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Antibodies against the muscle acetylcholine receptor (AChR) are the most common cause of myasthenia gravis
(MG). Passive transfer of AChR antibodies from MG patients into animals reproduces key features of human
disease, including antigenic modulation of the AChR, complement-mediated damage of the neuromuscular
junction, and muscle weakness. Similarly, AChR antibodies generated by active immunization in experimental
autoimmune MG models can subsequently be passively transferred to other animals and induce weakness. The
passive transfer model is useful to test therapeutic strategies aimed at the effector mechanism of the autoanti-
bodies. Here we summarize published and unpublished experience using the AChR passive transfer MG model
in mice, rats and rhesus monkeys, and give recommendations for the design of preclinical studies in order to
facilitate translation of positive and negative results to improve MG therapies.

© 2015 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).

Introduction

The postulates ofWitebsky–Rose–Koch require an antibody-mediated
autoimmune response be recognized by specific characteristics; presence
of autoantibody, the identification of the corresponding antigen, the
ability to induce the production of the antibody in an experimental
animal and demonstrate disease manifestations similar to the
human disease (Witebsky et al., 1957).

These criteria still form a solid basis for defining an antibody-
mediated autoimmune disease and provide for two experimental
models, i) the injection of antigen to elicit an ‘active’ immune
response and ii) the injection of antibodies as a ‘passive’ transfer of
autoimmunity. Experimental autoimmune myasthenia gravis
(EAMG) produces autoantibodies by the injection of AChR usually
with an immunostimulator. Active immunization against other
proteins found at the neuromuscular junction (NMJ) can also cause
weakness. The passive transfer myasthenia gravis (PTMG) model is
the injection of those autoantibodies into another animal, which
will also demonstrate weakness. MG was one of the first diseases
that fulfilled the Witebsky–Rose–Koch criteria for autoimmunity

(Toyka et al., 1975, 1977). Subsequently, transfer of monoclonal
AChR antibodies produced by hybridomas cloned from EAMG
model induced similar disease characteristics (Lindstrom et al.,
1976; Engel et al., 1979; Lennon and Lambert, 1980; Richman et al.,
1980). The robustness and clear-cut phenotype of PTMG have
made it a useful model for characterizing the immunopathogenesis
of AChR-MG (~80% of the MG cases) and for testing medication
that reduces the pathogenic effect of autoantibodies. Although
PTMG with antibodies to muscle specific kinase and low-density li-
poprotein receptor-related protein 4 have also been performed, the
majority of PTMG studies have involved antibodies to the AChR.
Over the years, the purpose of the model has shifted from the inves-
tigation of the pathology induced by AChR antibodies towards pre-
clinical studies aimed at testing therapeutic interventions. Here, we
provide recommendations for the design of preclinical studies
using AChR-PTMG model (referred to as PTMG in the text below)
in order to facilitate translation of positive and negative results in
order to improve MG therapies in clinical practice.

Purpose of the passive transfer model of myasthenia gravis

MG is a T cell dependent-B cell mediated disease (Conti-Fine et al.,
2006). Activation of CD4+T cells is required for the autoimmuneprocess
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by impairment of T regulatory cells, cytokine secretion and B cell activa-
tion. B cells, and in particular plasma cells, on the other hand are the
source of the autoantibodies. The EAMGmodel utilizes the autoimmune
cellular processes, the afferent arm of the immune response, to produce
autoantibodies directed at the AChR, the efferent arm of the response.
The PTMG model removes the highly variable response of the afferent
arm thereby allowing the efferent effects of the antibodies to be studied
in a reproducible way. The use of PTMG model for pre-clinical evalua-
tion of a therapeutic is justified when the effect is limited to inhibiting
the autoantibody binding or preserving the function and structure of
the neuromuscular junction (NMJ) during antibody attack.

