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Abstract 15 

Direct measurement of protein expression with single-cell resolution promises to deepen the 16 

understanding of the basic molecular processes during normal and impaired development. High-17 

resolution mass spectrometry provides detailed coverage of the proteomic composition of large 18 

numbers of cells. Here we discuss recent mass spectrometry developments based on single-cell 19 

capillary electrophoresis that extend discovery proteomics to sufficient sensitivity to enable the 20 

measurement of proteins in single cells. The single-cell mass spectrometry system is used to 21 

detect a large number of proteins in single embryonic cells of the 16-cell embryo of the South 22 

African clawed frog (Xenopus laevis) that give rise to distinct tissue types. Single-cell 23 

measurements of protein expression provide complementary information on gene transcription 24 

during early development of the vertebrate embryo, raising a potential to understand how 25 

differential gene expression coordinates normal cell heterogeneity during development. 26 
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Introduction 27 

Single-cell analysis technologies are essential to understanding cell heterogeneity during 28 

normal development and disease. Characterization of the genomes and their expression at the 29 

levels of the transcriptome, proteome, and metabolome provides a molecular window into basic 30 

cell processes. Singe-cell measurements complement traditional cell population-averaging 31 

approaches by enabling studies at the level of the building blocks of life, where many critical 32 

processes unfold (Raj and van Oudenaarden, 2008; Altschuler and Wu, 2010; Singh et al., 2010; 33 

Zenobi, 2013). For example, by studying individual cells, it is possible to ask how cells give rise 34 

to all the different types of tissues in the body (stem cells) and specialize for defense (immune 35 

cells), communication (neurons), and support (glia). This information in turn lays the foundation 36 

to developing diagnosis and treatments for addressing pressing health concerns, such as 37 

emergence of drug resistant bacteria, onset and development of neurodegeneration and cancer, as 38 

well as infections.  39 

Single-cell investigations take advantage of rapid developments in technology to obtain new 40 

insights into systems cell biology. With more than million-fold amplification of DNA and RNA 41 

and the commercialization of high throughput DNA and RNA sequencing, it is now possible to 42 

query cell-to-cell differences (Kolisko et al., 2014; Mitra et al., 2014), including but not limited 43 

to chromosomal mosaicism in tissues (Vijg, 2014; Gajecka, 2016) and embryonic somatic cells 44 

(Liang et al., 2008; Jacobs et al., 2014), establishment of cell heterogeneity in the nervous system 45 

(McConnell et al., 2013), and mutations during disease states (Junker and van Oudenaarden, 46 

2015; Kanter and Kalisky, 2015). How gene expression translates into the functionally important 47 

proteins and how they then feed back to modulate gene expression is essential to systems cell 48 

biology. Multiple reports report differences between transcription and translation (Vogel and 49 
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Marcotte, 2012; Smits et al., 2014; Peshkin et al., 2015), and transcription is known to be 50 

controlled by translational factors during development (Radford et al., 2008); therefore, 51 

characterization of the proteome is critical to understanding cell heterogeneity. Translational cell 52 

heterogeneity has traditionally been measured by immunohistochemistry and Western blot 53 

analyses.  Protein-targeted assays have recently gained substantial throughput by the 54 

development of mass cytometry (CyTOF), which uses inductively coupled plasma and mass 55 

spectrometry (MS) to simultaneously quantify ~35 different proteins tagged with rare earth 56 

elements in thousands of cells. This level of multidimensionality has promoted applications in 57 

cell differentiation during erythropoiesis (Bendall et al., 2011), and was recently coupled to 58 

laser-ablation to spatially survey cell heterogeneity in the tumor environment (Giesen et al., 59 

2014).  60 

Cell heterogeneity has particular significance during embryonic development. Over four 61 

decades of innovative embryological manipulations combined with gene-by-gene identifications 62 

and functional characterizations in Xenopus have shown that molecular asymmetries in the 63 

distribution of maternal mRNAs occur upon fertilization and lead to the formation of the three 64 

primary germ layers and the germ line (King et al., 2005; Lindeman and Pelegri, 2010). Recent 65 

approaches have defined the spatial and temporal changes of mRNAs, abundant proteins and 66 

metabolites in the whole embryo (Flachsova et al., 2013; Wuhr et al., 2014; De Domenico et al., 67 

2015). However, very little is known about how these molecules change over time in individual 68 

blastomere lineages as they acquire germ layer and body axis fates. In many animals, mRNAs 69 

that are synthesized during oogenesis are sequestered to different cytoplasmic domains 70 

