks were created and

analyzed.

Quantitative RT-PCR
RNA was isolated from tissue using RNeasy Mini Kit and

QIAshredder (Qiagen, Valencia, CA), and cDNA templates were

prepared with the Maloney murine leukemia virus reverse

transcriptase directed iScript One-Step RT-PCR system (BioRad,

Hercules,CA). PCR primers for Hspa1a (59-TGGTGCAGTCC-

GACATGAAG-39 and 59-GCTGAGAGTCGTTGAAG-

TAGGC-39), Dnajb1 (59-TTCGACCGCTATGGAGAGGAA-39

and 59-CACCGAAGAACTCAGCAAACA-39), Dnajb4 (59-AAA-

GAGGTCGCAGAAGCGTAT-39 and 59-

TCTCCGTGGAAAGTGTACCTG-39), Dnajb6 (59-CCGAG-

GAAATAGAAGCCGAGG-39 and 59-ACCTAGTGACC-

CAAATGGAGT-39), Hspa2 (59-GCGTGGGGGTATTCCAA-

CAT-39 and 59-TGAGACGCTCGGTGTCAGT-39), Hspb3 (59-

GACCCCAGTGCGTTATCAGG-39 and 59-GGCTTTACT-

CAGGTCCTCGAT-39) and Hspb7 (59-GAGCATGTTTTCA-

GACGACTTTG-39 and 59-CCGAGGGTCTT-

GATGTTTCCTT-39) were synthesized by the Genomics Core

at the Biomedical Instrumentation Center (USU, MD) and utilized

for quantitative RT-PCR. Relevant TaqMan miRNA Assay

probes were obtained from Life Technologies and used per

manufacturers’ instructions (Grand Island, NY). Real time RT-

PCR was performed for 40 cycles using the Bio-Rad iCycler iQ

real time PCR thermocycler and iScript SYBR green PCR

supermix (Hercules, CA). Quantification of the RT-PCR products

normalized to glyceraldehyde-3-phosphate dehydrogenase

(GAPDH) expression was performed using iCycler iQ data

analysis software and comparative CT method.

Data Processing and Statistical Analysis
Non-microarray data are expressed as mean 6 SEM. Data

were analyzed by a paired Student’s t-test. The results were

considered significant at p#0.05.

Results

Temperature and Biochemical Profile of Heat Tolerance
in Mice

TOL and INT mice were identified as previously described

using our heat exposure test [16]. From the 18 mice tested we

identified six TOL and six INT mice, which exhibited specific

group core body temperature profiles during the heat test as shown

in Figure 1A and B. The remaining six mice were classified as

moderately tolerant (MT) based on their thermal responses.

Overall the TOL mice group had a slower hyperthermic rate and

significantly (p,0.05) lower peak core temperature than the INT

mice (Figure 1A and B). To further verify stress-related changes

associated with heat tolerance, protein levels of Hsp90, Hsp72,

Hsp40, and Hsf1 were selectively compared in heart, liver and

gastrocnemius muscle of TOL and INT mice 18–22 hours

following heat exposure. As determined by ELISA (Figure 2A)

TOL mice had significantly lower Hsp90 and Hsp72 protein levels

in heart, liver and gastrocnemius muscle respectively (Hsp90: 54,

47 and 48%, p,0.05; Hsp72: 41, 39 and 42%, p,0.05), relative

to INT mice. In contrast, TOL mice had significantly higher

Hsp40 and Hsf1 protein levels (Hsp40: 92, 104 and 106%,

p,0.05; Hsf1: 159, 103 and 137%, p,0.05) in heart, liver and

gastrocnemius muscle respectively relative to INT mice. These

patterns of Hsp90, Hsp72, Hsp40 and Hsf1 protein expression

were also confirmed by Western blot analysis in gastrocnemius

muscle tissue samples (Figure 2B).

Figure 1. Temperature profiles associated with TOL and INT
mice in response to heat exposure. (A) Representative tracings of
animal core temperature before, during and after heat exposure. The
signals were recorded simultaneously in real-time from a single
experiment. The ambient temperature (Ta) was obtained inside an
environmental chamber. (B) Average peak core temperature of TOL and
INT mice during heat exposure experiments. *p,0.05 for differences
(mean 6 SEM, n = 6) between TOL and INT mice groups.
doi:10.1371/journal.pone.0072258.g001

