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ABSTRACT

Stem cell antigen-1 (Sca-1) is used to isolate and characterize tumor initiating 
cell populations from tumors of various murine models [1]. Sca-1 induced disruption of 
TGF-β signaling is required in vivo tumorigenesis in breast cancer models [2, 3-5]. The 
role of human Ly6 gene family is only beginning to be appreciated in recent literature 
[6-9]. To study the significance of Ly6 gene family members, we have visualized one 
hundred thirty gene expression omnibus (GEO) dataset using Oncomine (Invitrogen) 
and Georgetown Database of Cancer (G-DOC). This analysis showed that four different 
members Ly6D, Ly6E, Ly6H or Ly6K have increased gene expressed in bladder, brain 
and CNS, breast, colorectal, cervical, ovarian, lung, head and neck, pancreatic and 
prostate cancer than their normal counter part tissues. Increased expression of Ly6D, 
Ly6E, Ly6H or Ly6K was observed in sub-set of cancer type. The increased expression 
of Ly6D, Ly6E, Ly6H and Ly6K was found to be associated with poor outcome in 
ovarian, colorectal, gastric, breast, lung, bladder or brain and CNS as observed by KM 
plotter and PROGgeneV2 platform. The remarkable findings of increased expression of 
Ly6 family members and its positive correlation with poor outcome on patient survival 
in multiple cancer type indicate that Ly6 family members Ly6D, Ly6E, Ly6K and Ly6H 
will be an important targets in clinical practice as marker of poor prognosis and for 
developing novel therapeutics in multiple cancer type.

INTRODUCTION

The lymphocyte antigen-6 (Ly6) complex, a group 
of alloantigens, was first discovered in mice approximately 
40 years ago on lymphocytes [3, 4]. Ly6 family members 
are evolutionary conserved and have been mapped to 
human chromosome 8, in particular, the 8q24.3 locus, 
which is syntenic to murine chromosome 15 [9, 10]. The 
founding Ly6 member CD59 was identified in human 
lymphoid cells with a role in the complement membrane 
attack complex and T cell activation [11]. To date, 20 
human Ly6 proteins, ranging from 11-36 kDa, have been 
identified and categorized as either transmembrane or 
secretory based on the availability of a GPI-anchored 

signal sequence [9]. Ly6 family is located on chromosome 
8q24 alongside c-Myc. The somatic copy number gain in 
8q has been associated with most prevalent copy number 
gain in multiple cancer types [12, 13]. Ly6E and Ly6K 
has been implicated in development of novel therapeutics 
in multiple cancers [7, 8, 14, 15]. We have previously 
shown that increased levels of Ly6A/E (Sca-1) promote 
breast tumorigenesis via disruption of TGF-β signaling 
and suppression of GDF10 expression in mouse models 
[2]. GDF10 has been shown to regulate epithelial to 
mesenchymal transition, growth and invasion in oral 
squamous cell carcinoma [16]. These finding suggest that 
Ly6 genes family members have important role multiple 
cancer but a comprehensive analysis of multiple members 
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of Ly6 gene family and its relation to cancer patient 
survival is lacking.

Here we evaluate the importance and significance 
of novel Ly6 family in cancer prognosis and treatment 
using publically available datasets of gene expression 
micro array analysis coupled with clinical outcome 
information. To study the status of Ly6D, Ly6E, Ly6H 
and Ly6K mRNAs in human normal and cancer tissues in 
one-hundred and thirty gene expression omnibus (GEO) 
dataset using Oncomine (Invitrogen) or Georgetown 
Database of Cancer (G-DOC). The expression status 
of Ly6D, Ly6E, Ly6H and Ly6K in caner tissue was 
correlated with patient outcome using KM plotter and 
PROGgeneV2 platform.

RESULTS

Increased expression of Ly6D in multiple cancers

To examine the status of Ly6D in human cancer, 
we used Oncomine or G-DOC to analyze gene expression 
omnibus (GEO) datasets. The data summarized in Table 1 
showed a significant increased expression of Ly6D in 
bladder cancer (n=150) than normal tissues (n=57) in 
Sanchez-Carbayo [17] and Dryskjot [18] studies. Ly6D 
mRNA expression was increased significantly in brain 
cancer (n=131) than normal tissues (n=23) in Sun study 
[19]. Ly6D mRNA expression was increased significantly 
in breast cancer (n=1597) than normal tissues (n=153) 
in Curtis study [20] and Lin study [21]. Ly6D mRNA 
expression was increased significantly in head and neck 
cancer (n=56) than normal tissues (n=41) in Estilo 
[22], He [23] and Frierson [24] studies. Ly6D mRNA 
expression was increased significantly in gastric cancer 
(n=31) than normal tissues (n=19) in Cho [25] study. 
Ly6D mRNA expression was increased significantly 
in lung cancer (n=453) than normal tissues (n=244) 
in Landi [26], Selamat [27], Su [28], Okayana [29], 
Bhattacharjee [30], Hou [31], Wachi [32] studies. Ly6D 
mRNA expression was increased significantly in ovarian 
cancer (n=221) than normal tissues (n=18) in Wachi 
[32], Welsh [33], Hendrix [34] and Bonome [35] studies. 
Ly6D mRNA expression was increased significantly in 
pancreatic cancer (n=75) than normal tissues (n=55) in 
Pei [36] and Badea [37] studies. Ly6D mRNA expression 
was increased significantly in colorectal cancer (n=369) 
than normal tissues (n=150) in The Cancer Genome Atlas 
(TCGA), Sabates-Bellver [38], Kaiser [39], Gaedcke 
[40] and Skrzypczak [41] studies. Ly6D mRNA was 
increased significantly in Kidney cancer (n=53) than 
normal tissues (n=28) in Jones [42] and Yusenko [43] 
studies.

These results show that Ly6D expression was 
significantly increased in bladder, brain and CNS, breast, 
head and neck, gastric, lung, ovarian, pancreatic, colorectal 
and kidney cancer than their counterpart normal tissues.

The data summarized in Table 2 showed that 
Ly6D mRNA expression was increased significantly in 
subtypes of multiple cancers. Ly6D mRNA expression 
was significantly higher in superficial bladder cancer 
(n=179) than infiltrating bladder cancer (n=175) in 
Sanchez-Carbayo [17], Stransky [44] and Lee [45] 
studies. Ly6D mRNA expression was significantly 
higher in medulloblastoma (n=60) than rhabdoid tumor 
(n=5) Pomeroy [46] study. Ly6D mRNA expression was 
significantly increased in triple negative breast cancer 
(TNBC) (n=700) compared to 2667 sample of non-TNBC 
(n=2667), grade 3 (n=47) than grade 2 (n=27), grade N1 
(n=190) than grade N0 (n=137), tumors with p53 mutation 
(n=130) than p53 wildtype tumors (n=261), tumors with 
BRCA1 mutation (n= 38) than BRCA1 wildtype tumors 
(n=157), ERBB2 positive (n=92) than ERBB2 negative 
(n=48) tumors, basal type (n=16) than luminal (n=27) in 
The Cancer Genome Atlas (TCGA) (Unpublished, NCI), 
Stickeler [47], Minn [48], Waddell [49], Gluck [50], Bild 
[51], Kao [52], Bittner (unpublished, GSE2109), Farmer 
[53], Korde [54], Richardson [55], Esserman [56], Chin 
[57], Ginestier [58], vantVeer [59], Curtis [60], Ivshina 
[61], Bonnefoi [62] and Hatzis [63] studies. Ly6D mRNA 
expression was significantly upregulated in microsatellite 
instability in gastric and colorectal cancer as seen by 
D’Errico [64] and Jorissen [65] studies. High Ly6D 
mRNA expression was also correlated in more aggressive 
subsets of cervical cancer, esophageal and kidney cancer 
in Bittner (unpublished, GSE2109), Pyeon [66], TCGA 
[67], Kimchi [68] studies. Interestingly, in case of breast 
cancer depicted in Table 2, 14 studies show that Ly6D 
is significantly increased in TNBC while only one study 
show it is higher in ERBB2+ cancer compared to ERBB2- 
tumors. This suggests that while Ly6D is predominantly 
associated with TNBC tumor.

These results show that Ly6D expression was 
significantly increased in subtypes of bladder, brain and 
CNS, breast, pancreatic, gastric, cervical, colorectal, 
esophageal and kidney cancer.

