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Alternative splicing promotes tumour
aggressiveness and drug resistance in
African American prostate cancer
Bi-Dar Wang1,2, Kristin Ceniccola1, SuJin Hwang3, Ramez Andrawis4, Anelia Horvath1, Jennifer A. Freedman5,

Jacqueline Olender1, Stefan Knapp6,7, Travers Ching8, Lana Garmire8, Vyomesh Patel9,

Mariano A. Garcia-Blanco10, Steven R. Patierno5 & Norman H. Lee1

Clinical challenges exist in reducing prostate cancer (PCa) disparities. The RNA splicing

landscape of PCa across racial populations has not been fully explored as a potential

molecular mechanism contributing to race-related tumour aggressiveness. Here, we identify

novel genome-wide, race-specific RNA splicing events as critical drivers of PCa aggressive-

ness and therapeutic resistance in African American (AA) men. AA-enriched splice variants

of PIK3CD, FGFR3, TSC2 and RASGRP2 contribute to greater oncogenic potential compared

with corresponding European American (EA)-expressing variants. Ectopic overexpression of

the newly cloned AA-enriched variant, PIK3CD-S, in EA PCa cell lines enhances AKT/mTOR

signalling and increases proliferative and invasive capacity in vitro and confers resistance to

selective PI3Kd inhibitor, CAL-101 (idelalisib), in mouse xenograft models. High PIK3CD-S

expression in PCa specimens associates with poor survival. These results highlight the

potential of RNA splice variants to serve as novel biomarkers and molecular targets for

developmental therapeutics in aggressive PCa.
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P
rostate cancer (PCa) is the most commonly diagnosed
cancer and the second leading cause of cancer death among
American men1. Striking population disparities in PCa risk

and clinical outcome have been observed across racial groups.
Notably, African American (AA) men exhibit 1.6-fold higher
incidence and 2.4-fold higher mortality rates of PCa compared
with European American (EA) men2,3. Socioeconomic factors
remain a major component accounting for the PCa disparities
between AA and EA populations3,4. However, higher mortality
and recurrence rates are still observed in AA PCa even after
adjustment of socioeconomic factors5, suggesting that intrinsic
biological differences also play a contributing role in PCa
disparities6–10.

Alternative splicing (AS) is a post-transcriptional process
allowing for the generation of alternative mRNA transcripts that
encode structurally and functionally disparate protein isoforms.
Next-generation sequencing suggests that 490% of human genes

undergo AS11, and the resulting complexity in the transcriptome
explains how B20,000 protein-coding genes in the genome can
lead to 4250,000 distinct proteins in the proteome.
Accumulating evidence indicates that alternative and/or
aberrant splicing of precursor (pre)-mRNA plays an important
but largely underappreciated role in cancers12–15, including
PCa16. For example, the B-cell lymphoma 2-like 1 (BCL2L1)
pre-mRNA is alternatively spliced into two variants, Bcl-xS and
Bcl-xL, encoding protein isoforms with opposite biological
effects17. Bcl-xS is a pro-apoptotic protein, while BcL-xL has
anti-apoptotic properties conferring chemotherapy resistance in
PCa cell line PC-3 (ref. 15) as well as castration-resistant
xenograft growth18. Manipulation of splicing to decrease Bcl-xL
and increase Bcl-xS levels has been shown to reduce tumour
load19. Fibroblast growth factor receptor 2 (FGFR2) pre-mRNA
also undergoes AS, where FGFR2-IIIb is predominately expressed
in epithelial cells and FGFR2-IIIc is primarily associated with
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Figure 1 | Differential alternative splicing events in AA PCa compared with EA PCa and AA NP compared with EA NP specimens. (a) Principal

component analysis (PCA) plot and two-dimensional (2D) clustergram depicting 3,112 significant differentially expressed exons in 20 independent AA PCa

versus 15 independent EA PCa specimens. (b) PCA plot and 2D clustergram depicting 3,384 significant differentially expressed exons in 20 AA NP versus

15 EA NP specimens. AA and EA specimens are represented by red and blue circles/bars, respectively. Rows represent specimens and columns represent

exons in hierarchical clustergrams. Log2 expression values of exons were subjected to 2D unsupervised hierarchical clustering using average linkage

method and Euclidean distance. (c) Venn diagrams of DS events in AA PCa versus EA PCa and AA NP versus EA NP, DS events in EA PCa versus EA NP

and AA PCa versus AA NP and differentially expressed genes in AA PCa versus EA PCa and DS events in AA PCa versus EA PCa. (d) A majority of the

genes with DS events in AA PCa versus EA PCa were functionally associated with cancer. The top three ‘other diseases’ were gastrointestinal disease,

organismal injury and abnormalities and reproductive system disease.
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epithelial-to-mesenchymal transition of PCa cells20. Another
example is the TMPRSS2-ERG gene fusion commonly found in
PCa and associated with poor clinical outcome21,22. In a
comparative study of TMPRSS2-ERG variants ectopically
overexpressed in prostatic epithelial cells, variants containing a
72 base exon (þ 72) mediate increased cell proliferation and
invasion14. Androgen receptor (AR) signalling is critically
associated with PCa growth23 and splice variant AR-V7 is
overexpressed in hormone-refractory PCa, being correlated with
poor patient survival and higher recurrence rates24,25.

Despite the significance of alternative/aberrant splicing in
PCa progression irrespective of race, the occurrence of race-
specific/-enriched PCa splicing events and a causal relationship
between these events and observed PCa disparities remains
unexplored. For example, it is unclear whether FGFR2-IIIc,
TMPRSS2-ERGþ 72, AR-V7 and/or other as yet undiscovered
variants associated with more aggressive PCa might be pre-
dominantly or selectively expressed in AA PCa, thus contributing
to PCa disparities. In addition, it is unknown whether differences
in mRNA splicing along racial/population lines occur in only a
limited number of genes or more globally across the transcrip-
tome. If the latter, it will be important to ascertain whether these
genome-wide, differential splicing (DS) events are overrepre-
sented within specific gene ontologies (that is, proto-oncogenes,
tumour suppressor genes). Lastly, assessment of the functional
consequences of any race-specific (or enriched) splicing events
will provide critical further insight into the genetic/molecular
mechanisms underlying PCa disparities. To this end, we have
applied a functional genomics approach to address these
questions. Our results underscore the leveraging of population
differences in tumour biology to discover novel splice variants
that will likely serve as novel biomarkers and/or molecular targets
for developmental therapeutics against aggressive AA PCa,
identify previously hidden splice variants encoding oncogenic
signalling proteins resistant to small-molecule inhibitors (SMIs),
and assimilate splice variant information for prognostication of
cancer aggressiveness and/or therapeutic responsiveness.