Pathophysiology of AChR antibodies

By the transfer of purified immunoglobulins from MG patients to
mice and the subsequent muscle weakness developed in the mouse,
Toyka and colleagues demonstrated that MG is an antibody mediated
autoimmune disease (Toyka et al., 1975). Complement-activating anti-
bodies against the extracellular domain of the AChR induced rapid,
dose dependent myasthenia as early as 8 h and death by 48 h. The
source of antibodies transferred to animals can be serum IgG of MG
patients, polyclonal IgG from chronic EAMG animals, or monoclonal
antibodies produced by B cell hybridomas or by heterologous expres-
sion (Lennon and Lambert, 1980; Richman et al.; van der Neut
Kolfschoten et al., 2007). The main immunogenic region (MIR) on the
alpha subunit of the AChR binds a high proportion of antibodies from
MG patients (Tzartos and Lindstrom, 1980; Whiting et al., 1986), and
it is the target recognized by monoclonal antibodies that produce
PTMG. Furthermore, the α subunit antibodies are more pathogenic
than the antibodies against the β subunit (Kordas et al., 2014) probably
because the alpha subunit is represented twice among the five AChR
subunits.

The antibody effector mechanisms are antigenic modulation and
complement-mediated focal lysis of the postsynaptic membrane
(Lennon et al., 1978; Tzartos et al., 1985; Loutrari et al., 1992). Transfer

of IgG from MG patients to mice reduced the number of functional
AChR, although AChR synthesis rose to compensate (Wilson et al.,
1983a,b; Sterz et al., 1986). Monovalent AChR antibodies without
complement binding capacity are not pathogenic unless they interfere
with ion channel function (Lagoumintzis et al., 2010). The PTMG
model revealed that the influx of mononuclear cells into the NMJ was
antibody and complement-dependent, an event also seen during the
acute phase (occurring one week after AChR induction in rats) of
EAMG. The deposition of IgG and complement components was associ-
ated with a large influx of macrophages and a loss of both AChR and
postsynaptic folds (Lindstrom et al., 1976; Engel et al., 1979).

PTMG has been used to determine the effects of sex, strain and age
on susceptibility to antibody-mediated AChR loss (Hoedemaekers
et al., 1998), the importance of the expression levels of AChR-
associated proteins like rapsyn in the susceptibility of the AChR to anti-
gen modulation (Losen et al., 2005), and the beneficial effects of
complement inhibitors (Morgan et al., 2006; Kusner et al., 2013).

Therapeutic strategies using the PTMG model

Passive transfer of antibodies has also been used for therapeutic
development (Lagoumintzis et al., 2010) (Fig. 1). Due to the 48–
72 hour experimental timeframe, the PTMG model can function to
determine dose–response and offer go-forward information to active
immunization/EAMG experiments which require longer experimental
periods. Therapeutics that target antibody turnover have shown efficacy
in proof-of-concept studies. The increased turnover of antibodies has
been facilitated by the use of proteolytic enzymes or antibodies to
FcRn (Poulas et al., 2000; Liu et al., 2007). RNA aptamers (Hwang
et al., 2003) and antibodies to denatured AChR (Krolick et al., 1996)
have been shown effective in inhibiting binding of MIR antibodies. In
AChR-specific PTMG mouse models, monovalent Fab fragments have
been demonstrated to protect the AChR against the action of intact
pathogenic antibodies (Toyka et al., 1980; Barchan et al., 1998;
Papanastasiou et al., 2000). Complement depletion by cobra venom

1. Pre-treatment   PTMG                                                                                    Termination

2.                          PTMG                                  Post-Treatment                         Termination

3.                        PTMG/Treatment Termination

Day 0 (AM) Day 1 (AM) Day 2 (AM)

Weight, Clinical scores, 
Fatigue/weakness measurements

Experimental design Example

Animal species Rat

Animal number Power analysis based on clinical score

Randomization of animals Stratify by weight and randomly assign to group

Number of groups and controls Treatment response group

Antibody type mAb35

Dose of antibody 20pmol/100g

Method of injection Intraperitoneal 

Analysis of Data ANOVA

Schematic of PTMG experimental design. A. To properly plan a PTMG study, each aspect 
of the experiment must be determined prior to initiation. The table above provides some of 
these aspects with examples. B. The figure demonstrates the potential treatment 
schematic and course of clinical scores of PTMG induced animals. The pre-treatment 
would occur prior to initiation of PTMG. The treatment can occur after weakness is 
observed (24hrs.). Or, the treatment and initiation of PTMG can occur at the same time. 