Heat Tolerance Pathway Analysis
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Figure 2. Hsp90, Hsp72, Hsp40 and Hsf1 protein levels in heart, liver and gastrocnemius muscle tissues of TOL and INT mice
following heat stress experiment. (A) Analysis performed using ELISA. *p,0.05 for differences (mean 6 SEM, n = 6) between TOL and INT mice
groups. (B) Illustrative Western blot image comparing protein expression in gastrocnemius muscle tissue of TOL and INT mice (n = 3).
doi:10.1371/journal.pone.0072258.g002

Heat Tolerance Pathway Analysis
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Microarray Expression Analysis of Heat Tolerance in Mice
A microarray analysis comparing gastrocnemius muscle tissue

from TOL and INT mice groups (n = 6 per group) was conducted,

and 3,081 genes were identified as being significantly (p,0.05)

different in TOL mice compared to INT mice (Figure 3A and

Table S1). The majority of the genes (91%) had less than a 1.5-fold

difference and only about 1% of genes had more than a two-fold

difference in expression levels. However seven genes with links to

the thermal response were selected based on fold change and

significance (Figure 3B). From these seven genes only the mRNA

levels of three genes (Hspa1a, Dnajb1 and Hspb7) for the TOL

group showed at least a two-fold difference compared to INT

mice. All seven selected candidate genes identified using micro-

array data were validated using real-time quantitative RT-PCR

(Figure 4A). In addition all three genes: Hspa1a, Dnajb1 and

Hspb7 were validated to have mRNA levels greater than a two-

fold difference between TOL and INT mice, as shown initially by

microarray data. We also examined miRNA expression using

microarrays. Sixty-one distinct miRNA seed sequences were

identified as being significantly (p,0.05) different for TOL

compared to INT mice (Table S2). All miRNA had less than

1.3-fold difference in expression levels. Combined mRNA and

miRNA microarray data integration identified eight miRNA seed

sequences corresponding significantly (p,0.05) to target sites of

selected genes associated with the thermotolerance process

(Figure 3B). In particular miRNA seed sequences miR-199a-3p

and miR-34a-5p were associated with highest-ranking fold change

genes Hspa1a and Dnajb1. These eight miRNA seed sequences

were validated using real-time quantitative RT-PCR (Figure 4B).

Analysis of Molecular Pathways in Heat Tolerant Mice
Figure 5 shows the genetic networks associated with TOL mice

as defined by pathway analysis on the 3,081 genes found to be

differentially expressed. The pathway analysis performed on our

study data showed that the genes Hspa1a and Dnajb1 were

significantly (p,0.05) up-regulated and to the greatest extent

within the network by more than eight- and five- fold, respectively

(Figure 5). In addition, pathway analysis was performed on the two

miRNA seed sequences most relevant to TOL mice. Figure 6

shows the IPA-generated networks associated with miRNA seed

sequences miR-199a-3p and miR-34a-5p. Dnajb1 was associated

with seed sequence miR-199a-3p (Figure 6A) whereas both

Dnajb1 and Hspa1a were associated with seed sequence miR-

34a-5p (Figure 6B).

Discussion

Inflammatory cytokines and their associated proteins together

with Hsps serve a significant role in mediating the body’s response

to heat stress and subsequent prognosis [18]. Skeletal muscle,

which comprises about 40% of body weight, is very important for

maintaining thermal homeostasis [4]. We recently reported that

INT mice (categorized based on their overall thermal responses to

heat stress) have significantly higher Hsp72 and Hsp90 proteins in

skeletal muscle 18–22 hours following heat exposure, compared to

TOL mice [16]. The rapid synthesis of heat shock proteins is a

primary cellular defense against acute heat/inflammatory insults

[6,8]. Differential activation of muscle stress proteins between

TOL and INT mice, which likely is one of the mechanisms for

developing cellular inflammatory resistance and heat tolerance,

remains poorly understood. In the present study, we compared

gene mRNA and miRNA expression profiles in skeletal muscle of

TOL mice and INT mice to identify possible molecular networks

and pathways contributing to heat tolerance.

It is generally understood that under heat stress, Hsf1 mediates

induction of Hsp gene expression [19,20]. However, differential

expression of other pathways and proteins that regulate Hsps

might explain the dissimilar physiological and biochemical profiles

of TOL and INT mice [21]. We demonstrate that heat intolerance

in mice is associated with differential expression of Hsp72, Hsp40,

Hsp90 and Hsf1 protein levels in major organs/tissues following

heat exposure as well as higher peak core temperatures during

heat exposure (see Figures 1 and 2) [16]. This suggests that under

heat stress TOL mice may possibly have a novel gene-specific

transcriptional regulation of Hsps that produces a higher

thermogenic threshold compared to INT mice. Microarray data

shown in Figure 3 identified 3,081 genes differentially expressed in

TOL mice compared to INT mice (Table S1). However, only 1%

of these genes differed more than two-fold in expression levels. To

further refine this list of genes associated with heat tolerance we

focused on genes known to interact biologically in thermoregula-

tory pathways, namely Hsps [13,21]. This produced a list of three

high ranking genes (Hspa1a, Dnajb1 and Hspb7), with two of

these genes (Hspa1a and Dnajb1) having the highest fold-change

signal of the entire pool, as determined by microarray analysis.