Results
Genome-wide DS events in AA versus EA PCa. A total of
35 PCa (20 AA/15 EA) and 35 patient-matched normal prostate
(NP) specimens (20 AA/15 EA) derived from chemo-/hormone-/
radiation-naive patients were interrogated using the Affymetrix
Human Exon 1.0 ST GeneChip to assess DS events. Gleason
scores of PCa specimens (range 6–8) and patient ages (range
49–81 years) were not significantly different between AA and EA
cohorts (P40.05, Fisher’s exact test). In AA PCa versus EA PCa
and AA NP versus EA NP, the significant differentially expressed
exons (Fig. 1a,b) could be modelled using the AS analysis of
variance (ANOVA) approach26 into 2,520 and 2,849 DS events,
respectively (Supplementary Data 1 and Supplementary Fig. 1).
As depicted in the Venn diagram (Fig. 1c), 1,876 genes
(2,520 minus 644) exhibited DS events unique to AA PCa
versus EA PCa, 2,205 differentially spliced genes (2,849-644) were
unique to AA NP versus EA NP and 644 DS events were in
common (that is, DS events preexisting in AA NP versus EA NP
and preserved in AA PCa versus EA PCa). Examples of genes
with preexisting DS events included PIK3CD, ITGA4 and MET,
while RASGRP2, NF1 and BAK1 are examples of differentially
spliced genes occurring only in AA PCa versus EA PCa. In EA
PCa versus EA NP and AA PCa versus AA NP, the significant
differentially expressed exons (Supplementary Fig. 2) could be
modelled into 1,297 and 1,733 DS events, respectively (Fig. 1c).
Presumably, a subset of 1,575 genes (1,733� 158) with DS events
unique to AA PCa may contribute to PCa disparities. Examples in

this category included FGFR3 and TSC2 (Supplementary Data 1).
On the other hand, a subset of 158 genes with DS events in
common to both AA and EA PCa may contribute to PCa
progression regardless of race (Fig. 1c). Consistently, such
genes included TMPRSS2 and AR (Supplementary Data 1c,d).
Analysis of the exon array data employing both gene-wise9,10 and
AS ANOVA modelling approaches26 identified 898 genes
(1,188� 290) that were differentially expressed but not
exhibiting DS in AA PCa versus EA PCa, and 2,230
(2,520� 290) genes undergoing DS but not differential
expression (for example, level of variant ‘A’ for gene ‘X’ in AA
PCa equivalent to variant ‘B’ for gene ‘X’ in EA PCa; Fig. 1c).

Prevalence of DS events in cancer-associated pathways. We
categorized genes undergoing DS in AA PCa versus EA PCa
based on molecular function, gene ontology and disease asso-
ciation. Relevant cancer-related ontologies included cell growth
and proliferation, cell death and survival, cellular movement, cell
adhesion and DNA damage/repair (P values ranged from
6.54� 10� 12 to 1.88� 10� 2, Fisher’s exact test; Supplementary
Data 2). Notably, a large fraction (1,816 out of 2,520, 71.8%)
of the differentially spliced genes were discovered to be over-
represented across multiple cancers, including colorectal, renal,
breast, brain, lung, stomach, prostate and haematologic cancers
(P values ranged from 1.43� 10� 9 to 1.96� 10� 2, Fisher’s exact
test; Fig. 1d and Supplementary Data 2). There was an unexpected
skewing in the distribution of in-frame versus out-of-frame exon
skipping events in cancer-related genes, where in-frame events
were significantly favoured in AA over EA PCa specimens
(Po0.05, Fisher’s exact test; Supplementary Table 1). This finding
was in line with an overall significant preference for in-frame
events across all genes (cancer-related and noncancer-related) in
AA PCa specimens (Supplementary Table 1). In the case of
noncancer-related genes only, there was no significant skewing of
in-frame distribution events between AA versus EA PCa
(Supplementary Table 1).

We also examined the distribution of DS events across cell
signalling pathways. There was a striking significant over-
representation of DS events in multiple oncogenic signalling
pathways, including epidermal growth factor (EGF), vascular
endothelial growth factor (VEGF), phosphatase and tensin
homolog (PTEN), phosphatidylinositol-3-kinase (PI3K)/AKT,
extracellular signal–regulated kinase/mitogen-activated protein
kinase (ERK/MAPK) and nuclear factor-kB (NF-kB) signalling
(Fisher’s exact test, P values ranged from 0.00126 to 0.02089;
Supplementary Fig. 3 and Supplementary Data 3). Interestingly,
many of these same pathways are known to be mutated based on
earlier cancer genome sequencing studies27–29. A composite
oncogenic signalling pathway comprising DS events found in AA
PCa versus EA PCa is depicted in Fig. 2. Taken together, our data
provide strong evidence that DS events may play a critical role in
PCa disparities.

Validation of AS variants in AA versus EA PCa. We proceeded
to validate a subset of both proto-oncogenes and tumour
suppressor genes with DS events in our composite cancer sig-
nalling pathway, including PIK3CD, FGFR3, TSC2, ITGA4, MET,
NF1, BAK1, ATM and RASGRP2 (Fig. 2). Real-time PCR
(RT-PCR) was performed on RNA samples obtained from AA
and EA PCa specimens originally interrogated by the exon arrays.
Primer pairs or trios were designed for RT-PCR to amplify
simultaneously multiple variants of each gene (Fig. 3a). As shown
in Fig. 3b, AA PCa specimens contained both PIK3CD long
(PIK3CD-L, including exon 20) and short (PIK3CD-S, missing
exon 20) variants, whereas EA PCa samples predominately
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expressed PIK3CD-L. Hence, the RT-PCR results were in agree-
ment with the exon array data, indicating the presence of an AA-
enriched PIK3CD-S variant. Analogous findings were obtained
where either a short or long variant of each gene was confirmed
by RT-PCR to be enriched or uniquely expressed in AA (TSC2-S,

ITGA4-L, MET-L, BAK1-L) or EA PCa (FGFR3-L, ITGA4-S,
MET-S, NF1-S, BAK1-S) (Fig. 3b; Supplementary Fig. 4 for
quantitative RT-PCR (qRT-PCR) results from n¼ 22–25 AA and
n¼ 21–24 EA PCa specimens). Exon array data also revealed two
alternative RASGRP2 transcripts with apparent mutually
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exclusive exon skipping events (Fig. 3a and Supplementary
Fig. 1d). RT-PCR validation likewise confirmed that a RASGRP2-b
variant (exon 11 excluded) was exclusively expressed in AA PCa,
while a RASGRP2-a variant (exon 12 excluded) was enriched in
EA PCa (Fig. 3b and Supplementary Fig. 4). We were unable to
validate DS of ATM, whereas two additional genes (GSK3A and
EPHA1) identified by exon arrays as not undergoing DS were
confirmed by RT-PCR. In summary, there was strong agreement
(10/11, 91%) between exon array and RT-PCR results, thus
providing an internal quality metric to our global DS analysis of
AA and EA PCa (see Methods for additional metrics).

The race-dependent expression of PIK3CD variants was
particularly interesting owing to recent findings implicating
PI3Kd (p110d) kinase activity in haematologic malignancies as
well as other cancer types30–33. In a separate cohort of PCa
specimens obtained from 32 AAs (age range 52–76 years, Gleason
score range 6–8) and 30 EAs (age range 50–82 years, Gleason
score range 6–8; not significantly different from AA, Fisher’s
exact test, P40.05), quantitative RT-PCR validation was
performed reaffirming significantly higher levels of PIK3CD-S
relative to PIK3CD-L in AA versus EA PCa specimens (Fig. 3c).
Given the robustness and potential significance of these findings,
subsequent in vitro and in vivo studies centred on the PIK3CD
variants, as described below.