High Ly6D expression and survival outcome in 
multiple cancers

Table 2 also shows that high Ly6D mRNA 
expression in brain cancer was significantly correlated 
with decreased one-year survival (dead, n=22 vs alive, 
n=100) in Pomeroy [46] and Phillips [69] studies. High 
Ly6D mRNA expression in pancreatic cancer was 
significantly correlated with decreased three-year survival 
(dead, n=19 vs alive, n=5) in Collisson [70] study. High 
Ly6D mRNA expression in breast cancer was significantly 
correlated with decreased three-year metastasis free 
survival (metastasis, n=79 vs metastasis free, n=85), 
decreased five-year metastasis free survival (metastasis, 
n=172 vs metastasis free, n=14), decreased three-year 
survival (dead, n=73 vs alive, n=496) decreased five-year 
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Table 1: Ly6D mRNA expression in normal and tumor tissue (n=number of samples) of multiple cancer types

Type of cancer Reference N (Normal) N (Cancer) Fold change P-value

Bladder
[17] 48 

28 (Superficial) 39.50 3.5E-12
81 (Infiltrating) 6.63 2.6E-06

[18] 9 
28 (Superficial) 3.30 5.5E-04
13 (Infiltrating) 3.17 8.0E-03

Brain and CNS [19] 23
50 (Oligodendroglia) 1.27 1.3E-02

81 (Glioblastoma) 1.20 3.6E-02

Breast
[20] 144

32 (Medullary) 1.58 2.0E-03
1556 (Invasive ductal) 1.03 5.0E-03

[21] 9 9 (Cancer) 1.21 1.5E-02

Head and neck  
[22] 26 (Tongue) 31 (Tongue squamous) 7.56 4.5E-05
[23] 9 (Thyroid) 9 (Thyroid papillary) 1.23 4.0E-03
[24] 6 (Salivary) 16 (Salivary adenoid) 4.56 2.6E-02

Gastric [25] 19 31 (Adeno) 1.25 8.0E-03

Lung 

[26] 49 58 (Adeno) 1.43 5.1E-04
[27] 58 58 (Adeno) 1.11 8.0E-03
[28] 30 27 (Adeno) 2.29 1.0E-03
[29] 20 226 (Adeno) 3.52 2.2E-07
[30] 17 21 (Squamous) 12.71 2.0E-03
[31] 65 27 (Squamous) 7.18 2.7E-06
[32] 5 5 (Squamous) 3.28 3.7E-02

Ovarian
[33] 4 28 (Papillary ) 1.07 1.0E-06
[34] 4 8 (Clear cell adeno) 1.37 2.7E-02
[35] 10 185 (Cancer) 1.17 8.4E-04

Pancreatic
[36] 16 36 (Cancer) 3.98 2.7E-06
[37] 39 39 (Ductal adeno) 1.50 2.9E-02

Colorectal 

TCGA

19 29 (Colon Mucinary 
adeno) 5.88 2.2E-07

3 24 (Cecum adeno) 3.35 3.2E-07

3 6 (Rectal Mucinary 
adeno) 3.22 1.1E-02

3 60 (Rectal adeno) 2.78 9.4E-08
19 102 (Colon adeno) 2.15 2.4E-12

[38] 9 25 (Colon adeno) 2.25 4.0E-03

[39] 5 13 (Colon Mucinary 
adeno) 1.62 5.0E-03

[40] 65 65 (Rectal adeno) 1.57 1.9E-07
[41] 24 45 (Colon adeno) 1.33 5.2E-04

Kidney
[42] 23 8 (Cancer) 4.22 2.9E-02

[43] 5
19 (Papillary) 2.49 3.0E-03
26 (Clear cell) 1.92 1.2E-02

Ly6D mRNA expression was significantly increased in bladder, brain and CNS, breast, head and neck, gastric, lung, ovarian, 
pancreatic, colorectal, and kidney cancer than their normal counterpart. Data observed using Oncomine (Invitrogen). 
N=number of patient samples. 
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Table 2: Ly6D mRNA expression in subset of multiple cancers 

Type of cancer Reference
Cancer

Fold change P-value
N (Group 1) N (Group 2)

Bladder
[17] 81 (Infiltrating) 28 (Superficial cancer) 5.96 7.6E-05
[44] 32 (Infiltrating) 25 (Superficial cancer) 5.96 7.6E-05
[45] 62 (Infiltrating) 126 (Superficial cancer) 1.75 8.0E-03

Brain and 
CNS

[46]
5 (Rhabdoid Tumor) 60 (Medulloblastoma) 24.87 4.0E-03

40 (Medullo Alive at 1 year) 6 (Dead at 1 year) 3.18 5.9E-04

[69] 60 (Astrocytoma Alive at 
1 year) 16 (Dead at 1 year) 1.27 3.7E-01

Pancreatic [70] 5 (Alive at 3 year)) 19 (Dead at 3 year) 1.46 9.0E-03

Breast

TCGA 250 (Non-TNBC) 46 (TNBC) 5.42 3.1E-12

[47]
24 (Non-TNBC) 8 (TNBC) 8.92 1.2E-02

15 (Grade 2) 16 (Grade 3) 4.08 3.2E-02

[48]
69 (Metastasis free 3 year ) 12 (Metastasis at 3 year) 2.91 3.5E-02

71 (Non-TNBC ) 25 (TNBC) 2.04 1.2E-02

[49]
44 (Non-TNBC) 22 (TNBC) 3.36 8.4E-04

60 (BRCA1 wildtype) 20 (BRCA1 Mutation) 2.02 2.5E-02

[50]
101 (Non-TNBC) 50 (TNBC) 3.22 1.0E-08

72 (TP53 wildtype) 72 (TP53 Mutation) 1.63 6.0E-03

[51]
124 (Alive at 3 year) 27 (Dead at 3 year) 1.90 3.8E-02
60 (Alive at 5 year) 42 (Dead at 5 year) 1.62 3.4E-02

48 (ERBB2 neg) 92 (ERBB2 pos) 1.51 2.0E-02

[52]

295 (Non-TNBC) 32 (TNBC) 3.01 9.7E-04
16 (Metastasis free 3 year) 67 (Metatasis at 3 year) 1.99 3.9E-02

295 (Alive at 3 year) 31(Dead at 3 year) 2.74 9.7E-04
137 (Grade N0) 190 (Grade N1+) 1.48 6.0E-03

[71] 14 (Metastasis free 5 year ) 172 (Metastasis at 5 year) 2.91 1.6E-04
GSE2109 129 (Non-TNBC) 39 (TNBC) 1.79 2.4E-02

[53] 27 (Luminal) 16 (Basal) 2.47 1.0E-03
[54] 39 (Non-TNBC) 21 (TNBC) 2.28 3.9E-04
[55] 19 (Non-TNBC) 18 (TNBC) 2.19 1.2E-02

[56]
74 (Non-TNBC) 24 (TNBC) 2.10 4.8E-04

77 (Alive at 3 year) 15(Dead at 3 year) 2.74 9.7E-04
[57] 87 (Non-TNBC) 19 (TNBC) 1.88 6.0E-03
[58] 12 (Grade 2) 31 (Grade 3) 1.81 1.6E-02
[59] 97 (BRCA1 wildtype) 18 (BRCA1 Mutation) 1.64 6.7E-04
[60] 1340 (Non-TNBC) 211 (TNBC) 1.43 2.0E-03
[61] 189 (TP53 Wildtype) 58 (TP53 (Mutation) 1.49 3.4E-04
[62] 32 (Non-TNBC) 80 (TNBC) 1.43 8.6E-06
[63] 320 (Non-TNBC) 178 (TNBC) 1.41 7.6E-09

Gastric [64] 12 (Microsatellite stable) 14 (Microsatellite 
Instable) 3.94 6.0E-03

Cervical
GSE2109 9 (Adeno) 23 (Squamous) 12.05 2.0E-03

[66] 15 (Stage M0) 4 (Stage M1+) 3.20 1.1E-02

Colorectal

TCGA [67] 24 (Cecum adeno) 20 (Colon Muc adeno) 1.89 6.0E-03

[65]
16 (rectal adeno) 137 (Colon adeno) 1.75 1.2E-02

77 (Microsatellite stable) 78 (Microsatellite 
unstable) 1.45 2.9E-02

[72] 15 (Alive at 5 year) 20 (Dead at 5 year) 1.42 3.9E-02
Esophageal [68] 8 (Precursor) 8 (Cancer) 46.55 4.0E-03

Kidney
TCGA [67] 72 (Clear cell) 16 (Papillary) 4.12 4.0E-03
GSE2109 10 (Grade 2) 6 (Grade 3) 2.02 1.5E-02

Ly6D mRNA expression was significantly increased in subtypes of bladder, brain and CNS, pancreatic, breast, gastric, cervical, colorectal, 
esophageal and kidney cancer. High Ly6D expression was significantly correlated with poor clinical outcome in brain and CNS, pancreatic, 
and colorectal cancer. Data observed using Oncomine (Invitrogen). N=number of patient samples.
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survival (dead, n=42 vs alive, n=60) in Minn [48], Bild 
[51], Kao [52], Bos [71], and Essermann [56] studies.

High Ly6D mRNA expression in breast cancer was 
significantly correlated with poor outcome in five-year 
distant metastasis free survival (low Ly6D, n=818; high 
Ly6D, n=790; HR=1.29, p=0.012, n= number of patient, 
HR=hazard ratio), post progression free survival (low 
Ly6D, n=231; high Ly6D, n=120; HR=1.57, p=9.0E-04), 
relapse free survival (low Ly6D, n=1133; high Ly6D, 
n=2421; HR=1.30, p=2.0E-05) shown by KM plotter and 
five-year relapse free survival (low Ly6D, n=57; high 
Ly6D, n=57; HR=1.48, p=0.006) shown by PROGgeneV2 
(Table S1, Figure 1A).

High Ly6D mRNA expression in colon cancer was 
significantly correlated with poor outcome in relapse 
free survival (low Ly6D, n=25; high Ly6D, n=26; 
HR=1.19, p=0.0469) and overall survival (low Ly6D, 
n=25; high Ly6D, n=26; HR=1.63, p=0.0199) shown by 
PROGgeneV2 (Table S1) and overall survival in 5-year 
overall survival (low Ly6D, n=15; high Ly6D, n=20, 
p=3.9E-02) in Smith study [72] (Table 2).