(Davidson, 1990; Sullivan et al., 2001), which after fertilization then specify the germ cell 71 

lineage (King et al., 2005; Haston and Reijo-Pera, 2007; Cuykendall and Houston, 2010) and 72 
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determine the anterior-posterior and dorsal-ventral axes of the embryo (Heasman, 2006b; 73 

Kenyon, 2007; Ratnaparkhi and Courey, 2007; White and Heasman, 2008; Abrams and Mullins, 74 

2009). For example, in Xenopus several mRNAs are localized to the animal pole region, which 75 

later gives rise to the embryonic ectoderm and the nervous system (Grant et al., 2014), whereas 76 

localization of VegT mRNA to the vegetal pole specifies endoderm formation (Xanthos et al., 77 

2001), and region-specific relocalization of the Wnt and Dsh maternal proteins govern the 78 

dorsal-ventral patterning of the embryo (Heasman, 2006a; White and Heasman, 2008). However, 79 

there is abundant evidence that in developing systems not all transcripts are translated into 80 

proteins; therefore, analyses of the mRNAs may not reveal the activity state of the cell. In fact, 81 

different animal blastomeres of the 16-cell Xenopus embryo that are transcriptionally silent can 82 

have very different potentials to give rise to neural tissues (Gallagher et al., 1991; Hainski and 83 

Moody, 1992; Yan and Moody, 2007), even though they appear to express common mRNAs 84 

(Grant et al., 2014; Gaur et al., 2016).  85 

High-resolution MS is the technology of choice for the analysis of the proteome (Aebersold 86 

and Mann, 2003; Guerrera and Kleiner, 2005; Walther and Mann, 2010; Zhang et al., 2013). 87 

Using millions of cells, contemporary MS enables the discovery (untargeted) characterization of 88 

the encoded proteomes of various species in near complete coverage, as recently demonstrated 89 

for the yeast (Hebert et al., 2014), mouse (Geiger et al., 2013), and human (Kuster, 2014; 90 

Wilhelm et al., 2014). Recent whole-embryo analyses by MS revealed that transcriptomic events 91 

are accompanied by gross proteomic and metabolic changes during the development of Xenopus 92 

(Sindelka et al., 2010; Vastag et al., 2011; Flachsova et al., 2013; Shrestha et al., 2014; Sun et al., 93 

2014), raising the question whether these chemical changes are heterogeneous also between 94 

individual cells of the embryo at different embryonic developmental stages. However, the 95 
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challenge has been to collect high-quality signal from the miniscule amounts of small molecules 96 

contained within single blastomeres for analysis. Since different blastomeres in Xenopus are 97 

fated to give rise to different tissues (Moody, 1987b; a; Moody and Kline, 1990), elucidating the 98 

proteome in individual cells of the embryo holds a great potential to elevate our understanding of 99 

the cellular physiology that regulates embryogenesis. For a deeper understanding of the 100 

developmental processes that govern early embryonic processes, it would be transformative to 101 

assay the ultimate indicator of gene expression downstream of transcription: the proteome. 102 

To address this cell biology question, we and others have developed platforms to extend MS 103 

to single cells (see reviews in References (Mellors et al., 2010; Rubakhin et al., 2011; Passarelli 104 

and Ewing, 2013; Li et al., 2015)). For example, targeted proteins have been measured in 105 

erythrocytes (Hofstadler et al., 1995; Valaskovic et al., 1996; Mellors et al., 2010). Discovery 106 

MS has been used in the study of protein partitioning in the nucleus of the Xenopus laevis oocyte 107 

(Wuhr et al., 2015). Recently, we have developed single-cell analysis workflows and custom-108 

built microanalytical capillary electrophoresis (CE) platforms for MS to enable the discovery 109 

(untargeted) characterization of gene translation in single embryonic cells (blastomeres). Using 110 

single-cell CE, we have measured hundreds–thousands of proteins in blastomeres giving rise to 111 

distinct tissues in the frog (Xenopus laevis), such as neural, epidermal, and gut tissues (Moody, 112 

1987a). We have also established quantitative approaches to compare gene translation between 113 

these cell types. Quantification of ~150 different proteins between the blastomeres has captured 114 

translational cell heterogeneity in the 16-cell vertebrate embryo (Lombard-Banek et al., 2016a). 115 