Molecular cloning of PIK3CD splice variants. The AA-enriched
PIK3CD-S variant has never before been described in the litera-
ture nor the UCSC (University of California, Santa Cruz)
(genome.ucsc.edu) or Ensembl Genome Browser (www.ensem-
bl.org). Consequently, we cloned the full-length versions of
PIK3CD-S from AA PCa cell line MDA PCa 2b, and PIK3CD-L
from MDA PCa 2b as well as EA PCa cell lines VCaP and LNCaP
using standard molecular approaches (50- and 30-RACE (rapid
amplification of cDNA ends)34). We likewise cloned matching
PIK3CD-S and PIK3CD-L variants from PCa patient specimens.
Supplementary Fig. 5 schematically depicts the full-length clones
of PIK3CD-L (comprising a total of 24 exons) along with three
different AA PIK3CD-S variants (variant excluding exon 8, exon
20 or both exons 8 and 20) and one AA large deletion variant of
the PIK3CD gene. Interestingly, exclusion of exon 8 eliminates a
30-amino acid segment situated between the Ras-binding and
C2 domains, while exclusion of exon 20 deletes a 56-amino acid
segment located in the catalytic domain of PI3Kd. In subsequent
functional studies involving ectopic overexpression of the short
variant (see below), we concentrated our efforts on the variant
missing exon 20 given the possibility that kinase activity may be
affected.

PIK3CD-S isoform augments invasion and proliferation. We
hypothesized that the splice variants specific or enriched in AA
PCa may contribute to a more aggressive oncogenic phenotype.
To test this, we designed exon-specific and exon junction-specific
short interfering RNAs (siRNAs) to target PIK3CD-L and
PIK3CD-S, respectively, in EA and AA PCa cell lines and
examined the functional consequences of these knockdowns on
cell proliferation and invasion. A similar strategy was applied to
investigate the biological significance of the variants of FGFR3,
TSC2 and RASGRP2. VCaP and MDA PCa 2b cells were used as
population-specific PCa models, as these two cell lines represent
bone metastases derived from castration-resistant EA and AA
PCa patients, respectively35,36. Transfection of VCaP cells with
exon 20-specific siRNA (siP20) successfully knocked down
PIK3CD-L expression by 48-fold compared with nonsense
siRNA (Fig. 4a, left panel), resulting in a significant loss of
proliferative and invasive function in VCaP cells (Fig. 4b, left).

Conversely, in MDA PCa 2b cells, a 45-fold knockdown of
PIK3CD-L increased the ratio of PIK3CD-S/PIK3CD-L expression
by nearly twofold (Fig. 4a, right panel; 1.88 S/L ratio for nonsense
versus 3.46 S/L ratio for siP20-transfected cells), and this
‘enrichment’ of AA-enriched PIK3CD-S subsequently enhanced
proliferation and invasion of the AA cell line (Fig. 4a, right
panel). Moreover, MDA PCa 2b cells exhibited significantly
higher basal invasive and proliferative capacities compared with
VCaP cells (proliferation and invasion of siNS-transfected MDA
PCa 2b versus siNS-transfected VCaP; Fig. 4b, left and right
panels). To further evaluate the functional impact of PIK3CD-S
expression on cell proliferation and invasion, the EA and AA PCa
cell lines were transfected with siPj (siRNA specifically targeting
the junction of exons 19 and 21). Transfection of siPj had no
effect on VCaP proliferation and invasion, as expected since this
EA line does not significantly express PIK3CD-S (Fig. 4a,b; right
panels). On transfection of MDA PCa 2b cells with siPj, PIK3CD-S
expression was significantly knocked down (Fig. 4a, right),
resulting in a loss of cell proliferation and invasion (Fig. 4b,
right). Taken together, these results suggest that PIK3CD-S is the
more aggressive variant, promoting PCa proliferation and invasion
to a greater extent than PIK3CD-L.

Several additional exon-specific siRNAs were designed to test
whether other AA-specific/-enriched splice variants also func-
tionally contribute to greater PCa aggressiveness. SiRNAs
targeting exon 14 (siFGFR3-ex14), exon 20 (siTSC2-ex20) and
exon 11 (siRASGRP2-ex11) were used to selectively suppress
expression of FGFR3-L, TSC2-L and RASGRP2-a variants
(predominately expressed in EA), respectively. Upon siRNA-
mediated knockdown of FGFR3-L, TSC2-L or RASGRP2-a
(Supplementary Fig. 6a–c, top panels) in MDA PCa 2b cells,
the expression ratios of FGFR3-S/FGFR-L, TSC2-S/TSC2-L and
RASGRP2-b/RASGRP2-a increased and correlated with augmen-
ted invasive and/or proliferative capacity of the AA-derived MDA
PCa 2b cells (Supplementary Fig. 6a–c, bottom panels).
Collectively, our in vitro studies strongly suggest that the
AA-enriched splice variants PIK3CD-S, FGFR3-S, TSC2-S and
RASGRP2-b promote PCa aggressiveness.

PIK3CD-S isoform promotes activation of AKT/mTOR signalling.
As PI3K plays a central role in the PI3K/AKT/mammalian
target of rapamycin (mTOR) signalling pathway, we examined
the ability of different PI3Kd isoforms (encoded by PIK3CD-L
and PIK3CD-S) to activate downstream signalling components
within this pathway. SiRNA (siP20)-mediated knockdown of
PIK3K-L expression (confirmed by qRT-PCR) led to a drastic
decrease in AKT phosphorylation at Thr308 and Ser473
while moderately decreasing (approximately twofold) phosphor-
ylation of mTOR in EA VCaP cells (Fig. 4c, top panel). In con-
trast, knockdown of PIK3CD-L in AA MDA PCa 2b cells
(resulting in an increased PIK3CD-S/-L ratio confirmed by
qRT-PCR) led to a sizable increase (two- to threefold) in
phosphorylation of AKT, mTOR and ribosomal protein S6 (S6)
(Fig. 4c, top panel).

In parallel experiments, siRNA (siPj)-mediated knockdown of
PIK3K-S (confirmed by qRT-PCR) in MDA PCa 2b cells resulted
in a drastic decrease in the phosphorylation status of AKT,
mTOR and S6 (Fig. 4c, bottom panel). As expected, treatment of
VCaP cells with the siRNA siPj had negligible effects on AKT,
mTOR and S6 phosphorylation, as this EA line does not
significantly express PIK3CD-S. Taken together, the distinct
phosphorylation patterns of AKT, mTOR and S6 in AA and EA
PCa cell lines upon selective knockdown of either PIK3CD-L or
PIK3CD-S again suggested that PIK3CD-S is the more aggressive
variant, promoting oncogenic signalling.
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PI3Kd-S isoform is resistant to SMIs. We tested whether
pharmacological inhibition of PI3Kd isoforms represented a
potential strategy for ameliorating PCa aggressiveness. CAL-101,
an SMI specific for PI3Kd (refs 37–39), was employed to assess its
inhibitory effects on oncogenic signalling and proliferation in EA
VCaP and PC-3 cells that stably overexpressed the His-tagged
PI3Kd-S (excluding exon 20) or PI3Kd-L isoform (including
exon 20). Equivalent levels of PI3Kd isoform expression in each
cell line was confirmed by western blot with a His tag antibody
(Fig. 5a). In both EA cell lines, ectopic overexpression of PI3Kd-S
was associated with a two- to threefold greater phosphorylation of
AKT and S6 compared with ectopic overexpression of PI3Kd-L
(Fig. 5a, absence of CAL-101 treatment). CAL-101 (50 mg kg� 1)
induced a significant reduction in basal AKT and S6 phosphor-
ylation (Fig. 5a) and a dose-dependent inhibition of proliferation
in both EA cell lines overexpressing the PI3Kd-L variant (Fig. 5b).