High Ly6D mRNA expression in lung cancer 
was significantly correlated with poor outcome in five-
year overall survival with no restriction (low Ly6D, 
n=1323; high Ly6D, n=603; HR=1.49, p=1.70E-09) or 
with restriction of lung adenocarcinoma (low Ly6D, 
n=538; high Ly6D, n=181; HR=2.11, p=7.60E-10), 
first progression free survival with no restriction (low 
Ly6D, n=712; high Ly6D, n=270; HR=1.33, p=0.006) 
or with restriction of lung adenocarcinoma (low Ly6D, 
n=345; high Ly6D, n=116; HR=1.71, p=0.001) and 
post progression free survival with restriction of lung 
adenocarcinoma (low Ly6D, n=257; high Ly6D, n=87; 
HR=1.48, p=0.006), by KM plotter and five-year relapse 
free survival with restriction of lung adenocarcinoma (low 
Ly6D, n=112; high Ly6D, n=113; HR=1.38, p=4.00E-04) 
shown by PROGgeneV2 (Table S1, Figure 1B).

High Ly6D mRNA expression in gastric cancer was 
significantly correlated with poor outcome in five-year 
post progression free survival (low Ly6D, n=209; high 
Ly6D, n=432; HR=1.38, p=0.0047) shown by KM plotter 
(Table S1, Figure 1C).

Figure 1: Increased Ly6D mRNA expression in cancer and patient survival. High Ly6D expression leads to poor survival in 
A. breast cancer, B. lung cancer, C. gastric cancer and D. ovarian cancer.



Oncotarget11170www.impactjournals.com/oncotarget

High Ly6D mRNA expression in ovarian cancer was 
significantly correlated with poor outcome in five-year 
post progression free survival (low Ly6D, n=517; high 
Ly6D, n=190; HR=1.22, p=0.049) shown by KM plotter 
(Table S1, Figure 1D).

These data show that high Ly6D expression was 
significantly correlated with poor clinical outcome in brain 
and CNS, pancreatic, and colorectal, breast, colorectal, 
lung, gastric and ovarian cancer.

Increased expression of Ly6E in multiple cancers

To examine the status of Ly6E in human cancer, we 
used Oncomine or G-DOC to analyze gene expression 
omnibus (GEO) datasets. The data in Table 3A shows a 
significant increased expression of Ly6E in bladder cancer 
(n=150) than normal tissues (n=57) in Sanchez-Carbayo 
[17] and Dryskjot [18] studies. Ly6E mRNA expression 
was significantly increased in breast cancer (n=2613) 
than normal tissues (n=235) in TCGA, Radvani [73], 
Curtis [20], Ma [74], Gluck [75], and Zhao [76] studies. 
Ly6E mRNA expression was significantly increased in 
esophageal cancer (n=78) than normal tissues (n=78) in 
Kimchi [68], Hu [77] and Su [78] studies. Ly6E mRNA 
expression was significantly increased in gastric cancer 
(n=89) than normal tissues (n=62) in D’Errico [64], Cho 
[25] and Wang [79] studies. Ly6E mRNA expression was 
significantly increased in pancreatic cancer (n=85) than 
normal tissues (n=60) in Logsdon [80], Badea [37] and 
Pei [81] studies. Ly6E mRNA expression was significantly 
increased in cervical cancer (n=90) than normal tissues 
(n=34) in Scotto [82], Pyeon [66] and Biewenga [83] 
studies. Ly6E mRNA expression was significantly 
increased in colorectal cancer (n=10) than normal tissues 
(n=5) in Skrzypczak [84] study. Ly6E mRNA expression 
was significantly increased in prostate cancer (n=36) 
than normal tissues (n=17) in Tomlins [85] study. The 
data in Table 3B shows a significantly increased Ly6E 
mRNA expression in lung cancer (n=514) than normal 
tissues (n=220) in Okayama [29], Talbot [86], Beer [87], 
Su [28], Wei [88], Selamat [27] and Landi [26] studies. 
Ly6E mRNA expression was significantly increased in 
head and neck cancer (n=396) than normal tissues (n=17) 
Toruner [89], Giordano [90], Ye [91], Peng [92], Peng 2 
[92], He [23], Cromer [93], Estilo [22], Vasko [94], Ginos 
[95] and Frierson [24] studies. Ly6E mRNA expression 
was significantly increased in ovarian cancer (n=396) 
than normal tissues (n=40) in Yoshihara [96], Adib [97], 
TCGA (NCI, unpublished), Welsh [98], Bonome [99] 
and Henedrix [34] studies. Ly6E mRNA expression was 
significantly increased in kidney cancer (n=155) than 
normal tissues (n=68) in Yusenko [43], Beroukhim [100], 
Jones [42], Cutcliffe [101], Gumz [102], and Lenburg 
[103] studies. Ly6E mRNA expression was significantly 
increased in melanoma (n=45) than normal skin (n=7) 
in Talantov [104] study. Ly6E mRNA expression was 

significantly increased in embryonic tumors (n=24) than 
normal testis (n=6) in Korkola [105] study and pleural 
malignant mesothelioma (n=40) than normal samples 
(n=9) of pleura in Gordon [106] study.

These results show that Ly6E expression was 
significantly increased in bladder, breast, esophageal, 
gastric, pancreatic, cervical, colorectal, prostate, lung, 
head and neck, ovarian, kidney, melanoma, embryonic 
cancer than their counterpart normal tissues.

The data in Table 4 shows that Ly6E mRNA 
expression was significantly increased in subtypes 
of multiple cancers. Ly6E mRNA expression was 
significantly higher in superficial bladder cancer (n=28) 
than infiltrating bladder cancer (n=81) and high expression 
of Ly6E was correlated with higher grade (infiltrating grade 
3, n=75 vs infiltrating grade 2, n=6) in Sanchez-Carbayo 
[17] study. Ly6E mRNA expression was significantly 
higher in medulloblastoma with CTNNB1 mutation (n=8) 
than CTNNB1 wildtype tumors (n=38), medulloblastoma 
with CTNNB1 positive by immunohistochemistry (IHC) 
(n=6) than CTNNB1 IHC negative (n=44), tumors with 
MycN amplification (n=14) than tumors not amplified 
for MycN (n=32) in Kool [107], Robinson [108] and 
Janoueix-Lerosey [109] studies. Ly6E mRNA expression 
was significantly higher in esophageal cancer (n=83) than 
precursor (n=23) in Kimchi [68] and Su [78] studies. Ly6E 
mRNA expression was significantly higher in pancreatic 
cancer (n=10) than precursor (n=5) in Logsdon [80] study. 
High expression of Ly6E was correlated with higher grade 
of breast cancer. Ly6E mRNA expression was significantly 
high in ductal N1+ stage (n= 222) than ductal N0 stage 
(n=274) in Bittner (unpublished, GSE2109), Julka [110], 
and Ivshina [61], studies and grade 3 tumor (n=334) than 
grade 1 (n=334) in Loi [111], Buffa [112], Miller [113] 
and Sotiriou [114] studies, grade 3 (n=64) than grade 2 
(n=34) in Bonnefoi [62] study, invasive ductal (n=31) than 
non-invasive ductal (n=3) in Radvanyi [73] study. Ly6E 
mRNA expression was significantly higher in tumors with 
TP53 mutaions (n=130) than tumors with wildtype tumor 
(n=261) and in tumors with BRCA1 mutaions (n=31) 
than tumors with BRCA1 wildtype (n=128) in Ivshina 
[61], Gluck [50], Pawitan [115] studies. (Ly6E) mRNA 
was found significantly increased in TNBC (n=286) than 
non-TNBC (n=1653) in Curtis [60], TCGA (Unpublished, 
NCI), Stickeler [47] and Korde [54] studies.

These results show that Ly6E expression was 
significantly increased in subtypes of bladder, brain, 
esophageal, pancreatic and breast cancer.

High Ly6E expression and survival outcome in 
multiple cancers

Table 4 also shows a high Ly6E mRNA expression 
in bladder cancer was significantly correlated with 
decreased three-year survival (dead, n=33 vs alive, n=19) 
in Lee [45] study.
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Table 3: Ly6E mRNA expression in normal and tumor tissue of multiple cancer types
A. Ly6E is significantly increased in bladder, breast, Esophageal, gastric, pancreatic, cervical, colorectal and prostate 
cancer than their normal counterparts

Type of cancer Reference N (Normal) N (Cancer) Fold change P-value

Bladder
[17] 48

28 (Superficial) 4.64 4.3E-12
81 (Infiltrating) 3.09 2.1E-08

[18] 9
13 (Infiltrating) 2.09 4.7E-04
28 (Syperficial) 1.70 1.8E-04

Breast

TCGA 61

3 (Adeno) 1.42 1.5E-02
76 (Invasive) 1.82 2.4E-08

389( Invasive Ductal) 1.47 1.7E-06
36 (Invasive Lobular) 1.32 1.3E-02

[73] 9
3 (Ductal) 3.25 3.0E-03

3 (Invasive Medulary) 2.17 1.5E-02

[20] 144

32 (Medullary) 2.10 2.9E-05
1556 (Invasive Ductal) 1.55 4.8E-21

46 (Mucinous) 1.65 3.0E-05
10 (Ductal) 1.42 2.1E-02
21(Invasive) 1.35 1.6E-02

148 (Invasive Lobular) 1.15 8.0E-03
90 (Invasive Lobular 

& Ductal) 1.13 4.9E-02

[74] 14 9 (Ductal) 1.18 4.0E-03
[75] 4 154 (Invasive) 1.19 6.0E-03
[76] 3 37 (Invasive Ductal) 1.91 3.6E-02