A

B
Induction with Anti-AChR            observable fatigue     weakness         weak with weight loss    

Clinical scores:     0                       0                   0-1                    0-2                          2-3

Day 0 (PM) Day 1 (PM)

Fig. 1. Schematic of PTMG experimental design. A. To properly plan a PTMG study, each aspect of the experimentmust be determined prior to initiation. The table above provides some of
these aspects with examples. B. The figure demonstrates the potential treatment schematic and course of clinical scores of PTMG induced animals. The pre-treatmentwould occur prior to
initiation of PTMG. The treatment can occur after weakness is observed (24 h). Or, the treatment and initiation of PTMG can occur at the same time.
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factor demonstrated abatement of PTMG (Lennon et al., 1978). Thera-
peutic targets focused on complement demonstrated efficacy with
inhibition of complement activity by antibody binding or protein inter-
ference (Biesecker and Gomez, 1989; Zhou et al., 2007; Soltys et al.,
2009). Passively transferred IgG4 subclass AChR antibodies, which are
incapable of activating complement and are functionally monovalent,
effectively competed with pathogenic IgG1 subclass AChR antibodies
and decreased disease severity in a rhesus monkey model of PTMG
(van der Neut Kolfschoten et al., 2007).

Methodology of the PTMG model

The PTMG model is developed by the injection of AChR-specific
antibodies directly into the animal. The method of injecting the anti-
body is intravenous (iv) or intraperitoneal (ip) to assure full delivery
of the maximal calculated dose and rapid equilibration with extracellu-
lar fluid. Injection sites should be cleaned prior to injection and
observed for irritation. A brief isoflurane anesthesia is useful for both
iv and for ip injections for the following reasons: 1) reduction in both
pain and stress during injection, 2) increased precision of injection
since anesthesia renders the animal immobile, 3) elimination of manual
restraint of the animal, thus freeing the hands of the experimenter and
4) reduction of tension on the abdominal skin. By manually lifting the
abdominal skin of the animal, the attached muscles and peritoneum
are slightly elevated and IP injections can be performed easily, while
minimizing the risk of injecting antibody into an organ or of causing
injury with the needle tip. To perform intravenous injections, tails
should be warmed to produce vasodilation. A small gauge needle is
placed bevel side up into the observed vein and the injection should
occur slowly to ensure proper placement and to avoid cardiovascular
failure. Resistance or blebbing of the tissue indicates an improper place-
ment. Animals should be monitored for signs of distress during the first
six hours which would demonstrate too rapid disease progression and
require euthanasia before a treatment effect could be observed. For
reproducibility and consistency of results, documentation of experi-
mental design must be comprehensive. Weight and clinical scores (or
other side effects related to model or therapeutic) that occur during
disease progression should be noted.

Animal care for short term study

Due to the limited time of the study, the animals should be moni-
tored repetitively throughout the 48 h after injection. To limit the stress
on the animals the following procedures are recommended. Only one or
two personnel should handle the animals throughout the experiment.
Cage change should take place 2–3 days before the initiation of experi-
ment. Cages should be equipped with enriched environment supplies,
nesting material, and a housing unit. Grip strength measurements,
cage lifts, and mesh/hanging test (see below for protocol) should be
initiated prior to study to have animals become familiar with the exer-
cise. If any animal becomes clinically weak all cages should be supplied
with aqua gel and soft food placed on the floor of the cage to ensure
accessibility. All care given to animals should be documented.

Animal species and antibody source for inducing passive transfer
myasthenia gravis

The PTMG model can use various animals for induction and, as
mentioned above, multiple sources of antibody. We will discuss the
use of rats, mice and rhesus monkeys for induction. The antibody that
is used in pre-clinical assessment of a therapeutic should be able to
bind the AChR and induce complement in the relevant animal species.
To standardize the model, antibody availability to all researchers is
important for reproducibility of the results and comparisons between
therapeutics. To elicit PTMG, the antibodies will need to bind with
high affinity to the recipient AChR and induce complement activating

ability. Therapeutic experiments which focus on inhibition of antibody
levels or competitive binding as the primary outcome measure may
not require a complement activating antibody. The antibodies chosen
should also be available to the scientific community for use. All informa-
tion of antibody, source, dose, and method of injection should be
documented.