In contrast, CAL-101 (50 mg kg� 1) had negligible effects on
inhibiting basal AKT signalling in EA PCa cell lines over-
expressing PI3Kd-S, as phosphorylation states of AKT and S6
were comparable to vehicle-treated cells (Fig. 5a). In agreement,
5-bromodeoxyuridine labelling assays demon-
strated that proliferation of VCaP and PC-3 cells ectopically
overexpressing PI3Kd-S was greater than cells over-
expressing PI3Kd-L (Supplementary Fig. 7). Moreover,
PI3Kd-S-overexpressing VCaP and PC-3 cells were not effectively
inhibited by CAL-101 treatment; only at extreme doses of CAL-
101 (Z30 mM) was proliferative activity in PC-3 cells significantly
impaired (Fig. 5b). In contrast, the AKT inhibitor MK-2206 (ref.
40) dose-dependently decreased proliferation in both PI3Kd-S-
and PI3Kd-L-overexpressing VCaP and PC-3 cells (Fig. 5c).
These results suggest that PI3Kd-S-stimulated proliferation is
resistant to CAL-101 inhibition in sharp contrast to PI3Kd-L;
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while inhibition of AKT, which is downstream of PI3Kd-S,
effectively blocked proliferation.

To examine the effects of PIK3CD splice variants on tumour
growth in vivo, we subcutaneously injected 2� 106 PC-3 cells
stably overexpressing equivalent amounts of the PI3Kd-L or
PI3Kd-S (missing exon 20) isoform into the left hind flank
of nonobese diabetic–severe combined immunodeficient
(NOD-SCID) mice. Mice harbouring PI3Kd-L-overexpressing
or PI3Kd-S-overexpressing PC-3 cell xenografts were admini-
strated either vehicle (phosphate-buffered saline) or CAL-101
(50 mg kg� 1) by daily intraperitoneal (i.p.) injection. CAL-101
treatment for 30 days significantly reduced the growth of
PI3Kd-L-expressing xenografts compared with the vehicle treat-
ment (Fig. 6a,b). In contrast, mice with xenografts of PI3Kd-S-
expressing cells had negligible suppression of their xenograft

growth following CAL-101 treatment compared with vehicle-
treated animals (Fig. 6a,b).

We further examined the inhibitory effects of CAL-101 on
PI3Kd isoforms in an in vivo tumour metastasis model. The
1� 106 PIK3CD-L- or PIK3CD-S-overexpressing PC-3 cells
were injected into the tail vein of NOD-SCID mice, and animals
were subsequently administrated with vehicle or CAL-101
(50 mg kg� 1) via i.p. injection (3 times per week). After 8 weeks,
vehicle-treated mice carrying PI3Kd-L-overexpressing cells devel-
oped prominent tumour metastases in the lungs (Fig. 6c,d), while
the CAL-101 treatment group exhibited a 450% reduction
(Po0.05) of metastases (Fig. 6c,d). In comparison, CAL-101
treatment failed to significantly inhibit tumour metastases in mice
harbouring PI3Kd-S-overexpressing cells (Fig. 6c,d). Noteworthy,
the size of lung metastases (average area of nodules) in mice
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harbouring PI3Kd-S-overexpressing cells was slightly greater
(B15%) compared with animals with PI3Kd-L-overexpressing
cells, although not statistically significant (P40.05). Taken
together, the in vitro and in vivo functional studies suggest that
SMIs such as CAL-101 (competitive ATP binding inhibitors39,41)
may be ineffective against the PI3Kd-S isoform in AA PCa.

Cell-free PI3Kd isoform kinase assay. The consequence of
excluding exon 20 (168 bp) in the PIK3CD-S variant is an
in-frame deletion of 56 amino acids (residues 810–865) in the
catalytic domain of the PI3Kd-S isoform (Fig. 7a). To gain further
insight into the functional differences between PI3Kd isoforms,
the interaction of PI3Kd-L and -S with regulatory subunit p85a
was investigated. Whole cell lysates from transfected PC-3 cells
overexpressing p85a and either His-tagged PI3Kd-S or PI3Kd-L
were subjected to western analysis, demonstrating that each cell
line expressed equivalent levels of their respective PI3Kd isoform
as well as equal p85a expression (Fig. 7b, left panel). Interestingly,
co-immunoprecipitation (co-IP) of the PI3Kd/p85a complex
from whole cell lysates using an anti-His antibody demonstrated
that p85a bound with three- to fourfold greater proficiency to

PI3Kd-L compared with p85a binding to PI3Kd-S (Fig. 7b, right
panel, column E). Binding proficiency was inversely correlated
with PI3Kd isoform kinase activity (Fig. 7c, right panel).

Next, PI3Kd isoforms were purified from the lysates of PC-3
cells overexpressing either His-tagged PI3Kd-S or PI3Kd-L using
Ni-NTA resin columns. As shown in Fig. 7d (left and middle
panels), PI3Kd-S and -L purification was verified by western
blotting using anti-His or anti-PI3Kd antibody. Moreover, the
Ni-NTA resin column approach resulted in the isolation of PI3Kd
isoforms that were no longer bound to p85a (Fig. 7d; far
right panel, column E). Early reports have demonstrated that
PI3Ka/p85 and PI3Kb/p85 complexes are obligate and extremely
stable, being able to withstand high concentrations of urea or
detergent42–44. Our finding that PI3Kd and p85a co-exist as
monomers and complexes was unexpected. It should be noted,
however, that the nature of interaction between PI3Kd and p85 is
less well established, as these two proteins have been shown in
separate studies to either form a stable obligate complex42 or
coexist complexed together and uncomplexed from each other45.

Purified PI3Kd isoforms (minus p85a) were incubated with
vehicle, nonselective PI3K inhibitor wortmannin (100 nM)46 or
PI3Kd-specific inhibitor CAL-101 (100 nM), and subjected to a
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PI3K activity assay. In the absence of bound p85a, kinase activity
of PI3Kd-L was equivalent to PI3Kd-S (Fig. 7e, compare vehicle
treatments). In agreement, siRNA-mediated knockdown of p85a
in wild-type VCaP and PC-3 cells was associated with an increase
in invasive activity (Supplementary Fig. 8). Remarkably,
wortmannin and CAL-101 significantly inhibited the activity of
the PI3Kd-L isoform, but not the PI3Kd-S isoform (Fig. 7e).
These results demonstrate that PI3Kd-S maintains kinase activity
even in the presence of SMIs, supporting the in vitro and in vivo
results (Figs 5 and 6).