Esophageal
[68] 8 8 (Adeno) 2.21 2.4E-02
[77] 17 17 (Squamous) 3.00 4.3E-05
[78] 53 53 (Squamous) 1.78 7.7E-13

Gastric

[64] 31 26 (Intestinal Adeno) 9.65 2.3E-12

[25] 19
31 (Diffuse Aden) 3.40 3.5E-07

20 (Intestinal Adeno) 2.94 2.9E-04
[79] 12 12 (Cancer) 2.46 5.0E-03

Pancreatic
[80] 5 10 (Adeno) 3.21 5.3E-04
[37] 39 39 (PD adeno) 3.05 5.2E-16
[81] 16 36 (Tumor) 3.49 2.1E-07

Cervical
[82] 21 32 (Squamous) 2.08 4.1E-04
[66] 8 20 (Cancer) 1.56 7.0E-03
[83] 5 40 (Squamous) 1.37 1.2E-02

Colorectal [84] 10
5 (Adeno carcinoma) 1.84 8.1E-06

5 (Cancer) 2.59 1.8E-05

Prostate [85] 17
24 (Cancer) 1.72 6.0E-03
12 (Prostatic 

Intraepithelial) 1.69 6.0E-03
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B. Ly6E is significantly increased in lung, head and neck, ovarian, kidney, melanoma md embryonic tumors than 
their normal counterparts 
Type of cancer Reference N (Normal) N (Cancer) Fold change P-value

Lung

[29] 20 226 (Adeno) 2.31 8.6E-18

[86] 28 34 (Squamous) 1.86 2.0E-09

[87] 10 86 (Adeno) 1.40 4.0E-03

[28] 30 27 (Adeno) 1.89 4.0E-03

[88] 25 25 (Adeno) 1.55 8.6E-05

[27] 58 58 (Adeno) 1.60 2.3E-05

[26] 49 58 (Adeno) 1.24 9.0E-03

Head and neck

[89] 4(Squamous) 16 (Squamous) 3.43 3.1E-07

[90] 4( thyroid)

26( Thyroid papillary ) 1.74 6.6E-09

10 (Tall ceil papillary) 1.67 3.0E-05

4 (Thyroid anaplastic) 2.22 1.0E-03

[91] 12 (Tongue) 26 (Tongue squamous) 1.27 5.8E-04

[92] 22 (Oral cavity) 57 (Squamous ) 2.22 2.0E-19

[92] 10 (Oral cavity) 112 (Squamous) 1.12 1.1E-24

[23] 9 (Thyroid ) 9 (Thyroid papillary) 2.56 5.3E-05

[93] 4 (Uvula) 34 (Squamous) 1.64 5.2E-04

[22] 26 (Tongue) 31 (Tongue squamous) 3.67 1.9E-08

[94] 4 (Thyroid) 14 (Thyroid papillary ) 2.72 1.0E-03

[95] 13 (Buccal mucosa) 41 (Squamous) 2.70 7.1E-07

[24] 6 (Salivary) 16 (Salivary adenoid) 17.46 3.3E-02

Ovarian

[96] 10 43 (Serous adeno) 3.15 5.5E-08

[97] 4 6 (Serous adeno) 2.31 7.0E-03

TCGA 8 586 (Serous cyst adeno) 2.81 9.1E-05

[98] 4 28 (Serous papillary) 1.25 1.6E-02

[99] 10 85 (Cancer) 1.73 1.8E-04

[34] 4 41 (Serous adeno) 1.27 1.2E-02

Kidney

[43] 5
26 (Clear cell) 4.08 1.4E-07

4 (Wilms) 2.70 7.0E-03

[100] 11 32 (Hereditary Clear cell) 4.37 1.1E-10

[42] 23

8 (Urothelial Carcinoma) 3.00 2.9E-04

23 (Clear cell) 2.26 2.5E-04

11 (Papillary) 1.39 2.8E-02

[101] 3
18 (Wilms) 2.39 5.0E-03

14 (Clear cell Sarcoma) 1.68 3.3E-02

[102] 10 10 (clear cell) 1.64 4.9E-02

[103] 9 9 (Clear cell) 1.63 1.0E-03

Melanoma [104] 7 45 (Cutaneous) 3.02 2.5E-06

Mixed
[105] 6 (Normal testis)

9 (Yolk Sac tumor) 5.32 2.7E-08

15 (Embryonal) 4.74 1.2E-10

[106] 9 40 (Pleural Malignant 
Mesothelioma) 4.45 7.8E-06

Data observed using Oncomine (Invitrogen) and G-DOC. N=number of patient samples
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Table 4: Ly6E mRNA expression in subset of multiple cancers

Type of cancer Reference
Cancer

Fold change P-value
N (Group 1) N (Group 2)

Bladder
[17]

6 (Infiltrating Grade2 ) 75 (Infiltrating Grade 3) 3.23 3.3E-02
81 (Infiltrating) 28 (Superficial) 1.50 9.0E-03

[45] 19 (Alive at 3 years) 33 (dead at 3 years) 1.72 3.9E-02

Brain and CNS

[108] 44 (Medulloblastoma 
CTNNB1 IHC neg)

6 (Medulloblastoma 
CTNNB1 IHC neg) 2.27 2.0E-03

[107] 38 (Medulloblastoma 
CTNNB1 WT)

8 (Medulloblastoma 
CTNNB1 mutation) 3.11 5.9E-05

[109] 32(No MycN 
amplification) 14 (MycN amplification) 1.93 1.1E-02

[116] 56 (Neuroblastoma No 
recurrence 5 year)

46 (Neuroblastoma 
Recurrence 5 year) 1.63 9.4E-06

Esophageal
[68] 8 (Precursor) 8 (Cancer) 2.22 3.6E-02
[78] 15 (Precursor) 75 (Cancer) 1.78 5.0E-03

Pancreatic [80] 5 (Precursor) 10 (Cancer) 3.05 9.4E-06

Breast

GSE2109 94 (Ductal N0) 123 (Ductal N1+) 1.46 4.0E-03
[110] 21 (Ductal N0) 18 (Ductal N1+) 1.46 1.7E-02
[61] 159 (Ductal N0) 81 (Ductal N1+) 1.27 7.4E-04
[111] 147(Grade 1) 136(Grade 3) 1.38 1.1E-02
[112] 42(Grade 1) 65(Grade 3) 1.39 2.0E-02
[111] 14(Grade 1) 24(Grade 3) 1.53 3.1E-02
[113] 67(Grade 1) 54(Grade 3) 1.51 2.1E-05
[114] 64(Grade 1) 55(Grade 3) 1.40 2.0E-03
[62] 34 (Grade 2) 64 (Grade 3) 1.29 3.0E-02
[73] 3 (Ductal) 31(Invasive Ductal) 2.25 1.3E-02
[61] 189 (TP53 wildtype) 58 (TP53 Mutation) 1.30 7.7E-04
[50] 72 (TP53 wildtype) 72 (TP53 Mutation) 1.25 1.0E-02
[115] 128 (BRCA1 wildtype) 31 (BRCA1 Mutation) 1.24 1.5E-02
[60] 1340 (non-TNBC) 211 (TNBC) 1.52 2.9E-21

TCGA 250 (non-TNBC) 46 (TNBC) 1.55 2.0E-05
[47] 24 (non-TNBC) 8 (TNBC) 5.28 5.0E-03
[54] 39 (non-TNBC) 21 (TNBC) 1.51 1.1E-02

[71] 148 (Metastasis free 1 
year) 49 (Metastasis at 1 year) 1.34 2.4E-02

[117] 171 (Metastasis free 3 
year) 19 (Metastasis at 3 year) 1.63 4.0E-03

[52] 32 (Metastasis free 3 
year) 50 (Metastasis at 3 year) 1.64 3.0E-03

[63] 223 (Metastasis free 3 
year) 99 (Metastasis at 3 year) 1.25 4.0E-03

Gastric
[118] 7 (Metastasis free 5 

years) 11 (Metastasis at 5 year) 2.32 1.4E-02

[119] 34 (Alive at 1 year) 12 (Dead at 1 year) 1.25 5.0E-03

Ly6E mRNA expression was significantly increased in subtypes of bladder, brain and CNS, esophageal pancreatic, breast and gastric 
cancer. High Ly6E expression was significantly correlated with poor clinical outcome in bladder, brain and CNS, breast and gastric cancer. 
Data observed using Oncomine (Invitrogen) and G-DOC. N=number of patient samples.
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High Ly6E mRNA expression in neuroblastoma 
was significantly correlated with five-year recurrence free 
survival (recurrence, n=46 vs no recurrence, n=56) in 
Asgharzadeh [116] study. High Ly6E mRNA expression in 
breast cancer was significantly correlated with decreased 
one-year metastasis free survival (metastasis, n=49 vs 
metastasis free, n=148), decreased three year metastasis 
free survival (metastasis, n=168 vs metastasis free, n=426) 
in Bos [71], Schmidt [117], Kao [52] and Hatzis [63] 
studies. High Ly6E mRNA expression in gastric cancer 
was significantly correlated with decreased five-year 
metastasis free survival (metastasis, n=11 vs metastasis 
free, n=7), decreased one-year overall survival (dead, 
n=12 vs alive, n=34) in Forster [118] and Chen [119] 
studies.