Lewis rats

Female Lewis rats have been used successfully to induce PTMG. They
have the advantage over mice by presenting with clearly distinguish-
able disease symptoms (tremor, hunched posture with head down,
and respiratory distress/apnea). Nevertheless, variation of results can
occur due to age and weight of the animals at onset of the experiment,
source and dose of the antibody used in the passive transfer, and route
of injection. These specifics will be discussed below.

The age andweight of the Lewis female rats used for passive transfer
vary considerably in the literature. Differences inweight (reported from
100 to 200 g) would determine the effective extracellular concentration
of the autoantibody which is a primary determinant of the pathophysi-
ological outcome for synaptic transmission. The percent acute loss of
body weight would vary based on the animal's initial weight. Larger
rats would be more practical to use in a pre-clinical experiment to
ensure that measurements other than survival are to be used. The age
of the rat also influences the severity of the disease; younger rats
(12 weeks) are more susceptible than older animals (120–130 weeks)
(Graus et al., 1993). We recommend the use of female Lewis rats (10–
12 weeks of age) for initial studies. A subsequent study should be
done with age appropriate males.

Proposed procedure for induction of PTMG in rats

1. Determine experimental design: number of female Lewis rats (10–
12 weeks of age) needed for statistical significance, groupings,
outcome measurements, and method of data analysis (Fig. 1).

2. Initiate grip strength, mesh/hang or cage lift protocol to ensure that
animal is familiar with technique prior to PTMG induction.

3. For induction of PTMG, anesthetize animalwith 2.5% isoflurane in air.
To verify anesthetic depth, pinch footpad of animal for reaction.

4. The animal is placed on the surgical tablewith isofluraneflow. (Note:
if anesthesia is not being used to sedate animal, animal restraint is
required. Check with your institutional veterinarian for proper
restraint holds.)

5. Site of injection (abdomen or tail) is cleanedwith ethanol, a 25 gauge
needle in inserted at site and the monoclonal antibody is injected
(monoclonal Ab3: 27 pmol/gm; monoclonal Ab35: 20 pmol/100 gm)

6. The animal is allowed to recover on a heated pad. Once the animal is
ambulatory, it is returned to the cage.

7. Animals are observed every 12 h for clinical signs of weakness (see
Outcome measurement/Clinical score).

8. The study is terminated at 48–72 h after induction; except earlier ter-
minations should occur when clinical scores reach 3 or 15% weight
loss is observed.

C57Bl/6J mouse

The mouse offers the possibility to control the expression of the
proteins of the NMJ based on genetic engineering (expression levels,
specific mutants, transgenic animals). For example, to determine the
potential efficacy of a therapeutic that inhibits complement, a mouse
engineered to be absent of complement regulators (Lin et al., 2002;
Kusner et al., 2013) would provide a suitable environment for the ther-
apeutic to show function.

The mouse PTMG model has been used to test for pathogenic anti-
bodies in serum from EAMG animals (Dedhia et al., 1998; Zhang et al.,
1999) and MG serum (Mossman et al., 1988; Losavio et al., 1989;
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Mundlos et al., 1990; Burges et al., 1994). To elicit PTMG in mice, mAb3
(Lennon and Lambert, 1981) has been used successfully (Lin et al., 2002;
Kaminski et al., 2004, 2006; Morgan et al., 2006; Kusner et al., 2013,
2014).

Proposed procedure for induction of PTMG in mice

The above protocol for rats can be used to induce PTMG in mice
((monoclonal Ab3: 91 pmol/gm).

When the pathogenicity of IgG fromMGpatients is examined, or the
polyclonal nature of IgGs is desired, PTMG can be induced by transfer of
IgGs isolated from the serum of human donors. To induce PTMG with
IgG from MG patients, multiple daily injections of 10–60 mg/day for
up to 10 days may be required for themouse to demonstrate weakness.
In this case, on the first day the mice are also injected i.p. with 300 μg/g
of cyclophosphamide, to prevent the formation of antibodies against the
human IgGs (Toyka et al., 1975; Mossman et al., 1988).