These results complement known transcriptional cell differences in the embryo, but also provide 116 

previously unknown details on how differential gene expression establishes cell heterogeneity 117 

during early embryonic development. 118 
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In this contribution, we give an overview of the major steps of the single-cell CE-MS 119 

workflow (Figure 1). Protocols are provided to isolate single cells, extract and process proteins, 120 

and use the CE-MS platform to identify and quantify protein expression. Additional details on 121 

technology development and validation are available elsewhere (Nemes et al., 2013; Onjiko et 122 

al., 2015b; Lombard-Banek et al., 2016a; Lombard-Banek et al., 2016b). These protocols have 123 

allowed us to study proteins (Lombard-Banek et al., 2016a; Lombard-Banek et al., 2016b) and 124 

metabolites (Onjiko et al., 2015b; Onjiko et al., 2016) in single blastomeres in 8-, 16-, and 32-125 

cell Xenopus laevis embryos.  Additionally, trouble-shooting advice (Table 2) is provided to 126 

help others adopt single-cell MS toward the systems biology characterization of molecular 127 

processes in cells and limited amounts of specimens. 128 

Materials and Equipment 129 

1. Single Blastomere Dissection 130 

a. Fine sharp forceps (e.g., Dumont #5). One forceps should have a squared tip, while the 131 

other should be sharpened to a fine tip.  132 

b. Sterile Pasteur pipets 133 

c. Hair loop: place a fine hair (~10 cm long) into a 6” Pasteur pipet to form a 2‒3 mm loop 134 

and secure it in place with melted paraffin. Sterilize the hair loop before usage by dipping 135 

it in 70% methanol.  136 

d. 0.6 mL centrifuge tubes 137 

e. 60 mm and 90 mm Petri dishes 138 

f. Incubator set to 14 °C 139 
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g. Dejellying solution: 2% cysteine hydrochloride in water, pH 8, prepared by adding 20 g 140 

of crystalline cysteine hydrochloride into 1 L of distilled water. pH is adjusted to 8 by 141 

adding 10 N NaOH drop-wise.  142 

h. 100% Steinberg’s solution (SS): Dissolve the following salts into 1 L of distilled water: 143 

3.5064 g NaCl, 49.9 mg KCl, 99.9 mg MgSO4, 55.8 mg Ca(NO3)2, 0.6302 g Tris-HCl, 144 

and 80.0 mg Tris-base. Adjust the pH to 7.4. Autoclave and store in 14 °C incubator.  145 

i. 50% Steinberg’s solution: Dilute 50 mL of 100% SS with 50 mL of distilled water.  146 

j. Dissection dish: add 2 g of agarose in 100 mL of 100% Steinberg’s solution. Dissolve the 147 

agarose by autoclaving. Once the bottle is cool enough to handle, pour the agarose 148 

mixture to ~1 mm in thickness into 60 mm in diameter Petri dishes. Alternatively, the 149 

agarose mixture can be stored at 4 °C, and reheated in a microwave before use.  Dishes 150 

should be stored wrapped in plastic at 4 °C to prevent dehydration of the agarose.  151 

k. Xenopus laevis (adult male and female). Protocols related to the handling and 152 

manipulation of animals must adhere to Institutional and/or Federal guidelines; the work 153 

reported here was approved by the George Washington University Institutional Animal 154 

Care and Use Committee (IACUC #A311). 155 

2. Protein Extraction, Enzymatic digestion and Quantification 156 

a. Refrigerated centrifuge (4 °C) 157 

b. Heat blocks (2) set to 60 °C and 37 °C.  158 

c. A −20 °C freezer  159 

d. Sonication bath (e.g., Brandson CPX 2800) 160 

e. A vacuum concentrator (e.g., CentriVap, LabConco) 161 
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f. Lysis buffer: for 1 mL of lysis buffer, mix 100 µL of 10% sodium dodecyl sulfate (SDS), 162 

100 µL of 1.5 M NaCl, 20 µL of 1 M Tris-HCl (pH 7.5), 10 µL of 0.5 M EDTA, and 770 163 