High Ly6E mRNA expression in glioma was 
significantly correlated with poor five-year overall survival 
(low Ly6E, n=14; high Ly6E, n=14; HR=2.34, p=0.0026, 
n= number of patient, HR=hazard ratio), shown by 
PROGgeneV2 (Table S2, Figure 2A). High Ly6E mRNA 
expression in breast cancer was significantly correlated 
with poor five-year overall survival with restriction of 
grade 1 breast cancer (low Ly6E, n=75; high Ly6E, n=60; 
HR=3.48, p=0.022) or without restriction (low Ly6E, 
n=646; high Ly6E, n=653; HR=1.4, p=0.007), five-year 
relapse free survival with restriction of grade 1 breast 
cancer (low Ly6E, n=179; high Ly6E, n=129; HR=2.52, 
p=0.001), grade 2 breast cancer (low Ly6E, n=388; high 
Ly6E, n=336; HR=1.53, p=0.001), or without restriction 
(low Ly6E, n=1113; high Ly6E, n=2441; HR=1.32, 
p=1.50E-05), five-year distant metastasis free survival 
(low Ly6E, n=479; high Ly6E, n=1130; HR=1.71, 
p=1.90E-05), five-year post progression free survival 
(low Ly6E, n=99; high Ly6E, n=252; HR=1.43, p=0.018), 
shown by KM plotter. High Ly6E mRNA expression 
in breast cancer was significantly correlated with poor 
five-year overall survival with restriction of estrogen 
receptor positive breast cancer (low Ly6E, n=112; high 
Ly6E, n=113; HR=1.39, p=0.002), with restriction of 
progesterone receptor positive breast cancer (low Ly6E, 
n=112; high Ly6E, n=113; HR=1.39, p=0.002) or without 
restriction (low Ly6E, n=15; high Ly6E, n=16; HR=2.73, 
p=0.02), and five-year distance metastasis free survival 
(low Ly6E, n=112; high Ly6E, n=113; HR=1.44, p=0.000) 
shown by PROGgeneV2 (Table S2, Figure 2B).

High Ly6E mRNA expression in gastric was 
significantly correlated with poor five-year overall 
survival (low Ly6E, n=314; high Ly6E, n=562; HR=2.08, 
p=1.3E-14) shown by KM plotter (Table S2, Figure 2C).

High Ly6E mRNA expression in lung cancer was 
significantly correlated with poor five-year overall survival 
with restriction of stage IIIa cancer (low Ly6E, n=14; 
high Ly6E, n=14; HR=6.82, p=0.0273) and poor five-year 
relapse free survival with restriction of stage IIb cancer 
(low Ly6E, n=22; high Ly6E, n=23; HR=1.97, p=0.029) or 
with restriction of stage 1b cancer (low Ly6E, n=27; high 

Ly6E, n=27; HR=1.7, p=0.046) shown by PROGgeneV2 
(Table S2, Figure 2D).

High Ly6E mRNA expression in ovarian cancer 
was significantly correlated with poor five-year overall 
survival with restriction of Stage4, serous, grade 3 cancer 
(low Ly6E, n=52; high Ly6E, n=51; HR=1.7, p=0.036) 
shown by KM plotter (Table S2, Figure 2E).

High Ly6E mRNA expression in colorectal cancer 
was significantly correlated with poor five-year relapse 
free survival with restriction of age greater than 50 years 
(low Ly6E, n=82; high Ly6E, n=83; HR=1.70, p=0.018) 
or without any restriction (low Ly6E, n=93; high Ly6E, 
n=94; HR=1.77, p=0.0005) shown by PROGgeneV2 
(Table S2, Figure 2F).

These data show that high Ly6E expression was 
significantly correlated with poor clinical outcome in 
glioma, breast, gastric, lung, ovarian and colorectal cancer.

Increased expression of Ly6H in multiple cancers

To examine the status of Ly6H in human cancer, 
we used Oncomine or G-DOC to analyze gene expression 
omnibus (GEO) datasets. As shown in Table 5 we found a 
significant increased expression of Ly6H in brain and CNS 
cancer (n=27) than normal relevant tissue (n=10) in Shai 
[120] and Lee [121] studies. Ly6H mRNA expression was 
significantly increased in esophageal cancer (n=104) than 
normal tissue (n=42) in Hao [122] and Kim [123] studies. 
Ly6H mRNA expression was significantly increased in 
breast cancer (n=2567) than normal tissue (n=209) in 
TCGA (unpublished, NCI), Curtis study [20] and Gluck 
[50] studies. Ly6H mRNA expression was significantly 
increased in Kidney cancer (n=22) than normal tissue (n=8) 
in Yusenko [43] and Cutcliffe [101] studies. Ly6H mRNA 
expression was increased significantly in head and neck 
cancer (n=20) than normal tissue (n=9) in Schlingemann 
[124] and Frierson [24] studies. Ly6H mRNA expression 
was significantly increased in lung cancer (n=47) than 
normal tissues (n=47) in Bhattacharjee [30] and Su [28] 
studies. Ly6H mRNA expression was significantly increased 
in ovarian cancer (n=291) than normal tissues (n=19) in 
Bonome [35] Lu [125] and Hendrix [34] studies.

These results show that Ly6H expression was 
significantly increased in brain and CNS, esophageal, 
breast, kidney, head and neck, lung and ovarian cancer 
than their counterpart normal tissues.

As shown in Table 6, we found that Ly6H mRNA 
expression was significantly increased in subtypes 
of multiple cancers. Ly6H mRNA expression was 
significantly higher in Myc amplified brain and CNS 
cancer (n= 50) than cancer without Myc amplification 
(n= 102) in Wang [79] and Robinson [108] studies. Ly6H 
mRNA expression was significantly higher in estrogen 
receptor (ER) positive breast cancer (n=562) than ER 
negative breast cancer (n=244) in Bittner (Unpublished, 
GSE2109), Wang [126], Stickeler [47] and TCGA 
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Figure 2: Increased Ly6E expression in cancer and patient survival. High Ly6E expression leads to poor survival in A. glioma, 
B. breast cancer, C. gastric cancer, D. lung cancer, E. ovarian cancer and F. colorectal cancer.
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Table 5: Ly6H mRNA expression in normal and tumor tissue of multiple cancer types

Type of cancer Reference N (Normal) N (Cancer) Fold change P-value

Brain and CNS
[120] 7 (White matter) 5 (Astrocytoma) 2.66 7.0E-03

[121] 3 (Neural stem) 22 (Glioblastoma) 1.93 3.8E-02

Esophageal

[122] 14 14 (Barrett’s) 1.73 9.9E-04

[123] 28
15 (Barrett’s) 1.38 6.5E-06

75 (Adeno) 1.29 4.3E-08

Breast

TCGA 61

36 (Invasive Lobular) 2.72 3.6E-15

389 (Invasive Ductal) 2.10 6.4E-24

3 (Male) 3.80 2.5E-02

4 (Mucinous) 6.18 2.2E-02

3 (Invasive Ductal and 
Lobular) 3.10 4.6E-02

7 (Ductal and Lobular) 2.35 3.0E-03

[20] 144

10 (Ductal) 1.24 1.2E-02

46 (Mucinous) 1.61 1.4E-09

32 (Medullary) 1.20 2.0E-04

1556 (Invasive Ductal) 1.35 1.0E-55

148 (Invasive Lobular) 1.37 2.3E-19

90 (Invasive Ductal 
and Lobular) 1.34 7.9E-18

3 (Benign) 1.08 3.0E-02

14 (Cancer) 1.18 4.6E-04

5 (Phyllodes) 2.08 1.6E-02

67 (Tubular) 1.36 7.0E-13

[50] 4 154 (Invasive) 2.80 5.0E-03

Kidney
[43] 5 4 (Wilms) 3.26 1.7E-02

[101] 3 18 (Wilm) 1.37 1.0E-03

Head and Neck
[124] 3 (Hypopharynx) 4 (Squamous) 1.23 3.9E-02

[24] 6 (Salivary) 16 (Adenoid cystic) 9.13 2.8E-02

Lung
[30] 17 20 (Carcinoid) 14.05 3.2E-07

[28] 30 27 (Adeno) 1.37 2.2E-02

Ovarian

[35] 10 185 (Cancer) 1.20 4.0E-07

[125] 5 7 (Clear cell adeno) 1.19 1.9E-02

[34] 4 

13 (Mucinous adeno) 1.23 1.2E-02

8 (Clear cell adeno) 1.17 3.1E-02

37 (Endometrioid 
adeno) 1.18 2.6E-02

41 (Serous adeno) 1.15 4.4E-02

Ly6H is significantly increased in brain and CNS, esophageal, breast, kidney, head and neck, lung and ovarian cancer than 
their normal counterparts. Data observed using Oncomine (Invitrogen). N=number of patient samples.
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Table 6: Ly6H mRNA expression in subset of multiple cancers

Type of cancer Reference 
Cancer

Fold change P-value 
N (Group 1) N (Group 2)