Rhesus monkey

For the development of novel MG therapies, the use of non-human
primates can be justified only if a close homologue to humans is an
essential element of the pre-clinical assessment. For example, certain
complement inhibitors are only effective against human and primate,
but not rodent complement factors. PTMG has been performed in
rhesus monkeys using either polyclonal MG patient IgG or the human
AChR mAb IgG1 637 ('t Hart et al., 2005). Muscle weakness was tran-
sient, lasting 1–4 days, depending on the dose. This is different from
the corresponding non-human primate EAMG model (Tarrab-Hazdai
et al., 1975; Toro-Goyco et al., 1986) which is progressive and may be
fatal. Examples of therapies that can be tested in the rhesus PTMG
model are competitor IgG4 antibodies (van der Neut Kolfschoten et al.,
2007) or complement inhibitors. If available, genetically engineered
rodents, expressing for example human complement factors or human
AChR subunits are in many aspects preferable alternatives to non-
human primate models since the underlying physiological neuromus-
cular and immunological mechanisms are highly homologous in
mammals.

Source of the antibody by hybridoma technology in the PTMG model

The following monoclonal antibodies generated by hybridomas
technology from EAMG rats are commonly used in rat PTMG studies.
Monoclonal Ab35 (Tzartos et al., 1981) was effectively used in various
studies to produce a rat PTMG model (Tzartos et al., 1987;
Hoedemaekers et al., 1997, 1998; Papanastasiou et al., 2000;
Poulas et al., 2000; Reyes-Reyna et al., 2002; Garcia et al., 2003;
Garcia and Krolick, 2004; De Haes et al., 2005; Losen et al., 2005;
Krolick, 2006; Hepburn et al., 2007; Liu et al., 2007). Monoclonal
Ab198 (Tzartos et al., 1983) also produced weakness in the rat (Hwang
et al., 2003). mAb3 (Lennon and Lambert, 1981) showed extensive com-
plement mediated damage to the NMJ of rats (Zhou et al., 2007, 2014;
Ruff and Lennon, 2008; Soltys et al., 2009; Kusner et al., 2014).

Purification of antibodies from hybridomas

The antibodies are produced from culture hybridomas and collected
in a serum-free medium. Purification of the antibodies requires use of a
column, either a DEAE-sepharose column (Poulas et al., 2000) or
hydroxyapatite columns (Reyes-Reyna et al., 2002; Garcia et al., 2003).
However, if the hybridoma requires serum for survival, the use of
Protein G sepharose (Liu et al., 2007) or Protein A sepharose
(Chamberlain-Banoub et al., 2006) should be used to extract the immu-
noglobulin. The final preparation is dialyzed against Ringer's buffer
(140 mM NaCl, 5.4 mM KCl, 1 mM CaCl2, 2.4 mM NaHCO3, pH 7.4)
(Poulas et al., 2000). After purification, the purity of mAb should be

assessed by SDS-PAGE and quantified by immunoprecipitation of 125I-
α-bungarotoxin-ligatedmuscle AChR corresponding to the investigated
recipient species (Tzartos and Lindstrom, 1980; Lindstrom et al., 1981).

Preparation of IgG from human serum

To induce PTMG, the autoantibodies from the human serum need to
cross-react with the AChR of the animal. Therefore, the resistance to
respond to human IgGmay be due to the inability of polyclonal autoan-
tibodies to recognize their target. The sera must first be checked for
cross-reactivity with the AChR of the injected species. Then, total IgGs
or subclasses can be isolated from serum and plasma samples by
means of ammonium sulphate precipitation or affinity columns. Due
to the variability of human IgG cross-reactivity and the autoantibody
titers, a small scale experiment should be performed initially, in order
to determine the amount of IgG required to yield a clear phenotype,
but is not lethal for the animals.

The properties of AChR-specific antibodies can be designed using
recombinant antibody engineering. The sequences of a fewAChR specif-
ic antibodies have been published (Graus et al., 1995, 1997; Farrar et al.,
1997;Matthews et al., 2002; Fostieri et al., 2005; Vrolix et al., 2014) and
these can be used to construct corresponding antibody expression
vectors for heterologous production.