µL of H2O.  164 

g. Enzymatic digestion solution, 50 mM ammonium bicarbonate: add 0.1976 g of 165 

crystalline ammonium bicarbonate to HPLC grade water.  166 

h. Dithiothreitol (1 M): Dissolve 0.1543 g of solid dithiothreitol into 1 mL of 50 mM 167 

ammonium bicarbonate. Divide in 50‒100 µL aliquots and store at −20 °C for months.  168 

i. Iodoacetamide (1 M): Dissolve 0.1850 g of crystalline iodoacetamide into 1 mL of 50 169 

mM ammonium bicarbonate. Iodoacetamide is light sensitive and therefore should be 170 

kept away from any light sources. It is suggested to make freshly before use, but storage 171 

in 50‒100 µL aliquots at −20 °C is acceptable for up to 2 months. Aliquots are only for 172 

single use, do not freeze-thaw.   173 

j. Trypsin solution: dissolve a 20 µg vial in 40 µL of 1 mM HCl in water.  174 

k. Tandem mass tags kit (e.g., TMT10plex, Thermo Scientific) 175 

3. CE-ESI-MS Analysis 176 

a. HPLC grade solvents and reagents: water, acetonitrile, methanol, formic acid, and acetic 177 

acid.  178 

b. Regulated high voltage power supplies (2) outputting up to 5 kV for maintaining the 179 

electrospray (e.g., P350, Stanford Research Systems), and up to 30 kV for CE separation 180 

(e.g., Bertan 230-30R, Spellman) 181 

c. Separation capillary: 40/110 µm (i.d./o.d.) bare fused silica capillary from Polymicro. 182 

d. Sample solution: mix 500 µL methanol with 500 µL water and 0.5 µL acetic acid. 183 

e. Sheath solution: add 50 mL of methanol to 50 mL of water and 50 µL of formic acid. 184 
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f. Background electrolyte: to prepare 50 mL, mix 12.5 mL of acetonitrile, and 1.887 mL of 185 

formic acid with 35.613 mL of water.   186 

g. High-resolution mass spectrometer (e.g., Orbitrap Fusion, Thermo). 187 

Procedures 188 

1. Sample Preparation 189 

The goal of sample preparation is to extract proteins from single cells and process the 190 

proteins for MS analysis. The workflow (Fig. 1) starts with the identification of blastomeres in 191 

the embryo in reference to established cell fate maps (Moody, 1987a; Lee et al., 2012) and 192 

differences in cell size and pigmentation. Cells are microdissected using sharp forceps and 193 

collected into individual microcentrifuge tubes. Figure 2 shows the dissection of the V11 cell. 194 

Next, isolated blastomeres are lysed using chemical (detergent) and physical (ultrasonication) 195 

methods, and their proteins are extracted. The proteins are processed via standard bottom-up 196 

proteomics protocols (Zhang et al., 2013), whereby reduction, alkylation, and enzymatic 197 

digestion are performed to convert proteins into peptides that are more readily analyzable by MS.  198 

Single Blastomere Dissection and Isolation 199 

As detailed protocols are available on the identification and dissection of blastomeres (Moody, 200 

2012; Grant et al., 2013), only a brief summary of the major steps follows. 201 

1/ Prepare consumables: 202 

 2% cysteine solution  203 

 100% Steinberg solution (SS) 204 

 50% Steinberg solution (SS) 205 

 Sterile Pasteur pipet  206 
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 Petri dish filled with 2% agarose (w/v in 100% SS) 207 

 Sharp forceps 208 

 Hair loop 209 

 0.6 mL microcentrifuge tubes 210 

2/ Remove jelly coats that naturally surround the embryos: 211 

a. Add 4× volume of the cysteine solution to the embryos (Table 1) and gently swirl the 212 

solution for ~4 min.  213 

b. Once the embryos are free of the jelly coat, immediately wash them with 100% SS 214 

(Table 1) 4 times for 2 min each.  215 

c. Transfer the embryos to a clean Petri dish filled with 100% SS and store them at 14‒20 216 

°C in an incubator. 217 

3/ Dissect cells from the embryos as published elsewhere (Grant et al., 2013). A representative 218 

example is shown in Figure 2. Briefly: 219 

a. Transfer the selected embryos to a 60 mm Petri dish coated with 2% agarose and filled 220 

with 50% SS. 221 

b. Place the embryo of interest in a groove made in the agarose coating.  222 

c. Orient the embryo for easy handling of the cell of interest using a hair loop.  223 

d. Remove the vitelline membrane gently using sharp forceps. During this step, take care 224 

not to damage the embryo. 225 

e. Hold the embryo using sharp forceps on the opposite side of the cell of interest, and 226 

gently pull on either side to isolate the cell.  227 

f. Transfer isolated cells using a sterile Pasteur pipet into a micro-centrifuge tube. 228 