Discussion
The phenomenon of DS, much less global DS events, has not been
adequately explored as a possible mechanism underlying PCa
disparities. Potential involvement of the constitutively active AR-
V7 splice variant in PCa disparities has been suggested in a recent

study. Selective downregulation of miR-212 observed in AA PCa
is correlated with upregulation of splicing factor hnRNP-H1,
upregulation of AR-V7 and antiandrogen resistance in PCa cell
lines47. In contrast to this localized splicing event, our study
reveals that DS on a global scale may be a critical molecular
mechanism underlying PCa disparities. In a comparison of AA
PCa versus EA PCa, DS events were found to be highly prevalent
in cancer-associated genes and pathways (Supplementary Data 1
and 2). Interestingly, the number of genes harbouring predicted
DS events (2,520 genes) was B3� greater than the number of
differentially expressed, but not differentially spliced, genes
(886 genes). These findings have two major implications. First,
alternative/aberrant splicing of pre-mRNAs may have a greater
role than differential gene expression in driving PCa disparities.
Second, predicted DS events identified in our study were
statistically overrepresented in oncogenic signalling pathways.
In many cases, these same pathways are known to harbour a
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and the region encoded by exon 20 (56 amino acids) residing in the catalytic domain are indicated. (b) Co-immunoprecipitation (Co-IP) of His-tagged

PI3Kd/p85a complex from transfected PC-3 cells followed by western blot, and (c) PI3K activity assays. S, supernatant; W, wash fraction; E, eluted fraction.

Anti-His antibody was used in the Co-IP experiments, and anti-His, anti-p85a and anti-actin antibodies were used in the western blotting. *Significantly

different kinase activities in total lysates of PI3Kd-S versus PI3Kd-L-expressing cells, or purified PI3Kd-S/p85a versus PI3Kd-L/p85a complexes. Po0.05

using two-sided Student’s t-test. Data presented as mean±s.e.m. of n¼4 for each treatment group. (d) Purification of His-tagged PI3Kd-L and -S isoforms.

Western blot analysis of Ni-NTA resin-purified PI3Kd isoforms from transfected PC-3 cells using His and PI3Kd antibodies. FT, flow-through; W, wash

fraction; E, eluted fraction. Closed arrowheads indicate PI3Kd isoforms. (e) Cell-free kinase assay of L and S isoforms of PI3Kd in the presence of vehicle

(phosphate-buffered saline (PBS)), 100 nM wortmannin or 100 nM CAL-101. *Significantly different from vehicle control-treated PI3Kd-L isoform. Po0.05

by ANOVA with Dunnett’s post hoc test. Data presented as mean±s.e.m. from at least four independent experiments for each treatment group. Blots in

b,d are representative from at least three independent experiments with similar results. Variance was similar among groups being compared. Unprocessed

western images are shown in Supplementary Fig. 13.
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preponderance of gene mutations across different cancer types27–29.
Hence, DS adds another layer of complexity to the existing
molecular repertoire (gene mutation, expression, methylation7)
driving AA PCa aggressiveness.

Studies on AS indicate that approximately half of such events
occurring in the coding sequence are in-frame, while the
remaining events are frameshifts leading to truncated or extended
C-terminal proteins48,49. Remarkably, 70% of AA-enriched/-
specific variants in our composite oncogenic signalling pathway
(Fig. 2) were in-frame, including PIK3CD-S, FGFR2-S, FGFR3-S,
TSC2-S, RASGRP2-b, ATM-S and GSK3-S (Supplementary
Table 2). In comparison, only 27.3% of EA-enriched/-specific
DS events in our composite oncogenic signalling pathway
exhibited in-frame preservation (Supplementary Table 2), while
the remaining EA-enriched DS variants, including ITGA4-S,
MET-S, NF1-S, RASGRP2-a, mTOR-S and BAK1-S, were frame-
shifted. Why the vast majority of DS events appear to be in-frame
in AA PCa versus frame-shifted in EA PCa remains unresolved
(Supplementary Table 1). Presumably, the preponderance of AA
in-frame events detected in oncogenic signalling pathways may be
contributing to the more aggressive nature of AA PCa. Possible
mechanisms that could drive differences in AS events include
differential expression of trans-acting splicing factors47 and/or
single-nucleotide polymorphisms in cis-acting splicing elements
of alternatively spliced genes50. In fact, a number of splicing
factor mRNAs appear to be overexpressed (SRSF2, SRSF7) in AA
PCa compared with EA PCa9,10. Regarding the in-frame variants
(PIK3CD-L, FGFR3-L and TSC2-L) detected in EA PCa, each
conferred a less aggressive oncogenic phenotype compared with
the corresponding in-frame variants detected in AA PCa
(PIK3CD-S, FGFR3-S and TSC2-S).

Approximately one-third of the AA-enriched/-specific variants
identified in AA PCa were likewise present in patient-matched
NP specimens, whereas the remaining AA-enriched/-specific
variants found in PCa were absent in patient-matched NP
specimens and thus appear to be de novo events (occurring as NP
evolved into PCa). Accordingly, the AA-enriched/-specific
variants already present in NP specimens have the potential to
serve as inherent ‘at-risk alleles’ for poor PCa prognosis in AAs.
In comparison, the de novo appearance of tumour-specific
variants may drive poorer outcomes. PIK3CD-S would be an
example of a potential AA ‘at-risk allele’ contributing to increased
PCa aggressiveness upon disease presentation. Indeed, ectopic
overexpression of the AA-enriched PIK3CD-S in PCa cell lines
was demonstrated to enhance oncogenic potential (increased
invasion, proliferation and AKT/mTOR signalling) compared
with the corresponding EA-enriched PIK3CD-L. Moreover,
genetic manipulation of AA MDA PCa 2b cells to favour
expression of the -S variant over the -L variant likewise increased
oncogenic behaviour. Conversely, genetic manipulation in the
opposite direction decreased oncogenic behaviour. Interestingly,
survival plots generated from The Cancer Genome Atlas (TCGA)
RNA-sequencing data demonstrate that a high S/L ratio is
associated with significantly worse survival for PCa and trending
for worse survival in both breast and colon cancer
(Supplementary Fig. 9). Survival plots were not stratified by race
as this information is not currently available in TCGA. Given the
number of patients analysed, it seems highly probable that high S/
L ratio values may also be associated with a subset of EA patients,
suggesting that PIK3CD-S may be useful in predicting survival in
all patients irrespective of race. Besides PIK3CD-S, an additional
732 potential ‘at-risk alleles’ (for example, ITGA4-L, MET-L) were
identified that may be associated with poor PCa prognosis in
AAs. Further experimentation is needed to investigate whether
these variants can serve as novel biomarkers to address PCa
disparities. In contrast to the ‘at-risk alleles’, AA-enriched

variants FGFR-S and TSC2-S were detected in AA PCa, but not
in patient-matched NP specimens. The appearance of these
de novo variants during PCa formation may contribute to driving
the more aggressive PCa phenotype observed in the AA
population, since in vitro genetic manipulation favoring expres-
sion of these -S variants over the -L variants promoted
oncogenesis in MDA PCa 2b cells. It is noteworthy that three
PCa-associated splice variants identified in previous studies,
Bcl-xL, FGFR2-IIIc and TMPRSS2-ERGþ 72 (refs 14,15,20), did
not exhibit DS in our AA PCa versus EA PCa comparison
(Supplementary Data 1), suggesting that these variants may
contribute to PCa progression/aggressiveness in a race-indepen-
dent manner.