Statistical assessments

The experimental design and method of data analysis should be
determined prior to the initiation of the experiment. Personnel involved
in the assessment of the animals should be blinded to which group or
treatment the animals are assigned. Requirement for specific number
of animals per group will be determined by power analysis based of
several outcome measurements. At least one measurements of the
longitudinal study (clinical score, grip strength and weight of animals)
should be used to determine group size. Animals should be randomly
assigned to groups. When treatment occurs after observable weakness,
first stratify the animals from weakest to strongest. Next, randomize
each graded weakness into assigned group. The stratification ensures
that each weakness level is properly represented per grouping. For
pre-treatment and treatment that occurs at time of induction, the
same strategy should be applied to weight so each group contains
representation of theweight spectrum of the animals on the study. Out-
comemeasurements based on AChR content, electromyography (EMG),
and immunohistological markers could also be used in the assessment
of statistical relevance. To determine statistical significance of the
outcomemeasurements, statistical tests should be defined prior to initi-
ation of the PTMG study.

Outcome measurements

Several outcome measurements can be used to describe or quanti-
tate the severity of the induced symptoms. The animal weight, clinical
score, grip strength, muscle AChR content, electromyography and visu-
alization of the NMJ are among the most widely used and are described
in more detail below. Outcome measurements should be chosen based
on the therapeutic that is tested; for example, histology of the NMJ by
hematoxylin and eosin stain is used to demonstrate inflammatory cellu-
lar infiltrates, while electron microscopy of the NMJ can verify
complement-mediated damage to the endplate, and ELISA or RIA can
be used to determine the amount of circulating AChR antibody injected
into the animal. Clinical scores, that demonstrate health of the animals
during the disease induction and therapeutic process, are required
outcome measurement for pre-clinical assessments. During the plan-
ning stage of an experiment, outcomemeasurements should be decided
based on therapeutic involvement.
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Clinical score

The clinical score of the animal is a necessary outcomemeasurement
of PTMG. Clinical scores should be taken every 12 h or less if the animals
demonstrate severe weakness. Dose of the antibody should be based on
its ability to demonstrate clearweakness in the animals by 48h,without
inducing immobility or death. A percent of survival endpoint should
not be used since careful dosing of antibodies allows clear-cut and
reproducible generation of moderate disease. To determine clinical
score of the animal, observation of the activity of animal in the cage
should be noted prior to handling. Animals should be allowed to move
freely in a secured area to assess movement, ability to stand on
hindlimbs, and appearance when sedate. To classify animals, handler
should exercise animals that donot showweakness to determine fatiga-
ble state (see below for cage lift, grip strength andmesh/hang). Clinical
scores for animals are as follows: 0, no weakness; 1, fatigable or weak-
ness is only observed after exercise; 2, clinical signs ofweakness present
before exercise, hunched posture, or head down; 3, severe clinical signs
of weakness: no ability to grip, hindlimb paralysis, respiratory distress/
apnea, weight loss N 15%, immobility or moribund; and 4, death. The
individual scoring of animals and times during the day that scoring is
performed should be kept constant for the entire PTMG experiment.

Measures of weakness and fatigability

A grip meter can be used to test for forelimb strength in rats and
mice, specifically when clinical scores are in the range of 0–2 (Kusner
et al., 2013). The animals are suspended by their tails by an experienced
handler and front paws are allowed to grip on a bar or mesh connected
to a sensitive force gauge. A pull consist of the handler tugging on the
animal's tail to free the animal's grip on the bar. The tug should not be
forceful as to dissuade the animal from gripping the bar. The animals
should be exercised by repetitive grips (15–20 grips) and force genera-
tion of the first five pulls should be documented. The rodents are then
tested for fatigability by five pulls after exercise. The force generation
is documented and compared with the pre-exercise force generation.
Animal position on the bar/mesh should be kept constant for each
pull. The handler and time of day that protocol is performed should be
kept constant for the entire PTMG experiment to avoid altering the
pull force.

Rats' muscle strength can also be assessed by their ability to grasp
and lift repeatedly a rack or cage lid from the table, while suspended
manually by the base of the tail for 30 s (Verschuuren et al., 1990).
The exercise will determine if the rat can grip and has strength to lift
the lid. Repeated cage lifts will determine the fatigability of the animal.
The appearance of the animal before and after exercise should be noted.

The mesh/hanging test can be used with mice. For the hanging test,
mice are placed at the center of a frame holding a wire mesh, and the
frame inverted over soft bedding (Kaminski et al., 2006). The time
until they release their grip is measured (maximum hanging time
10 min). This is a reliable and observer-independent test of fatigue.
The animal weight, learnt behavior, and stress can alter the results. If
the animal release is not due to fatigue (i.e. animal jumps from the
wire mesh), the animal should be immediately retested. If the mouse
attempts to climb over the edges of the frame, they should be replaced
and inverted as mentioned above. Handlers and time of day that any
protocol is performed should be kept constant for the entire PTMG
experiment.