Provisional



12 
 

Protein Extraction and Enzymatic Digestion 229 

1/ Prepare consumables: 230 

 Lysis buffer  231 

 Acetone chilled to −20 °C 232 

 50 mM ammonium bicarbonate  233 

 1 M dithiothreitol 234 

 1 M iodoacetamide 235 

 Sonication bath (e.g., Brandson CPX 2800) 236 

2/ Lyse the cells to release their content: 237 

a. Remove the excess 50% SS from around the cell. Take care not to disrupt the cell. 238 

b. Add 10 µL of lysis buffer (Table 1) and vortex for ~30 sec. 239 

c. Sonicate for ~5 min, vortex for ~30 sec. Repeat this step 3 times.  240 

d. (Optionally) Add protease inhibitor to the lysis buffer to minimize/avoid protein 241 

degradation during this step.  242 

3/ Reduce and alkylate protein cysteine bonds:  243 

a. Add 0.5 µL of 1 M dithiothreitol to the sample, and incubate for 20‒30 min at 60 °C. 244 

b. Add 1 µL of 1 M iodoacetamide and incubate for 15 min in the dark at room temperature. 245 

c. Quench the reaction by adding 0.5 µL of 1 M dithiothreitol. 246 

4/ Purify proteins by cold acetone precipitation.  247 

a. Add to the cell extract a volume of pure acetone that is 5 times that of the cell extract 248 

(~50 µL), and incubate at −20 °C overnight. 249 

b. Recover the precipitated proteins by centrifugation at 10,000 × g for 10 min and 4 °C. 250 

c. Remove the supernatant. 251 
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d. Dry the pellet using a vacuum concentrator. 252 

e. (Optional) Store the protein pellet at –20 °C or −80 °C for up to 3 months.   253 

5/  Digest proteins for bottom-up proteomics analysis. A variety of enzymes or a combination 254 

of enzymes can be used for this task (e.g., trypsin, lysine C). We choose trypsin due to its 255 

benefits for MS analysis (Zhang et al., 2013). 256 

a. Reconstitute the protein pellet in 50 mM ammonium bicarbonate.  257 

b. Add 0.3 µL of 0.5 µg/ µL trypsin (trypsin in 1 mM HCl), equivalent to a protease/protein 258 

ratio of ~1/50. 259 

c. Incubate overnight at 37 °C.  260 

6/ (Optional) Store the digest at −80 °C for up to 3 months.  261 

Quantification 262 

The presented technology is compatible with well-established protocols in quantitative 263 

proteomics. Stable isotope labeling with amino acids in cell culture (SILAC) allows barcoding of 264 

proteins with isotopic labels for multiplexing quantification (Geiger et al., 2013). Label-free 265 

quantification is an alternative strategy whereby peptide signal abundance is used as a proxy for 266 

protein concentration. We have recently demonstrated label-free quantification (LFQ) for single 267 

blastomeres of neural fates in the 16-cell embryo using the protocol presented here (Lombard-268 

Banek et al., 2016b). Alternatively, relative quantification can be performed using designer mass 269 

tags. In this approach, proteins are digested to peptides and the peptides barcoded with isotopic 270 

labels that can be distinguished by high-resolution MS. Multiple protocols allow for quantifying 271 

protein expression at the level of peptides in high throughput via multiplexing, including tandem 272 

mass tags (TMT) (Thompson et al., 2006; McAlister et al., 2014), and isobaric tag for relative 273 

and absolute quantitation (iTRAQ) (Hunt et al., 2004), di-Leu (Xiang et al., 2010; Frost and Li, 274 
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2016). We have recently downscaled TMT-based multiplexed quantification to the protein 275 

content of single blastomeres using the following strategy (adapted from the vendor), which we 276 

then used to compare protein expression between the D11, V11, and V21 cells (Lombard-Banek 277 

et al., 2016a) that are fated to give rise to different types of tissues (neural, epidermal, and 278 

hindgut, respectively): 279 

a. Add 15 µL of TMT reagent to each digest and incubate for 1 h at room temperature. 280 

b. Add 3.5 µL of hydroxylamine and incubate for 15 min at room temperature. 281 

c. Mix the samples together at a 1:1 ratio (volume or total protein content) 282 

d. Dry the sample using a vacuum concentrator.  283 

e. Add 5 µL of 60% acetonitrile containing 0.05% formic acid. 284 

2. Sample Analysis using CE-ESI-MS 285 

Peptides are analyzed using a custom-built CE-ESI-MS platform (Nemes et al., 2013; 286 

Onjiko et al., 2015b; Lombard-Banek et al., 2016a). Instructions regarding the construction and 287 

operation of the platform are available from elsewhere (Nemes et al., 2013). Schematics of the 288 