The identification of PIK3CD-S, a variant newly discovered and
cloned in our study, as an ‘at-risk allele’ for PCa aggressiveness is
germane given that PI3K signalling is aberrantly activated in a
variety of cancers and PI3K inhibitors have been developed
as targeted therapeutics51,52. Class IA PI3Ks consist of three
isoforms, including PI3Ka, PI3Kb and PI3Kd. Unlike
ubiquitously expressed PI3Ka and PI3Kb, PI3Kd appears to be
preferentially expressed in leukocytes53,54. Previous studies have
revealed a crucial role of PI3Kd in lymphoid and myeloid
malignancies39,55. Interestingly, accumulating evidence suggests a
functional role of PI3Kd in promoting nonhaematologic tumours
as well. For example, overexpression of PIK3CD mRNA and/or
PI3Kd protein has been detected in glioblastoma32,
neuroblastoma30, breast cancer33 and PCa31, and PIK3CD
overexpression has been implicated in promoting cell growth/
survival in breast cancer and neuroblastoma30,33. Consistent with
these findings, our immunohistochemistry experiments using a
pan-PI3Kd antibody likewise revealed strong expression of PI3Kd
protein in PCa specimens as well as PCa, breast cancer and colon
cancer cell lines (Supplementary Fig. 10). Importantly, our study
provides greater granularity by being the first to demonstrate the
relationship between expression of a race-enriched PIK3CD splice
variant and cancer aggressiveness as well as resistance to SMIs
targeting PI3Kd.

Aberrant pre-mRNA splicing has recently been demonstrated
to mediate therapeutic resistance in multiple cancer types. For
example, the constitutively active AR-V7 variant (lacking exonic
sequences encoding the ligand binding domain) confers resis-
tance to enzalutamide and abiraterone acetate in castration-
resistant PCa patients56. In addition, melanoma patients
harbouring BRAF splice variants encoding protein isoforms that
are missing the RAS-binding domain exhibited resistance to the
RAF inhibitor vemurafenib57. Noteworthy, these studies
did not investigate whether variant expression and therapeutic
responsiveness stratified along racial lines. We now provide
evidence that AA-enriched PIK3CD-S imparts PCa cell lines with
significant resistance to SMIs targeting PI3Kd, as demonstrated in
both in vitro assays and preclinical mouse models of PCa. This
short variant is missing exon 20, encoding a 56-amino acid
segment that is present in PIK3CD-L. Amino acids residing in the
exon 20-encoded cassette appear critical for the docking of
CAL-101 and wortmannin. Indeed, molecular modelling studies
predict that Glu826 and Val828 (missing in PI3Kd-S) undergo
hydrogen bonding with CAL-101 (ref. 58). Noteworthy, overall
response of indolent lymphoma and chronic lymphocytic
leukaemia to CAL-101 ranges from 48 to 81% (refs 59–61).
Given our findings, it would be of interest to determine whether
patients with primary resistance harbour malignant cells expressing
CAL-101-resistant PI3Kd-S, while responsive patients harbour
malignant cells expressing CAL-101-sensitive PI3Kd-L.

P85 regulatory subunits are known binding partners of class I
PI3Ks, resulting in protein stabilization and suppression of basal
kinase activity62,63. Somatic mutations in PIK3R1 (encoding
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p85a) have been identified that abrogate the inhibitory action of
p85a on PI3Ka in cancers64,65. Our cell-free assays demonstrated
that p85a binds more efficiently with PI3Kd-L compared with
PI3Kd-S. This interaction appears to be responsible for the lower
kinase activity exhibited by PI3Kd-L, as disruption of binding led
to a long isoform with increased kinase activity comparable to
PI3Kd-S (Fig. 7c,e). The amino acid Asn334 located on the
N-terminal side of PI3Kd has been postulated to serve as a critical
contact point with p85a (ref. 66). Our findings suggest that amino
acids 810–865, encoded by exon 20 and missing in PI3Kd-S, may
also contain essential amino acids required for efficient coupling
to p85a. Alternatively, amino acids 810–865 permits PI3Kd-L to
adopt a conformation where Asn334 (and other amino acids) is
available to interact with p85a.

The identification and functional validation of global AS in
cancer pathogenesis remains challenging and largely unexplored.
We have undertaken such an analysis in the context of
race-related aggressive PCa and identified a large number of DS
events in cancer-associated pathways in EA and AA PCa, with a
subset of these events also being detected in patient-matched NP
specimens. These events will have both biological and clinical
consequences, case in point PIK3CD-S. The identification of novel
splice variants as biomarkers and/or development of therapeutics
targeting protein isoforms have the potential to reduce cancer
disparities.

Methods
Materials. EA PCa cell lines LNCaP (CRL-1740), VCaP (CRL-2876) and PC-3
(CRL-1435), and AA PCa cell line MDA PCa 2b (CRL-2422) were obtained from
the American Type Tissue Collection (ATCC, Manassas, VA, USA), authenticated
at the ATCC by short tandem repeat profiling of multiple unique genetic loci, and
tested negative for mycoplasma. Primer sequences for RT-PCR are provided in
Supplementary Table 3. The siRNAs were purchased from GE Dharmacon
(Lafayette, CO, USA) and sequences are as follows: nonsense, 50-CCA AAUUAU
ACCUACAUUGCU-30 ; siP20, 50-CCAACAUCCAACUCAACAA-30 ; siPj,
50UGAGGGAGGCCCUGGAUCGA-30; siF, 50-CUCGACUACUACAAGAAGA-30 ;
siTSC2-ex20, CUGCGCUAUAAAGUGCUCA-30 ; siRASGRP2-ex11, 50-CCACAU
CUCACAGGAAGAA-30 . siPIK3R1 Smart Pool (50-AGUAAAGCAUUGUGUC
AUA-30 , 50-CCAACAACGGUAUGAAUAA-30 , 50-GACGAGAGACCAAUAC
UUG-30, 50-UAUUGAAGCUGUAGGGAA A-30).

Collection of PCa clinical specimens. Prostate biopsy samples were collected at
the George Washington University Medical Faculty Associates according to an
institutional review board-approved protocol (IRB no. 020867). Informed consent
was obtained from all study participants. High-quality PCa and patient-matched
normal prostate (NP) biopsy cores from each of 20 AA and 15 EA primary PCa
patients were collected and processed for the exon array analysis. PCa cores were
determined by a pathologist to have Gleason scores of 6–7 (17 AA and 13 EA) or
8–9 (3 AA and 2 EA), while NP cores were diagnosed negative for cancer. There
were no significant differences (t-test, P40.05) between the two racial groups with
respect to age (average age for AAs was 62.3±8.2, average age for EAs was
63.3±9.2) and Gleason score (range 6–8; Fisher’s exact test, P40.05). No distant
metastasis was detected in the enrolled patients.