Electromyography

Decrement of compoundmuscle action potential (CMAP) is general-
ly measured in the tibialis anterior or the gastrocnemius muscles of
PTMG animals 24–48 h after antibody transfer. Rats are anaesthetized
with 60 mg/kg sodium pentobarbital or with 2.5% isoflurane in air.
The animal must be kept warm (skin temperature between 35 and

37 °C) by means of an infrared heating lamp or a heat pad, but do not
overheat (risk of myasthenic decompensation). For stimulation, two
small monopolar needle electrodes are used. The cathode is inserted
near the peroneal nerve at the level of the knee and the anode more
proximal and lateral (at a distance of 3–4mm in the rat). For recording,
a third monopolar needle electrode is inserted subcutaneously over
the tibialis anterior muscle. A ring electrode distally around the rele-
vant hind leg or a subcutaneous needle electrode at the distal tendon
serves as a reference, and the animal is grounded by a ring electrode
around the tail. Movement artefacts must be avoided. Stimulation
and recording can be performed with EMG systems that are also
used in clinical practice. To detect a decrementing response, a series
of 8–10 supramaximal stimuli are given at 3 Hz with a stimulus
duration of 0.2 ms. The test is considered positive for decrement
when both the amplitude and the area of the negative peak of the
CMAP show a decrease of at least 10% (Kimura, 2001). To demon-
strate reproducibility, at least three recordings are made of all inves-
tigated muscles.

In case only subclinical disease is present, the impairment of neu-
romuscular transmission can be quantified in a terminal experiment
by combining decrement measurements with intraperitoneal curare
challenge (for rats of ~200 g: 20 μg/ml at a rate of 0.33 μg curare/min-
ute). In this case, the elapsed time until decrement is observed (an
equivalent of the cumulative curare dose) is a measure for the
muscle weakness (Gomez et al., 2011). If the diaphragm of the
animals is severely affected by PTMG, curare infusion might result
in respiratory failure before decrement is observed in the tibialis
anterior or gastrocnemius muscles. This can be avoided by mechan-
ical ventilation of the animal under anesthesia. Animals should be
sacrificed under anesthesia since the long-term effect of curare
prevents recovery of the animals.

Immunofluorescence analysis of neuromuscular junctions

The density of AChR, its associated proteins or deposition of com-
plement factors on the postsynaptic membrane can be analyzed by
immunofluorescence. As a reference, a presynaptic marker is used.
Isolated muscles (e.g. tibialis anterior or diaphragm) of PTMG and
control animals are frozen on melting isopentane. Cryosections of
10 μm are dried, fixed and blocked with PBSA (phosphate-buffered
saline with 2% bovine serum albumin). Sections can then be incubat-
ed with primary antibodies against the vesicular acetylcholine trans-
porter (VAChT) or the synaptic vesicles protein 2 (SV2) to localize
the NMJ. To determine the deposition of complement, antibodies to
C3, C9 or membrane attack complex (C5b-9) can be used. Subse-
quently the sections are incubated with fluorescent-conjugated α-
bungarotoxin and the corresponding secondary antibodies. An
excess of primary and secondary antibodies, and bungarotoxin
should be used so these do not limit the staining intensity. All
sections are stained and processed in parallel to avoid inter-assay
variations. Importantly, since immunoglobulins are deposited on
the NMJ in PTMG, the specificity of the secondary antibodies should
be confirmed on sections of PTMG muscles without primary
antibodies.