CE-ESI-MS instrument are shown in Figure 3. CE is selected to electrophoretically separate 289 

peptides in a fused silica capillary by applying voltage difference across the capillary ends. As a 290 

general rule, peptides with smaller size and higher charge stage migrate faster through the 291 

capillary. A high resolution mass spectrometer is used to sequence peptides via data-dependent 292 

acquisition. In this approach, eluting peptides are detected based on single-stage (full) scans 293 

(MS1) and are sequenced by tandem-MS (MS2 scans) using collision-induced dissociation (CID), 294 

higher-energy collisional dissociation (HCD), or other fragmentation technologies. The tandem 295 

mass spectra reveal sequence information for the peptides, as also exemplified for LGLGLELEA 296 

in Figure 4. During quantification experiments, the TMT labels also dissociate from the peptide, 297 
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and the relative abundance of these TMT signals serves as quantitative measure of protein 298 

abundance (Figure 4C, right panel).  299 

CE-ESI-MS Measurements 300 

1/ Build the CE-ESI-MS system as described elsewhere (Nemes et al., 2013; Onjiko et al., 301 

2015a). For bottom-up proteomics of single Xenopus blastomeres, operate the system as 302 

recently established (Lombard-Banek et al., 2016a; Lombard-Banek et al., 2016b).  303 

2/ Prepare the CE system ~15 min prior to start the experiments as follow: 304 

a. Flush the capillary with background electrolyte solution (25% acetonitrile with 1 M 305 

formic acid). 306 

b. Flush the sheath capillary with electrospray solution (50% methanol with 0.1% 307 

formic acid) 308 

c. Turn on the electronics (high voltage power supplies, syringe pumps, mass 309 

spectrometer, etc.) for ~30 min to stabilize operation. 310 

3/ Inject the sample into the capillary as follows: 311 

a. Transfer the capillary into the background electrolyte vial. 312 

b. Deposit ~1 µL of sample onto the sample microvial (see Figure 3).  313 

c. Transfer the capillary from the BGE vial to the sample vial. 314 

d. Elevate the injection stage by ~15 cm for ~3 min to syphon ~20 nL of the sample into 315 

the CE capillary. 316 

e. Lower the injection stage to level the capillary inlet to the outlet, and transfer the 317 

capillary inlet end into the BGE vial.  318 

f. Apply ~10,000 V to the background electrolyte vial to start electrophoretic separation 319 

of the peptides. 320 
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g. Increase the electrospray voltage gradually until the cone jet mode is established for 321 

efficient ionization (Nemes et al., 2007). Using a long-distance microscope, carefully 322 

inspect the electrospray emitter to avoid electrical breakdown; electrical discharge, 323 

spark, or arc risks the mass spectrometer. In our experiments, the electrospray emitter 324 

is positioned ~0.5 cm from the mass spectrometer orifice and is biased to 3,000 V to 325 

generate the cone-jet spray. 326 

h. Ramp the separation voltage to ~18,000 V. In our system, we limit the separation 327 

voltage to keep the CE current <8 µA to prevent/minimize electrolysis or solvent 328 

heating. Monitor the CE current and adjust the separation voltage as necessary. For 329 

instructions on how to measure the current, refer to (Nemes et al., 2013).  330 

i. Start MS acquisition with data-dependent acquisition as specified by the mass 331 

spectrometer vendor.  For example, we use the following settings for a quadrupole-332 

orbitrap linear ion trap mass spectrometer (Fusion, Thermo Scientific): MS1 333 

analyzer–resolution–scan range–injection time, orbitrap–60,000 FWHM–m/z 350-to-334 

1,600–100 ms; precursor ion selection window, 2 Da in the quadrupole cell; 335 

fragmentation, HCD with 30% normalized energy in the multipole cell using nitrogen 336 

collusion gas; MS2 analyzer–rate–maximum injection time, ion-trap–rapid scan–50 337 

ms. 338 

Protein Identification 339 

Last, peptide sequences are compared to the proteome of the specimen (Xenopus laevis 340 

here) to identify proteins. This step is facilitated by readily available proteomes from SwissProt, 341 

UniProt, and experimentally determined RNA expression (Wang et al., 2012; Smits et al., 2014; 342 

Wuhr et al., 2014). Well-established bioinformatics software packages are used to process raw 343 
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mass spectrometric data. For example, Proteome Discoverer (Thermo Scientific), ProteinScape 344 