Exon array and statistical analyses. Total RNA was purified from PCa and
patient-matched NP biopsy cores using the RNeasy micro kit as per manufacturer’s
protocol (Qiagen, Valencia, CA, USA). Briefly, total RNA samples were extracted
using Trizol reagent, then treated with DNase I and further purified by RNeasy
MinElute spin column. High-quality RNA isolation was confirmed by using the
Agilent Bioanalyzer as per the manufacturer’s protocol (Agilent Technologies,
Santa Clara, CA, USA). For exon array analysis, 1 mg of purified RNA sample from
each biopsy core was interrogated with the Affymetrix Human Exon 1.0 ST
GeneChip (Santa Clara, CA, USA). Exon microarray data can be assessed at GEO
(Gene Expression Omnibus) using accession number GSE64331. The exon array
raw data were subjected to quantile normalization, GC-content adjustment, RMA
background correction and log2 transformation using Partek Genomics Suite 6.6
software (Partek Incorporated, St Louis, MO, USA). Detection of differential
expression at the gene level (gene-wise analysis) was performed in Partek using the
One-Step Tukey’s Biweight algorithm for detection of outlier probe-sets. Statistical
analysis of exon expression data was based on ANOVA with multiple-correction
testing using 10% false discovery rate (FDR)67 criterion. DS events were modelled
using the AS ANOVA algorithm26 implemented in Partek together with selection
of probe-sets exhibiting significant AS score determined at a 2% FDR. Principal

component analysis plots and two-dimensional hierarchical clustering of exon-level
data were performed using Partek. DS events were tested for statistical
overrepresentation in canonical signalling pathways by Fisher’s exact test using the
Ingenuity Pathway Analysis (IPA) program (Ingenuity Systems, Redwood City,
CA, USA).

RT-PCR validation of AS variants in AA and EA PCa. QRT-PCR was performed
using the 7300 Real-Time PCR System (Applied Biosystems, Foster City, CA, USA)
to validate and quantify AS events. Primers were designed to amplify the flanking
regions of skipped exons or the junctions across catenated exons of variant mRNAs
(Fig. 3b). Amplified RT-PCR products were quantified and normalized to house-
keeping genes, EIF1AX and PPA1, using the DDCt approach9,10. Primer sequences
for RT-PCR validation are listed in Supplementary Table 3.

Molecular cloning of PIK3CD-S and PIK3CD-L variants. RT-PCR was performed
to amplify PIK3CD-L and PIK3CD-S transcript variants from purified RNA of
PC-3, VCaP and MDA PCa 2b cells (ATCC, Manassas, VA). PC-3 and VCaP
cells were maintained in Dulbecco’s modified Eagle’s medium (DMEM; Life
Technologies, Gaithersburg, MD, USA) supplemented with 10% fetal bovine serum
(FBS), while MDA PCa 2b cells were grown in BRFF-HPC-1 medium (AthenES,
Baltimore, MD, USA) supplemented with 20% FBS. All the cell lines were grown at
37 �C and 5% CO2. Primers were designed according to the National Center for
Biotechnology Information (NCBI) reference sequences of PIK3CD mRNA
(NM_005026.3). The forward primer contained the start codon (bold)
(50-ATGCCCCCTGGGGTGGACT-30) and the reverse primer was upstream of the
stop codon (50-CTGCCTGTTGTCTTTGGACA-30). Full-length PCR products
were ligated into pcDNA3.1/V5-His TOPO vector (K4800-01, Invitrogen, Grand
Island, NY, USA) using the manufacturer’s protocol. A total of 8–10 independent
clones were selected for each of the amplified PIK3CD-L and PIK3CD-S variants
and sequence verified. The consensus sequences of PIK3CD-S and PIK3CD-L
mRNAs were deposited to GeneBank (accession number KU612116 and
KU612117). The plasmids pcDNA3.1-PIK3CD-L/V5-His and pcDNA3.1-
PIK3CD-S/V5-His were individually transfected into the PCa cell lines (VCaP and
PC-3) using the cationic lipid-mediated method9 to establish stable cell lines
overexpressing PIK3CD-L or PIK3CD-S.

SiRNA-mediated knockdown in PCa cell lines. VCaP and MDA PCa 2b cells
were grown in DMEM with 10% FBS for 24 h, and then were transfected for 24 h
with siRNAs (50 nM) designed to target splice variants of PIK3CD, FGFR3, TSC2 or
RASGRP2 using DharmaFECT4 transfection reagent (Dharmacon), according to
the manufacturer’s protocol. The in vitro functional assays, including cell pro-
liferation and invasion, were performed following siRNA transfections for 24 h.
Cell proliferation and invasion assays were performed using 5-bromodeoxyuridine
Cell Proliferation Assay kit (Calbiochem, Billerica, MA, USA) and the Matrigel
Invasion Chambers (BD Biosciences, San Jose, CA, USA), respectively, as per the
manufacturers’ protocol9,10.

Antibodies. Antibodies used in western blot analysis were rabbit monoclonal
antibodies for pAKTTyr308, pAKTSer473, AKT, pmTOR, mTOR, pS6 and S6
(2965, 4058, 4691, 2971, 2983, 4857 and 2983, Cell Signaling Technology, Danvers,
MA, USA), rabbit polyclonal antibodies for His-tag (ab18184, Abcam, Cambridge,
MA, USA), HA-tag, PI3Kd, p85a and b-actin (sc-7392, sc-55589, sc-1637 and
sc-4778, Santa Cruz Biotechnology, Santa Cruz, CA, USA). Horseradish perox-
idase-conjugated secondary antibodies for rabbit and mouse IgG were purchased
from Southern Biotech (Birmingham, AL, USA).

In vivo xenograft and metastasis models. All animal work was approved by the
George Washington University institutional animal care and use committee
(protocol A272). Male NOD-SCID mice, 4–6 weeks old, were purchased from the
Jackson Laboratory (Bar Harbor, ME, USA). To establish a PCa xenograft model,
2� 106 PC-3 cells stably overexpressing PIK3CD-L or PIK3CD-S were sub-
cutaneously injected into the left flank of NOD-SCID mice. Tumour xenograft
growth was measured with calipers and the volume was determined as 1/2�
length�width2. Mice were randomized into groups once the average tumour size
reached B200 mm3 and treated with vehicle (phosphate-buffered saline) or
CAL-101 (50 mg kg� 1) through daily i.p. injections. After 30 days, mice were
euthanized and the dissected xenografts were photographed and weighed using a
blinded design.

To establish the PCa metastasis model, 1� 106 PC-3 cells stably overexpressing
PIK3CD-L or PIK3CD-S were injected into the tail vein of NOD-SCID mice. The
mice were then treated with vehicle or CAL-101 (50 mg kg� 1) via i.p. injections, 3
times a week. After 8 weeks, lungs of mice were collected and stained with India ink
and bleached with Fekete’s solution (70% ethanol, 3.7% formaldehyde, 0.75 M
glacial acetic acid). India ink-stained lungs were photographed and lung metastases
were quantified using the NIH ImageJ program68.
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Purification of His-tagged PI3Kd protein. PC-3 cells stably overexpressing
PIK3CD-L or PIK3CD-S were maintained in DMEM (Life Technologies) supple-
mented with 10% FBS. After growing the cells for 24 h, cell extracts were prepared
and His-tagged PI3Kd protein was purified using a column HisPur Ni-NTA
purification kit (Pierce Biotechnology, Rockford, IL, USA). Briefly, cell lysates were
mixed with Ni-NTA resin and incubated at room temperature for 30 min. After
incubation, the resin was washed with wash buffer (25 mM imidazole, pH 7.4) and
applied to a HisPur Ni-NTA spin column, centrifuged and wash buffer eluate
discarded after centrifugations. His-tagged proteins were eluted from the resin by
adding one-resin-bed volume of elution buffer (250 mM imidazole, pH 7.4). The
purified PI3Kd-His protein was mixed with 2� Laemmli sample buffer, boiled and
analysed by immunoblotting.