For quantitative analysis, pictures of muscle sections are taken
using a fluorescent microscope with a digital camera and analysis
software. The exposure time is set to a constant value for each chan-
nel ensuring that no saturation of the pictures occurs. Also all other
microscope settings are maintained constant. Endplate areas are
identified by presynaptic markers and the mean intensity of staining
in each channel is measured in the corresponding area. The presyn-
aptic marker can be used to normalize the expression of the postsyn-
aptic proteins. Multiple NMJs should be assessed for staining
intensity. All sections are stained and processed in parallel to avoid
inter-assay variations (Losen et al., 2005).
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Electron microscopy

PTMG rats are anaesthetized with ketamine (100 mg/kg) and
xylazine (15 mg/kg) and transcardially perfused with Tyrode solution
(0.1 M) followed by fixation buffer (2.5% glutaraldehyde in 0.1 M phos-
phate buffer, pH 7.4). The recommended anesthesia for mice is
ketamine (70–100 mg/kg), xylazine (10– 20mg/kg) and acepromazine
(2–3 mg/k). The tibialis anterior muscles are removed, post-fixed for
2 h, and sectioned on a vibratome at 1 mm. Sections are postfixed
with 1% osmium tetroxide in 0.1 M phosphate buffer, pH 7.4,
dehydrated through a graded ethanol series and embedded in epoxy
resin. Endplates are located in toluidine blue-stained semi-thin sections
from the central region of eachmuscle. Ultra-thin sections from selected
areas are contrasted with uranyl acetate and lead citrate and viewed
with a transmission electron microscope. At least five endplate regions
are photographed from each muscle. Pictures are scanned for morpho-
metric analysis using the ImageJ software. The key parameter to be
analyzed for PTMG by morphometric analysis is the folding index, i.e.
the ratio of the length of the postsynaptic membrane per length of the
adjacent presynaptic membrane in each nerve bouton (Engel et al.,
1976, 1979;Wood and Slater, 1997; Losen et al., 2005). Since infiltrating
cells are commonly found at the NMJ in PTMG, the percentage nerve
boutons that are displaced from the postsynaptic membrane by infil-
trating leucocytes should also be included in the analysis.

Radioimmunoassay for measurement of AChRs

The AChR concentrations of isolated tibialis anterior muscles from
PTMG animals are measured as described (Lindstrom et al., 1976;
Verschuuren et al., 1992; Losen et al., 2005). Muscles are minced and
homogenized at 4 °C in 10 ml Buffer A (PBS, 10 mM EDTA, 10 mM
NaN3, 10 mM iodoacetamide and 1 mM PMSF). Homogenates are
centrifuged (22,100 g, 30min) and the resultingpellets are resuspended
in 2.5ml Buffer B (Buffer A with additional 2% Triton X-100). Extraction
is performed for 1 h at 4 °C on a reciprocal shaker. After centrifugation
(22,100 g, 30min), six aliquots of 250 μl are taken from the supernatant
and incubated with 125I-α-BT (~74 TBq/mmol, 12.5 μl/ml) followed by
rat polyclonal anti-rat AChR (~150 μl/ml with a titer of ~200 nmol/l
against rat AChR). As a negative control, three of the aliquots are supple-
mentedwith 1mMacetylcholine and 1mMneostigmine bromide. After
overnight incubation at 4 °C, the immune complexes are precipitated
with goat anti-rat Ig (100 μl polyclonal serum) for 4 h and centrifuged
at 15,000 g for 5 min. The pellets are washed three times in PBS
with 0.5% Triton X-100 and measured in a gamma-counter. Results are
calculated in fmol ± standard deviation, and differences between

concentrations are presented in percentage ± standard error of the
means. When using polyclonal anti-AChR sera to induce PTMG there
is a risk that some of the antibodies mask the α-BT binding sites
resulting in underestimation of the AChR amounts.

Conclusion

The PTMG model is unique in that the antibodies induce a specific
effect on the AChR in a short 48 hour window. Elimination of the anti-
bodies or the complement-mediated damage ablates the effect. The
model does have intrinsic limitations. The afferent arm of the autoim-
mune process is not involved; therefore, therapeutics that targets the
lymphocytes, cytokine expression, or antigen recognition cannot be test-
ed using PTMG. Secondly, the PTMG does not induce a chronic
autoimmune disease and definitive testing of a therapeutic should also
rely on the EAMG model: the narrow window of severe weakness
during which the therapeutic can be tested on its ability to reverse
weakness.

The PTMG has been used successfully in testing of therapeutics for
complement inhibition, increased antibody turnover, and antibody
competitive inhibition (Table 1). Future direction of therapeutics in
these fields may prove beneficial and translate to an improved therapy
for myasthenia gravis.
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