(Bruker Daltonics), and MaxQuant (Cox and Mann, 2008) interpret MS–tandem-MS datasets by 345 

executing well-established search engines, such as SEQUEST (Eng et al., 1994), Mascot 346 

(Perkins et al., 1999), and Andromeda (Cox et al., 2011)). The general strategy of bottom-up 347 

proteomics has recently been reviewed in detail (Sadygov et al., 2004; Cox et al., 2011; Zhang et 348 

al., 2013). We typically acquire tens of thousands to a million mass spectra, which identify 349 

2,000‒4,000 peptides in single blastomeres in the 16-cell embryo. These data allow us to identify 350 

~1,700 protein groups and quantify hundreds of proteins between the D11, V11, and V21 cells. 351 

3. Anticipated Results 352 

The CE-ESI-MS can be used to identify gene translational differences between cells. As 353 

shown in Figure 5, we have used this approach to assess protein differences between 354 

blastomeres of the 16-cell Xenopus laevis embryo (Lombard-Banek et al., 2016a; Lombard-355 

Banek et al., 2016b). Cell types with different tissue developmental fates were analyzed: the 356 

midline dorsal-animal cell (named D11) develops mainly into the retina and brain, the midline 357 

ventral-animal cell (named V11) gives rise primarily to the head and trunk epidermis, and the 358 

midline ventral-vegetal cell (named V21) is the primary precursor of the hindgut. The approach 359 

allowed the identification of 1,709 protein groups (<1% false discovery rate, FDR) from ~20 ng 360 

of protein digest, corresponding to ~0.2% of the total protein content of the blastomere 361 

(Lombard-Banek et al., 2016a). Many of the identified proteins are known to be involved in 362 

different cell fates. For example, Geminin (Gem) and Isthmin (Ism) were detected in the D11 363 

cells in our measurements, and these proteins are involved in brain development (Pera et al., 364 

2002; Seo et al., 2005), which is the stereotypical fate of D11 cells (Moody, 1987a). Multiplexed 365 

quantification by TMTs provided comparative evaluation for 152 non-redundant protein groups 366 
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between the cell types (Figure 5B, left), including many that were significantly differentially 367 

expressed based between the cell types (p < 0.05, fold change ≥ 1.3). We have also performed 368 

label free quantitation (LFQ) to compare D11 cells that were isolated at similar developmental 369 

phase of the 16-cell Xenopus laevis embryos (Figure 5A). A Pearson correlation analysis 370 

showed similar expression levels for the majority of proteins between the D11 cells (see proteins 371 

along linear fits). The study also found 25 proteins that were differentially accumulated in the 372 

respective cells, suggesting highly variable expression (Figure 5B, right) (Lombard-Banek et 373 

al., 2016b). These data on translational cell heterogeneity complement transcriptomic 374 

information on cell differences (Flachsova et al., 2013), but also provide new insights into how 375 

differential gene expression sets up different cell fates and the major developmental axes of the 376 

early embryo. 377 

Conclusions 378 

High-sensitivity MS enables the identification and quantification of a sufficiently large number 379 

of proteins to study cell and developmental processes at the level of individual cells. Advances in 380 

sampling (smaller single cells), protein processing, microanalytical MS, and bioinformatics have 381 

enabled the discovery characterization of hundreds to thousands of proteins in single cells. 382 

Unbiased measurement of protein translation by MS complements genomic and transcriptomic 383 

information, essentially laying down the foundation of the molecular characterization of cell 384 

heterogeneity. Knowledge of genomic, transcriptomic, proteomic, and metabolomic processes 385 

paves the way to understanding how differential gene expression establishes cell heterogeneity 386 

for normal development and disease states.  387 

 388 
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Tables 638 

Table 1. Solutions and their uses.  639 

Solution /buffer Composition Usage Storage 
conditions 

Cysteine 
Hydrochloride 

2% (w/v) cysteine hydrochloride, pH 8 adjusted with 
10 N NaOH drop wise 

Removes the jelly 
coats surrounding 
embryos 

Make fresh  

Steinberg’s 
Solution (SS) 

60 mM NaCl, 0.67 mM KCl, 0.83 mM MgSO4, 0.34 
mM Ca(NO3)2, 4 mM Tris–HCl, 0.66 mM Tris base, in 
distilled water, pH 7.4. Autoclaved. Store in incubator 
for months. 