Other genes from the Hsp category were also differentially

expressed in TOL mice compared to INT mice, albeit to a lesser

extent (,1.5-fold), and quantitative RT-PCR demonstrated up-

regulation of Hspa1a and Dnajb1 and down-regulation of Hspb7

in TOL mice relative to INT mice. Our search to find networks

describing functional relationships between gene products based

on known interactions reported in the literature demonstrated that

only Hspa1a and Dnajb1 are differentially expressed by more than

2.5-fold. The major contribution of these two genes to heat

tolerance mechanisms have been previously reported, but have not

been directly linked to processes involving skeletal muscle

[8,12,13,21]. Further studies will be needed to investigate these

genes in more detail for their direct influence on mechanisms

contributing to heat tolerance/thermoregulation.

The Hspa1a gene is the key component of the Hsp70 family,

which is both expressed under normal conditions and substantively

induced after heat stress following Hsf1 stimulated transcription of

the gene [22,23]. Immediate increases in the molecular chaperone

Hsp70 are supposed to provide protection from the effects of heat

stress [8,9]. Our microarray data show that Hspa1a is the most

preferentially up-regulated gene in skeletal muscle tissue of TOL

mice. However INT mice have higher prolonged Hsp72 protein

levels. This would suggest both the expression levels and altered

processing of this gene might account for the observed differences

between TOL and INT mice. Overall, abnormal regulation of

these networks and genes could have important biological

consequences in the skeletal muscle of heat sensitive individuals.

Genetic variations in the Hspa1a gene have been previously

described to affect Hspa1a protein synthesis and produce

susceptibility towards certain diseases such as hypertension [24],

ischemic stroke [25] and coronary heart disease [26]. Thus genetic

variations in the Hspa1a gene or its transcription factor Hsf1

(polymorphisms of the regulatory region and/or epigenetic

differences) could account for the differences in heat tolerance

between TOL and INT mice. Additional studies will be required

to address this issue.

Members of the Hsp40 family of genes are specifically up-

regulated in TOL compared to INT mice, and our data

demonstrate that Dnajb1 has the second highest fold change

value overall. Dnajb1 is a major Hsp40 member protein, which

serves as a co-chaperone by interacting with and regulating Hsp70

function [27]. Dnajb1 recognizes substrate proteins and facilitates

the ATPase activity of Hsp70 proteins within the cytosol [28].

Heat Tolerance Pathway Analysis
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Figure 3. Gene expression profiles in gastrocnemius muscle tissue of TOL vs. INT mice. (A) Cluster analysis of microarray data from TOL
(blue) and INT (yellow) mice groups. Here all genes that significantly changed were included in the analysis (p,0.05, n = 3,081). Results were
generated using Partek Genomics Suite. The color code for the signal strength in the classification scheme is shown in the panel below. Induced
genes are indicated by shades of red and repressed genes are indicated by shades of blue. (B) List of most highly changed genes with fold change
and p-value significance relevant to heat tolerance pathways in TOL mice and their associated miRNA seed sequences as determined using
microarray data analysis (p,0.05, n = 61).
doi:10.1371/journal.pone.0072258.g003

Heat Tolerance Pathway Analysis
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Thus increased expression of Dnajb1 proteins would be beneficial

by promoting Hsp70 activation and protection against heat stress,

as is the case with TOL mice. Interestingly, other studies have

associated Dnajb1expression to tumor suppression in certain types

of lung cancer [29].