Brain and CNS
[79] 81 (Myc not amplified) 20 (Myc amplified) 2.64 9.1E-04

[108] 21 (Myc not amplified) 30 (Myc amplified) 1.52 1.0E-02

Breast

GSE2109 66 (ER neg) 110 (ER pos) 1.24 2.3E-02

[126] 77 (ER neg) 209 (ER pos) 1.27 2.0E-03

[47]
14 (ER neg) 18 (ER pos) 2.19 9.0E-03

15 (PgR neg) 17 (PgR pos) 2.17 1.0E-02

TCGA
87 (ER neg) 225 (ER pos) 1.31 4.1E-04

127 (PgR neg) 189 (PgR pos) 1.27 3.7E-04

[127] 7 (PgR neg) 9 (PgR pos) 2.41 4.6E-02

[129] 40 (Grade 1) 26 (Grade 2) 1.21 6.0E-03

[73] 30 (Ductal) 5 (Lobular) 2.35 1.0E-03

[128]

158 (Ductal) 17 (Lobular) 1.28 2.6E-02

105 (Recurrence free 
at 5 year)

47 (Recurrence at 
5 year) 1.25 1.0E-02

123 (Metastasis free at 
5 year)

29 (Metastasis at 
5 year) 1.23 1.0E-02

Gastric [25] 4 (Stage 1) 14 (Stage 3) 1.56 3.0E-03

Kidney
GSE2109 43 (Others) 184 (Clear cell) 1.43 4.0E-03

TCGA 16 (Papillary) 72 (Clear cell) 1.68 4.3E-05

Pancreatic [140] 23 (Precursor) 8 (Cancer) 1.22 2.0E-02

Cervical [130] 7 (Precursor) 21 (Cancer) 1.37 5.0E-03

Colorectal
[131] 43 (KRAS wildtype) 27 (KRAS Mutation) 1.64 4.0E-03

[65] 30 (Recurrence free at 
5 year)

56 (Recurrence at 
5 year) 1.24 3.3E-02

Ly6H mRNA expression was significantly increased in subtypes of brain and CNS, breast, gastric, kidney, pancreatic, 
cervical and colorectal cancer. High Ly6H expression was significantly correlated with poor clinical outcome in breast and 
colorectal cancer. Data observed using Oncomine (Invitrogen). N=number of patient samples.

(Unpublished, NCI) studies. Ly6H mRNA expression 
was significantly higher in progesterone receptor (PgR) 
positive breast cancer (n=215) than PgR negative breast 
cancer (n=149) in Stickeler [47] and TCGA (Unpublished, 
NCI) and Chang [127] studies. Ly6H mRNA expression 
was significantly higher in lobular breast cancer (n=22) 
than ductal breast cancer (n=188) in Radvanyi [73] 
and Desmedt [128] studies. Increased Ly6H mRNA 
expression was significantly correlated with more 
aggressive phenotype of breast cancer - grade 2 (n=40) 
than grade 1 (n=40), gastric cancer - stage 3 (n=14) than 
stage 1 (n=4) in Curtis [129], and Cho [25] studies. Ly6H 
mRNA expression was significantly increased in clear cell 
carcinoma of kidney (n=256) than other types (n=59) in 
TCGA [67] and Bittner(Unpublished, GSE2109) studies. 

Ly6H mRNA expression was significantly increased 
in cancerous tissue of cervix (n=8) than precursors 
cervix cancer (n=23) in Zhai [130] study. Ly6H mRNA 
expression was significantly increased in colorectal cancer 
with KRAS mutation (n=27) than KRAS wildtype tumors 
(n=43) in Khambata-Ford [131] study.

These results show that Ly6H expression was 
significantly increased in subtypes of brain and CNS, breast, 
gastric, kidney, pancreatic, cervical, and colorectal cancer.

High Ly6H expression and survival outcome in 
multiple cancers

Table 6 also showed that a high Ly6H mRNA 
expression in breast cancer was significantly correlated 
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with decreased five-year recurrence survival (recurrence, 
n=47 vs recurrence free, n=105) and decreased five-year 
metastasis free survival (metastasis, n=29 vs metastasis 
free, n=123) in Desmedt [128] study. High Ly6H 
mRNA expression in colorectal cancer was significantly 
correlated with decreased five-year recurrence survival 
(recurrence, n=56 vs recurrence free, n=30) in Jorissen 
[65] study.

High Ly6H mRNA expression in colorectal cancer 
was significantly correlated with poor five-year relapse 
free survival (low Ly6H, n=70; high Ly6E, n=70; HR=7.6, 
p=0.0326, n= number of patient, HR=hazard ratio) shown 
by PROGgeneV2 (Table S3, Figure 3A).

High Ly6H mRNA expression in lung cancer 
was significantly correlated with poor five-year first 
progression free survival (low Ly6H, n=557; high Ly6E, 
n=425; HR=1.77, p=2.90E-09), five-year post progression 
free survival (low Ly6H, n=87; high Ly6E, n=257; 
HR=1.47, p=0.015) and five-year overall survival (low 
Ly6H, n=484; high Ly6E, n=1442; HR=1.3, p=6.00E-04) 
shown by KM plotter (Table S3, Figure 3B).

High Ly6H mRNA expression in ovarian cancer 
was significantly correlated with poor five-year post 
progression free survival (low Ly6H, n=305; high Ly6E, 
n=506; HR=1.3, p=6.00E-04) shown by KM plotter and 
five-year overall survival (low Ly6H, n=96; high Ly6E, 
n=97; HR=1.34, p=0.034) shown by PROGgeneV2 (Table 
S3, Figure 3C).

High Ly6H mRNA expression in gastric cancer 
was significantly correlated with poor five-year first 
progression free survival (low Ly6H, n=336; high Ly6E, 
n=499; HR=1.5, p=6.9E-05) and five-year overall survival 
(low Ly6H, n=377; high Ly6E, n=499; HR=1.56, p=6E-
07) shown by KM plotter (Table S3, Figure 3D).

These data show that high Ly6H expression was 
significantly correlated with poor clinical outcome in in 
breast, colon, lung, ovarian and gastric cancer.

Increased expression of Ly6K in multiple cancers

We investigated whether Ly6K was differentially 
expressed in clinical samples of cancer in multiple studies. 

Figure 3: Increased Ly6H expression in cancer and patient survival. High Ly6H expression leads to poor survival in A. colon 
cancer, B. lung cancer, C. ovarian cancer and D. gastric cancer.
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The data was visualized using Oncomine. As shown 
in Table 7, we found that Ly6K mRNA expression was 
significantly increased in 188 samples of bladder cancer 
than 68 samples of normal relevant tissue in Lee [45] 
studies. Ly6K mRNA expression was significantly 
increased in 497 samples of breast cancer than 205 
samples of normal tissue in TCGA (Unpublished, NCI) 
and Curtis [60] study. Ly6K mRNA expression was 
significantly increased in 40 samples of cervical cancer 
than 5 samples of normal tissue in Biewenga [83] study. 
Ly6K mRNA expression was significantly increased in 51 
samples of esophageal cancer than 51 samples of normal 
tissue in Su [78] study. Ly6K mRNA expression was 
significantly increased in 92 samples of head and neck 
cancer than 43 samples of normal tissue in Peng [92], He 
[23] and Ye [91] studies. Ly6K mRNA expression was 
significantly increased in 375 samples of lung cancer 
than 143 samples of normal tissue in Hou [31], Selamat 
[27], Okayama [29] studies. Ly6K mRNA expression was 
significantly increased in 273 samples of colorectal cancer 
than 71 samples of normal tissue in Sabates-Bellver [38], 
TCGA [132] and Skrzypczak [41] studies.

These results show that Ly6K expression was 
significantly increased in bladder, breast, cervical, 
esophageal, head and neck, lung and colorectal cancer 
than their counter part normal tissue.

As shown in Table 8, we found that Ly6K 
expression was increased in subtypes of multiple 
cancers. Ly6K mRNA expression was significantly 
higher in Myc amplified brain and CNS cancer (n=12) 
than cancer without Myc amplification (n=5) in Robinson 
[108] study. Ly6K mRNA expression was significantly 
higher in astrocytoma, grade 4 (n=76) than astrocytoma 
grade 3 (n=24) in Phillips [69] study. Ly6K expression 
was significantly higher in glioblastoma (n=59) than 
astrocytoma (n=8) in Freije [133] study. Ly6K expression 
was significantly higher in recurred brain tumors (n=7) 
than primary brain tumors (n=20) in Liang [134] study. 
Higher Ly6K expression was correlated with breast 
cancer stage as seen by the significant higher expression 
of Ly6K in ductal stage N1+ (n=19) than ductal stage 
N0 (n=20) and invasive stage N1+ (n=9) than invasive 
stage N0 n=22) in Julka [110], and Stickeler [47] studies. 
Ly6K mRNA expression was significantly higher in 
triple negative breast cancer (TNBC) (n=163) than non-
TNBC breast cancer (n=584) in Bittner (Unpublished, 
GSE2109), Korde [54], TCGA (Unpublished, NCI), 
Julka [110], Zhao [135], Richardson2 [55] and Miyake 
[136] studies. Ly6K mRNA expression was significantly 
higher in gastric cancer grade 3 (n=18) than grade 2 
(n=6) in Forster [118] study. Ly6K mRNA expression 
was significantly higher in TP53 mutated lung cancer 
(n=18) than TP53 wildtye cancer (n=23), grade 3 
adenocarcinoma (n=14) than grade 2 adenocarcinoma 
(n=18) in Ding [137] study. Ly6K mRNA expression 
was significantly higher in cohort of squamous lung 

carcinoma (n=309) than cohorts of non small cell lung 
carcinoma (n=218) in TCGA [138], Bild [51], Lee 
[139], and Hou [31] studies. High Ly6K expression was 
significantly correlated with higher cancer staging in 
squamous lung cancer stage N1+ (n=12) than stage N0 
(n=25) and in colorectal adenocarcinoma (n=15) than N0 
stage in Bittner(Unpublished, GSE2109), study. Ly6K 
mRNA expression was significantly higher in cohort of 
ovarian cancer (n=8) than cohorts of precursors (n=24) 
in Buchholz [140] study and ovarian cancer (n=361) 
than borderline tumor (n=57) in Bittner(Unpublished, 
GSE2109), Anglesio [141] and Tothill [142] studies.