Provides media for 
culturing embryos 

4‒14 °C 

Lysis Buffer 1% sodium dodecyl sulfate (SDS), 150 mM NaCl, 20 
mM Tris-HCl pH 8, 5 mM EDTA in distilled water 

Lyses cells/tissues 4 °C 

Sample Solvent  50‒60% acetonitrile in water, 0.05% acetic acid (all 
solvents are LC-MS grade) 

Reconstitutes protein 
digest 

4 °C 

Background 
Electrolyte (BGE) 

25% acetonitrile in water, 1 M formic acid (all 
solvents are LC-MS grade) 

Electrolyte for CE 4 °C 

Electrsopray 
Sheath Liquid 

50% methanol in water, 0.1% formic acid (all solvents 
are LC-MS grade) 

Stabilizes ESI-MS 
operation 

4 °C 
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Table 2. Troubleshooting advice for CE-ESI-MS for bottom-up proteomics. 641 

Issues Potential Causes Advice 

No peptides detected Failed enzymatic digestion Repeat analysis; if problem persists, repeat 
protein digestion (use standard proteins as 
quality control) 

CE current drops 
drastically 

Capillary is clogged or a bubble was 
injected 

Flush the capillary with the BGE for ~10–15 
min; repeat analysis 

Electrospray is unstable Electrolysis in the CE-ESI interface; 
the sheath flow connection is loose 

Lower the spray voltage; revise connections; 
repeat analysis 
 

Low number of protein 
identifications 

Erroneous injection; inaccurate 
calibration of the mass spectrometer 

Repeat analysis; calibrate the mass spectrometer 
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FIGURES 643 

 644 

Figure 1. Analytical workflow for the bottom-up measurements of protein expression in single 645 

embryonic cells. A custom-built high-sensitivity capillary electrophoresis electrospray ionization 646 

mass spectrometer (CE-ESI-MS) is used to identify and quantify proteins.   647 
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 648 

Figure 2. Isolation of identified cells and processing of their protein content. Example shows 649 

how the epidermal-fated ventral-animal cell (named V11) was identified in the 16-cell Xenopus 650 

laevis embryo based on pigmentation, cell size, and location in reference to established cell fate 651 

maps (Moody, 1987b; a). The cell was processed via bottom-up proteomic workflow, and the 652 

resulting peptides collected for proteomic analysis. Key: DTT, dithiothreitol; IAD, 653 

iodoacetamide. Scale bar = 200 µm (embryo), 1.25 mm (vial).  654 
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 655 

Figure 3. Schematics of the high-sensitivity proteomic analyzer. The platform integrates 656 

microanalytical capillary electrophoresis (CE), electrospray ionization (ESI), and high-resolution 657 

tandem mass spectrometry (HRMS2). Scale bar = 150 µm (ESI), 1.5 mm (CE panel). (Figure 658 

adapted with permission from Ref. (Lombard-Banek et al., 2016a))  659 
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 660 

Figure 4. Peptide identification/quantification in CE-ESI-HRMS2 using a bottom-up strategy. 661 

(A) Peptides are electrophoretically separated (left panel) and their accurate mass is measured 662 

(right panel). (B) Peptide signals are sequenced by tandem MS (MS2). For example, a signal 663 

was detected with m/z 572.33 at ~50 min separation, which was assigned to the sequence 664 

LGLGLELEA based on the MS2 data. (C) Peptides are quantified and assigned to the source 665 

protein. Tandem mass tags (TMT) with different m/z values are used to barcode peptides from 666 

different cells, allowing their simultaneous analysis (multiplexing) with higher throughput (left 667 

panel). For example, the sequence LGLGLELEA was unique to the voltage-dependent anion 668 

channel 2 protein in the Xenopus proteome. The presence of other peptides allowed identifying 669 

this protein in high sequence coverage; see detected sequence in green (right panel). 670 
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 671 

Figure 5. Examples of protein identification–quantification between single embryonic cells. (A) 672 

The D11, V11, and V21 cells have different tissues fates in the frog Xenopus laevis. Scale bars: 673 

250 µm. (Figure reprinted with permission from (Onjiko et al., 2015b)). (B) These cells were 674 

dissected from different 16-cell Xenopus laevis embryos and analyzed using multiplexed (left 675 

panel) and label-free quantification (right panel). Volcano plots reveal gene translation 676 

differences between the V11, D11, and V21 cell types (left). Pearson correlation analysis of 677 

protein expression finds similar protein expression for the majority of proteins between D11 678 

blastomeres, and detectable differences for others (right panel). (Figures adapted with 679 

permission from (Lombard-Banek et al., 2016a; Lombard-Banek et al., 2016b)). 680 
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