Small Hsps, such as the Hspb family, are thought to be involved

in cellular pathways accommodating protein folding and degra-

dation [30,31]. Members of the Hspb family interact with Hsp70

proteins and mainly serve as chaperones and/or protectors of the

cytoskeleton [30,32]. Differential expression of Hspb7 proteins,

which localize within the cytosol and associate with myofibrils in

skeletal and cardiac muscle cells [33,34], has been associated with

conditions such as sporadic heart failure [35] and acute coronary

syndrome [36]. In the present study we showed Hspb7 gene

Figure 4. Validation of differential gene expression in gastrocnemius muscle tissue using quantitative RT-PCR. (A) mRNA expression
of genes selected to be important in the heat tolerance pathways of TOL versus INT mice. *p,0.05 for differences (mean 6 SEM, n = 6) between TOL
and INT mice groups. (B) miRNA expression of target seed sequences determined to be important in the heat tolerance pathways of TOL mice.
*p,0.05 for differences (mean 6 SEM, n = 6) between TOL and INT mice groups.
doi:10.1371/journal.pone.0072258.g004

Heat Tolerance Pathway Analysis
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expression to be preferentially down-regulated in skeletal muscle of

TOL mice. As demonstrated previously, heat stress is associated

with a tremendous increase in cardiac workload [16]. Thus, it is

possible that Hspb7 expression in the heart may have a role in heat

tolerance. Examining the hearts of TOL and INT mice for shared

biochemical pathways as we did for skeletal muscle would be

needed to clarify this possibility.

Single stranded, non-protein coding, small RNAs known as

miRNAs have emerged as critical regulators of cell differentiation,

identity and maintenance [37,38]. As part of the RNA-induced

silencing complex (RISC) miRNAs target mRNA transcripts

mainly within the 39UTR to promote mRNA degradation and/or

translational repression [39]. Nucleotides 2–8 from the 59 end of

the mature miRNA (seed sequence region) are important for

targeting mRNA [40]. Each miRNA can target up to hundreds (or

thousands) of mRNAs in vivo and therefore potentially regulate

multiple biological pathways [41]. Recent research studies have

confirmed that in certain conditions miRNAs have the ability to

regulate the expression levels of Hsps such as Hsp60 and Hsp70 in

cardiomyocytes and skeletal muscle respectively [42,43]. As such

we conducted miRNA expression microarrays on our gastrocne-

mius muscle tissue samples to examine other mechanisms involved

in regulating heat tolerance. Sixty-one distinct miRNAs differed

significantly between TOL and INT mice (Table S2). However, all

miRNA had less than a 1.3-fold difference in expression.

Integration of these data (Partek analysis) with the mRNA

Figure 5. Significant gene networks in gastrocnemius muscle tissue associated with TOL mice. IPA-generated pathways important for
heat tolerance with individual gene fold change and p-value significance. Both upregulated (red) and downregulated (green) genes were included in
the analysis. Relationships are primarily due to co-expression, but may include phosphorylation/dephosphorylation, proteolysis, transcription,
binding, inhibition, activation/deactivation, and biochemical modification. Only Hspa1a and Dnajb1 are differentially expressed by more than 2.5-fold
within this network.
doi:10.1371/journal.pone.0072258.g005
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microarray data identified 8 miRNA seed sequences that

corresponded significantly to the Hsps listed in Figure 3B. Only

seed sequences for miR-199a-3p and miR-34a-5p targeted the top

two ranked genes Hspa1a and Dnajb1 and, their respective up-

regulation and down-regulation in TOL mice were validated using

quantitative RT-PCR. Previous studies have linked miR-199a-3p

dysregulation to tumor progression in breast and liver carcinoma

[44,45] and susceptibility to hepatocyte injury [46], whereas miR-

34a-5p dysregulation has been associated with the muscle

condition Myotonic Dystrophy [47]. To fully evaluate how these

miRNAs specifically relate to heat tolerance/thermoregulation in

skeletal muscle, their individual roles within the pathways must be

studied. Examples of the pathways important for heat tolerance

are shown in Figures 5 and 6.

In conclusion, our study provides a detailed investigation into

the differentially expressed genes and gene networks likely to be

responsible for heat tolerance/thermoregulation in skeletal muscle

in vivo. Genes such as Hspa1a, Dnajb1 and Hspb7 have been

determined to contribute the most to heat tolerance within our

system. Further studies are needed to confirm the importance of

such genes and their respective miRNAs in the regulation of heat

tolerance. Where these same molecular pathways would generalize

to human thermoregulation is under investigation. Ultimately,

such information will lead to the targeted design of more effective

strategies for both diagnosing and treating heat sensitive individ-

uals pre-disposed to heat-related injuries.

Supporting Information

Table S1. List of 3,081 genes identified using micro-
array to be differentially expressed in TOL mice
compared to INT mice with respective fold change and
p value of significance.
(DOCX)

Table S2. List of 61 miRNA seed sequences identified
using microarray to be differentially expressed in TOL
mice compared to INT mice with respective fold change
and p value of significance.
(DOCX)
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