These results show that Ly6K expression was 
significantly increased in subtypes of brain and CNS, 
breast, gastric, lung, colorectal, pancreatic, and ovarian 
cancer.

High Ly6K expression and survival outcome in 
multiple cancers

Table 8 also showed a high Ly6K mRNA expression 
in bladder cancer was significantly correlated with 
decreased five-year overall survival (dead, n=33 vs alive, 
n=11) in Lee [45] study. High Ly6K mRNA expression 
in brain and CNS cancer was significantly correlated 
with decreased three-year overall survival (dead, n=33 
vs alive, n=11) in Freije [133] study. High Ly6K mRNA 
expression in kidney cancer was significantly correlated 
with decreased one-year overall survival (dead, n=16 vs 
alive, n=55) and five-year overall survival (dead, n=12 
vs alive, n=9) in Zhao [143] and TCGA [67] studies 
respectively. High Ly6K mRNA expression in breast 
cancer was significantly correlated with decreased three-
year overall survival (dead, n=31 vs alive, n=295) and 
one-year overall survival (dead, n=3 vs alive n=156) in 
Kao [52] and Pawitan [115] studies.

High Ly6K mRNA expression in breast cancer 
was significantly correlated with poor five-year overall 
survival (low Ly6K, n=51; high Ly6K, n=52; HR=1.25, 
p=0.021, HR=hazard ratio, n=number of patients) shown 
by PROGgeneV2 (Table S4, Figure 4A). High Ly6K 
mRNA expression in lung cancer was significantly 
correlated with poor five-year relapse free survival 
with restriction of stage IIb cancer (low Ly6K, n=18; 
high Ly6K, n=21; HR=2.02, p=0.002); five year overall 
survival with restriction of stage IIIb cancer (low Ly6K, 
n=17; high Ly6K, n=18; HR=1.57, p=0.013) and with 
restriction of stage IIb cancer (low Ly6K, n=18; high 
Ly6K, n=21; HR=1.98, p=0.002) shown by PROGgeneV2 
(Table S4, Figure 4B). High Ly6K mRNA expression in 
ovarian cancer was significantly correlated with poor five-
year overall survival (low Ly6K, n=96; high Ly6K, n=97; 
HR=1.3, p=0.0008) shown by PROGgeneV2 (Table S4, 
Figure 4C). High Ly6K mRNA expression in colorectal 
cancer was highly correlated but not significantly 
associated with poor five-year relapse free survival (low 
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Ly6K, n=60; high Ly6K, n=61; HR=13.81, p=0.059) 
shown by PROGgeneV2 (Table S4, Figure 4D).

These data show that high Ly6K expression was 
significantly correlated with poor clinical outcome in 
bladder, brain and CNS, kidney, breast, lung and ovarian 
cancer.

DISCUSSION

In this study we show that Ly6 family members 
(Ly6D, Ly6E, Ly6H, Ly6K) are up regulated in 
cancerous tissue than normal tissue, the Increased 
expression of these genes are heterogeneous among 
difference subtypes of multiple cancer and that the high 
expression of these genes is significantly associated with 
poor outcome. Recently Butte et al described that the 
gene expression data of tumor mass can be influenced by 
infiltration by immune cells and non-cancerous normal 

cells [144]. These contaminations may affect the analysis 
for gene signature associated with tumor, specifically 
for cells which are comprise a very little percentage 
of total tumor mass such as tumor infiltrating immune 
cells. In this study we focused on comparison of tumor 
vs normal. So the normal cell contamination in tumor 
may downplay the increased expression of Ly6 genes 
in tumor tissue than normal. However we observed a 
consistent increased expression of Ly6 in multiple 
studies of pan cancer. The mRNA expression data across 
multiple studies shows that ovarian, colorectal, gastric, 
breast, lung, brain and CNS, cervical, esophageal, head 
and neck and pancreatic cancers express significant high 
levels of Ly6D, Ly6E, Ly6H, Ly6K. As summarized 
in Table 9, the gene expression analysis showed that 
bladder cancer expresses significant high levels of Ly6D, 
Ly6E, Ly6K. The survival data for colorectal, ovarian 
and gastric cancer showed that all four studied genes 

Table 7: Ly6K mRNA expression in normal and tumor tissue of multiple cancer types

Type of cancer Reference N (Normal) N (Cancer) Fold change P-value

Bladder [45] 68
62 (Infiltrating) 1.30 8.0E-07

126 (Superficial) 1.20 5.1E-08

Breast
TCGA 61

76 (Invasive) 1.20 2.4E-08

389 (Invasive Ductal) 1.32 3.2E-08

[60] 144 32 (medullary) 1.08 3.0E-02

Cervical [83] 5 40 (Squamous) 4.97 3.2E-11

Esphageal [78] 51 51 (Squamous) 1.65 1.8E-06

Head and neck

[92] 22 (Oral cavity) 57 (Squamous) 1.79 1.4E-08

[23] 9 (Thyroid) 9 (Papillary) 1.15 3.0E-03

[91] 12 (Tongue) 26 (Squamous ) 1.16 6.0E-03

Lung

[31] 65

27 (Squamous) 6.06 6.8E-12

19 (Large cell) 1.09 1.2E-04

45 (Adeno) 3.18 4.0E-07

[27] 58 58 (Adeno) 1.04 7.0E-03

[29] 20 226 (Adeno) 1.38 8.7E-04

Colorectal

[38] 7 7 (Rectal adeno) 1.82 3.0E-03

TCGA 
[132]

19 29 (Colon Muc adeno) 1.21 9.0E-03

3 24 (Cecum adeno) 1.27 2.0E-03

3 6 (Rectal Muc adeno) 1.38 2.0E-03

3 60 (Rectal adeno) 1.34 9.2E-04

19 102 (Colon adeno) 1.29 9.1E-05

[41] 24 45 (Colon adeno) 1.21 5.0E-13

Ly6K is significantly increased in bladder, breast, cervical, esophageal, head and neck, lung and colorectal cancer than their 
normal counterparts. Data observed using Oncomine (Invitrogen). N=number of patient samples.
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Table 8: Ly6K mRNA is significantly increased in subset of multiple cancer subtypes

Type of cancer Reference 
Cancer

Fold change P-value 
N (Group 1) N (Group 2)

Bladder [45] 11 (Alive at 5 years) 33 (Dead at 5 years) 1.20 3.9E-02

Brain and CNS

[108] 5 (No Myc 
amplification) 12 (Myc amplification) 1.26 2.5E-02

[69] 24 (Astrocytoma 
Grade 3)

76 (Astrocytoma 
Grade 4) 1.38 2.2E-02

[134] 20 (Primary) 7 (Recurred) 1.35 1.4E-02

[133]
8 (Astrocytoma) 59 Glioblastoma 1.22 5.0E-03

3 (Glioma alive at 3 
year) 6 (Dead at 3 year) 1.49 9.0E-03

Kidney
[143] 55 (Alive at 1 year) 16 (Dead at 1 year) 2.11 1.2E-02

TCGA 
[67] 9 (Alive at 5 year) 12 (Dead at 5 year) 1.77 3.1E-02

Breast 

[110] 20 (Ductal stage N0) 19 (Ductal stageN1+) 1.64 3.0E-03
[47] 22 (Invasive stage N0) 9 (Invasive stage N1+) 4.02 6.0E-03

GSE2109 129 (Non-TNBC) 39 (TNBC) 2.97 1.1E-05
[54] 39 (Non-TNBC) 21 (TNBC) 2.45 1.0E-03

TCGA 250 (Non-TNBC) 46 (TNBC) 2.82 9.2E-05
[52] 30 (Non-TNBC) 8 (TNBC) 2.01 1.0E-02
[135] 28 (Non-TNBC) 5 (TNBC) 2.38 3.7E-02
[55] 19 (Non-TNBC) 18 (TNBC) 3.74 1.0E-02
[136] 89 (Non-TNBC) 26 (TNBC) 2.32 1.7E-02
[135] 295 (Alive at 3 year) 31 (Dead at 3 year) 1.47 2.3E-02
[115] 156 (Alive at 1 year ) 3 (Dead at 1 year) 1.63 3.3E-02

Gastric [118] 6 (Grade 2) 18 (Grade 3) 4.52 1.4E-02

Lung

[137]
18 (Adeno, grade 2) 14 (Adeno, grade 3) 5.48 1.2E-04
23 (TP53 wildtype) 18 (TP53 mutation) 2.23 3.3E-02