Co-IP of PI3Kd/p85 complex. Plasmids pcDNA3.1-PIK3CD-S/V5-His (or
pcDNA3.1-PIK3CD-L/V5-His) and pSV-p85a (Addgene, Cambridge, MA, USA)
were co-transfected into PC-3 cells. After growing the cells for 48 h, the
co-transfected cells were collected and cells were lysed with RIPA lysis buffer
(Santa Cruz Biotechnology). The cell lysates were then subjected to Co-IP
assays with anti-His antibody (ab18184, Abcam) and immobilized on protein
G-Sepharose beads (Thermo Scientific, Waltham, MA, USA). Cell lysates and
precipitates were subjected to western blotting, and visualized by enhanced
chemiluminescence system (Thermo Scientific, Waltham, MA, USA).

In vitro assay of PI3Kd activity. PI3Kd activity was evaluated with a PI3K
activity/inhibitor assay kit (Millipore, Billerica, MA, USA) according to the man-
ufacturer’s instructions. Briefly, purified His-tagged PI3Kd-L or PI3Kd-S isoform
was pretreated with the PI3Kd inhibitor (100 nM of wortmannin or 100 nM of
CAL-101) or vehicle in 96-well plates for 10 min and subjected to a competitive
ELISA. PIP2 substrate and kinase reaction buffer were added to the pretreated
His-tagged PI3Kd-L or PI3Kd-S isoform and incubated at room temperature for
1 h. After incubation, biotinylated PIP3 and GST-GRP1 working solutions were
added to the wells and the reaction samples were further incubated at room
temperature for 1 h. Plates were washed three times with 1� Tris-buffered saline
with Tween-20 (150 mM NaCl, 0.1% Tween-20, 50 mM Tris-Cl, pH 7.5) and
incubated with streptavidin-horseradish peroxidase conjugate (1.25 mg ml� 1) at
room temperature for 1 h. After incubation, plates were washed three times and
incubated with 100 ml of TMB (3,30 ,5,50-tetramethylbenzidine, 1 mg ml� 1)
substrate solution at room temperature for 5–20 min. Reactions were stopped by
adding 100ml of stop solution and plates read at 450 nm. The colourimetric signal
was inversely proportional to the amount of PIP3 produced by PI3K activity and
the relative amount of PIP3 produced was determined with a standard curve.

Analysis of in-frame and out-of-frame exon skipping events. A total of 4,253
significant differentially expressed exons (2% FDR) were identified. Using a
1.5-fold cutoff, the number of differentially expressed exons (that is, exon skipping
events) was narrowed down to 3,112 (corresponding to 2,520 DS genes in AA PCa
versus EA PCa). The reference coordinates for the Affymetrix probe sets used to
identify these skipped exons were cross-referenced with the Ensembl database,
release GRCh37, resulting in final set of 2,517 well-curated, differentially expressed
exons that corresponded to 1,484 DS genes (Supplementary Data 4). Based on the
exon size and the modelled effect, the exon skipping events were classified as in-
frame or frame-shift (Supplementary Data 4). A total of 1376 genes were included
in this analysis. The distribution of in-frame and frameshift events was then
compared between the EA and AA groups. We grouped the observations based on
presence of at least one frameshift per gene. Notably, we observed significantly
higher proportion of alternatively spliced genes without a frameshift in the AA
group (34% in AA versus 27% in EA, Po0.005, Fisher’s exact test).

Metrics for assessing reliability of global analysis of DS events. Affymetrix
Exon GeneChip analysis has revealed B2,500 differential splicing events between
AA and EA PCa. While we can only draw firm conclusions on a subset of dif-
ferential splicing patterns that were validated by a second approach (that is, RT-
PCR), the following metrics have been provided to allow evaluation of the overall
reliability of Exon Genechip results:

(1) Validation success rate. Eight of 9 genes (89%) identified by Exon GeneChip
analysis to undergo differential RNA splicing between AA PCa and EA PCa
were successfully validated by quantitative RT-PCR. The only gene that did not
validate was EPHA1. In addition, 2 out of 2 genes (100%), defined not to
exhibit differential RNA splicing (GSK3A and ATM), were successfully
validated by quantitative RT-PCR. Aggregate success rate was 91% (10/11).

(2) P values. The P values ranged from 1� 10� 3 to 1� 10� 15 for the 9 genes
identified by Exon GeneChip analysis to undergo differential RNA splicing
between AA and EA PCa specimens (P¼ 6� 10� 4 for ATM). In comparison,
P values for all genes identified by Exon GeneChip analysis to exhibit
differential RNA splicing ranged from 3� 10� 3 to 1� 10� 20 (see
Supplementary Data 1). Hence, P values of genes chosen for RT-PCR
validation were representative of the entire range of P values associated with
the complete set of B2,500 genes identified by Exon ChipGene analysis.

(3) Power calculations. Based on the number of PCa patient samples interrogated
by our Affymetrix Exon GeneChip arrays (n¼ 15 to 20 patients per gene per
race) and a computed s.d.¼ 0.4, our findings correspond to 485% power to
distinguish 1.5-fold changes at Po0.01.

Estimation of PIK3CD isoform expression. Expression of the short and long
isoforms of PIK3CD was determined using the method IsoformEx69. Briefly,
isoform expression was estimated through the minimizing a weighted nonnegative
least squares problem based on the exon expression. For the purpose of this
analysis, the novel ‘short isoform’ was defined as any transcript missing exon
20 but having exons 19 and 21 concatenated; and the ‘long isoforms’ were defined
as any transcripts with exons 19, 20 and 21 concatenated. Raw data for breast
invasive carcinoma (BRCA), prostate adenocarcinoma (PRAD) and colorectal
adenocarcinoma (COAD) were obtained from TCGA RNA-sequencing exon
expression (https://tcga-data.nci.nih.gov/tcga/, accessed 22 January 2016). The ratio
of short to long isoforms was calculated for survival analysis.

Survival analysis. Disease-free survival data for BRCA, COAD and PRAD were
obtained from TCGA clinical data (https://tcga-data.nci.nih.gov/tcga/, accessed
22 January 2016). Patients who did not have a relapse event during the study were
considered as censored. The expression values of the short and long isoforms as well
as the interaction term were used as predictors to fit the Cox proportional hazards
regression model under L2-regularization, where the disease-free survival is the
response variable. For each patient, a prognosis index score was computed from the
Cox proportional hazards model70. Briefly, the patients were dichotomized into
high- and low-risk groups according to the relapsed versus relapse-free ratio. The
log-rank P value was then calculated to assess the statistically significant difference
between the Kaplan–Meier curves of the high- versus low-risk groups.

Data availability. The authors declare that all data supporting the findings of this
study are available within the article and its Supplementary Information files or from the
corresponding author on reasonable request. Sequences of PIK3CD-S and PIK3CD-L
were deposited to GenBank (accession numbers KU612116 and KU612117).
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