TCGA 
[138] 33 (Non-small cell ) 154 (Squamous) 2.74 2.0E-03

[51] 58 (Non-small cell ) 53 (Squamous) 2.23 2.0E-03
[139] 63 (Non-small cell ) 75 (Squamous cell) 2.17 6.0E-03
[31] 64 (Non-small cell) 27 (Squamous cell ) 2.39 1.5E-04

GSE2109 25 (Squamous N0) 12 (Squamous N1+) 2.02 1.9E-02
Colorectal GSE2109 17 (Colon adeno N0) 15 (Colon adeno N1+) 2.00 4.5E-02
Pancreas [140] 24 (Precursor) 8 (Cancer) 1.68 2.0E-03

Ovarian

GSE2109 10 (Borderline tumor) 146 (Cancer) 1.64 5.2E-04
[141] 30 (Borderline tumor) 44 (Cancer) 1.54 5.0E-03

[142]
17 (Borderline tumor) 171 (Cancer) 1.70 4.1E-06
5 (5-year recurrence 

free)
103 (Recurrence at 

5-year) 1.60 4.1E-02

Ly6K mRNA expression was significantly increased in subtypes of bladder, brain and CNS, kidney, breast, gastric, lung, 
colorectal, pancreatic and ovarian cancer. High Ly6K expression was significantly correlated with poor clinical outcome 
in bladder, brain and CNS, Kidney, breast, and ovarian cancer. Data observed using Oncomine (Invitrogen). N=number 
of patient samples.
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Figure 4: Increased Ly6K expression in cancer and patient survival. High Ly6H expression leads to poor survival in A. breast 
cancer, B. lung cancer, C. ovarian cancer and D. colon cancer.

Ly6D, Ly6E, Ly6H, Ly6K are poor prognosis markers 
for multiple cancer types. Survival data for bladder and 
brain and CNS cancer showed that Ly6E and Ly6K is 
poor prognosis marker for these cancers. Survival data 
for breast and lung cancer show that Ly6D, Ly6E and 
Ly6K were poor prognosis marker for these cancers. 
Survival data for cervical, esophageal, head and neck 
and pancreatic cancers in public databases were either 
non significant or were not available.

The mouse and human Ly6 family have a conserved 
LU domain (Figure 5). The LU domain is described 
as three-fold repeated domain in urokinase-type 
plasminogen activated receptors (uPAR), which occurs 
singly in Ly6 family [145-147]. The uPAR signaling is 
responsible for initiating invasion and metastasis via the 

activation of the plasminogen activator/plasmin cascade 
in breast cancers and play a role in stimulating the RAS/
ERK pathway to control invasion in cancer cells [148]. 
The LU domain has been predicted to play a role in 
cancer diagnosis and malfunction of immune system 
[149]. It is plausible that all Ly6 family of genes may 
have common mechanism in tumorigenesis and their role 
in poor prognosis. The four genes are clustered closely 
at Chr8q24, the predicted transcription factor binding 
to their respective proximal promoter within 10KB of 
start site may be driven by common regulatory elements. 
Recently experimental validation of the important role for 
AP-1 activation in promoting LY6K gene expression was 
observed, whereas the SNP242 C allele or methylation 
of the CpG site was associated with reduced Ly6K 
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Table 9: Correlation of high mRNA expression and patient survival outcome in multiple cancer types
Cancer Type Genes Expression in 

Tumors (p<0.05)
Survival Analysis  

(p<0.05)

Ovarian

LY6D up Poor prognosis
LY6E up Poor prognosis
LY6H up Poor prognosis
LY6K up Poor prognosis

Colorectal

LY6D up Poor prognosis
LY6E up Poor prognosis
LY6H up Poor prognosis
LY6K up Poor prognosis

Gastric

LY6D up Poor prognosis
LY6E up Poor prognosis
LY6H up Poor prognosis
LY6K up Poor prognosis

Breast

LY6D up Poor prognosis
LY6E up Poor prognosis
LY6H up Poor Prognosis
LY6K up Poor prognosis

Lung

LY6D up Poor prognosis
LY6E up Poor prognosis
LY6H up OS (NS), Others (NA)
LY6K up Poor prognosis

Bladder 

LY6D up OS (NS), Others (NA)
LY6E up Poor prognosis
LY6H NS OS (NS), Others (NA)
LY6K up Poor prognosis

Brain and CNS

LY6D up OS (NS), Others (NA)
LY6E up Poor prognosis
LY6H up OS (NS), Others (NA)
LY6K up Poor prognosis

Cervical

LY6D up OS (NA), RFS (NS)
LY6E up OS (NA), RFS (NS)
LY6H up OS (NA), RFS (NS)
LY6K up OS (NA), RFS (NS)

Esophageal

LY6D up OS (NS), Others (NA)
LY6E up OS (NS), Others (NA)
LY6H up OS (NS), Others (NA)
LY6K up OS (NS), Others (NA)

Head and neck

LY6D up OS (NS), Others (NA)
LY6E up OS (NS), Others (NA)
LY6H up OS (NS), Others (NA)
LY6K up OS (NS), Others (NA)

Pancreatic

LY6D up OS (NS), Others (NA)
LY6E up OS (NS), Others (NA)
LY6H up OS (NS), Others (NA)
LY6K up OS (NS), Others (NA)

OS overall survival, RFS relapse free survival, NS not significant p<0.05, NA no data available.
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Figure 5: Ly6 gene family members have conserved LU/uPAR domain. The red box shows the region containing multiple 
cysteine residues that form di-sulfide bonds characteristic of the LU/uPAR domain in Ly6 family of proteins. Highlighting shows columns 
were the consensus sequence is present in over 50% of the aligned amino acids.
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Figure 6: Network analysis of Ly6 gene family members. A. Pathway studio network analysis showed that Ly6 signaling is involved 
in broad range of molecules including growth factor, nuclear receptor, and micro RNAs. The upstream regulators are not highlighted, the 
downstream effectors are highlighted with blue, and the potential binding partners are highlighted with green. B. Pathway studio network 
analysis showed that Ly6 gene family affect multitude of cellular fate and cell-cell interaction with microenvironment ranging from growth, 
apoptosis, autophagy, immune response.

expression via inhibition of AP1 [150], suggesting 
additional level of complexities in regulation of Ly6 
genes. Further more Ly6K, Ly6E and Ly6D expression 
may be regulated by multiple growth factors, nuclear 
receptors (Figure 6A) that can affect multitude of cellular 
fate including immune response, cell motility, growth, 
adhesion and differentiation (Figure 6B).

The Ly6K and Ly6E proteins are implicated as 
cancer vaccine targets and drug conjugated antibody 
therapy, respectively [7-9] suggesting that Ly6 family 

members can be used as novel candidates to develop 
targeted therapies. However, a detailed understanding 
of mechanism associated with Ly6 function is lacking. 
We had previously shown that Sca-1/Ly6A in mouse 
tumor model can inhibit TGF-β signaling by direct 
binding with TGF-β receptor 1 [2]. We have tested for 
human Ly6E and Ly6K in breast cancer and delineated 
the molecular mechanism behind cancer cell growth, 
metastasis and drug resistance (being published 
separately). This may explain how various members of 
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Ly6 gene family may be responsible for poor outcome 
in multiple cancers. The protein level validation for all 
four proteins in pan cancer is yet to be determined. We 
are currently in process of generating antibodies and 
validating commercially available antibodies using 
control and knockout cell lines. The protein expression 
of the all four genes will need to be done in pan cancer 
clinical samples in future studies, so that Ly6 gene 
family can be used as a companion diagnostic tool for 
multiple cancer types. The Ly6 family of genes can be a 
novel prognosis marker and novel candidate to develop 
targeted therapies.

MATERIALS AND METHODS

Bioinformatic analysis

ONCOMINE (www.oncomine.org) [151, 152] 
was used to visualize mRNA expression of Ly6 gene 
family members in different cancer types. CBioPortal 
(www.cbioportal.org) [153, 154] for Cancer Genomics 
was used to explore genetic alterations across Ly6 
gene family members in different cancer types. When 
selecting genomic profiles, mutations and CNAs are 
specified by default. When available, survival analysis 
of LY6K and its isoforms genetic alteration in specific 
cancer types were selected. PathwayStudio (http://www.
elsevier.com/solutions/pathway-studio) [155] was used 
to generate LY6K and its isoforms signaling pathway. 
Km plotter (kmplot.com/analysis) [156] was used to 
collect information about survival analysis of LY6K 
and its isoforms in pan-cancers. Oncomine (Invitrogen), 
KM plotter (http://kmplot.com/analysis/) [156] and 
ProgeneV2 prognostic Database (http://www.abren.net/
PrognoScan/) [157] were used to collect information 
about survival analysis of LY6K and its isoforms in pan-
cancers.

Alignment of Ly6 proteins

Protein sequences of the LY6K, LY6E, LY6D, 
LY6H genes from both human and mouse plus the 
Ly6A gene from mouse were obtained from UniProtKB 
[158]. In addition to the predominant protein forms, 
selected isoforms for each protein were also obtained. 
Sequences were aligned using Clustal Omega [159] with 
default parameters. The alignment was performed using 
editing and analysis into Jalview [160] platform. In the 
alignment presentation the small fragment proteins, 
redundant sequences and truncated isoforms were 
excluded.
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