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High Levels of Iron Supplementation Prevents Neural Tube
Defects in the Fpn1ffe Mouse Model
Bethany A. Stokes1,2, Julia A. Sabatino2, and Irene E. Zohn*2

Background: Periconception maternal nutrition and folate in particular are
important factors influencing the incidence of neural tube defects (NTDs).
Many but not all NTDs are prevented by folic acid supplementation and there
is a pressing need for additional strategies to prevent these birth defects.
Other micronutrients such as iron are potential candidates, yet a clear role for
iron deficiency in contributing to NTDs is lacking. Our previous studies with
the flatiron (ffe) mouse model of Ferroportin1 (Fpn1) deficiency suggest that
iron is required for neural tube closure and forebrain development raising the
possibility that iron supplementation could prevent NTDs. Methods: We
determined the effect of periconception iron and/or folic acid supplementation
on the penetrance of NTDs in the Fpn1ffe mouse model. Concurrently,
measurements of folate and iron were made to ensure supplementation had
the intended effects. Results: High levels of iron supplementation significantly
reduced the incidence of NTDs in Fpn1ffe mutants. Fpn1 deficiency resulted
in reduced folate levels in both pregnant dams and embryos. Yet folic acid
supplementation did not prevent NTDs in the Fpn1ffe model. Similarly,

forebrain truncations were rescued with iron. Surprisingly, the high levels of

iron supplementation used in this study caused folate deficiency in wild-type

dams and embryos. Conclusion: Our results demonstrate that iron

supplementation can prevent NTDs and forebrain truncations in the Fpn1ffe

model. Surprisingly, high levels of iron supplementation and iron overload can

cause folate deficiency. If iron is essential for neural tube closure, it is

possible that iron deficiency might contribute to NTDs.
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Introduction
Neural tube defects (NTDs) are among the most common
structural birth defects in humans affecting anywhere from
1 in 100 to 6 in 10,000 live births (Li et al., 2006; Parker
et al., 2010; Zohn, 2012, 2014; Liu et al., 2016). NTDs such
as anencephaly and spina bifida occur when neural tube
closure fails in the anterior and posterior ends of the neural
tube, respectively. The causes of NTDs are complex and
involve both genetic and environmental factors (Zohn and
Sarkar, 2008; Zohn, 2012, 2014). Multiple studies implicate
periconception maternal nutrition as an important factor
influencing the occurrence of NTDs and folic acid has

emerged as an important micronutrient (Smithells et al.,
1976; Scott et al., 1990; Blom et al., 2006; Czeizel, 2009;
Obican et al., 2010). Furthermore, human and animal stud-
ies demonstrate a clear benefit of folic acid supplementa-
tion for the prevention of NTDs (Czeizel, 2009; Gray and
Ross, 2009; Harris, 2009; Obican et al., 2010).

To improve folate levels in women of childbearing age,
wheat flour is now fortified with folic acid in many coun-
tries and is associated with significant reductions in the
incidence of NTDs (Eichholzer et al., 2006; Crider et al.,
2011; Obican et al., 2010). However, fortification has only
reduced NTD rates to certain levels (Crider et al., 2011).
Similarly, NTDs in many mouse models are not prevented
by folic acid supplementation (Gray and Ross, 2009; Har-
ris, 2009). Together these observations suggest that not all
NTDs can be prevented by folic acid supplementation.
Consequently, NTDs still represent a significant proportion
of birth defects and there is a pressing need for additional
strategies for prevention.

Other nutrients have emerged from retrospective studies
as potential factors to influence the incidence of NTDs (Scott
et al., 1990; Czeizel, 2009; Czeizel and Banhidy, 2011; Kap-
pen, 2013). Iron deficiency is one of the most common
micronutrient deficiencies in women of childbearing age
(Lopez et al., 2016). Iron and folate deficiencies often occur
simultaneously and iron and folate metabolism are linked in
many ways (Herbig and Stover, 2002). However, unlike the
wealth of data supporting the importance of folate in pre-
vention of NTDs, only a handful of studies directly investigat-
ed the impact of iron and with mixed results (Weekes et al.,
1992; Groenen et al., 2004; Felkner et al., 2005; Molloy
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et al., 2014). Mouse models with disruption of iron homeo-
stasis have not provided clarity due to early embryonic
lethality or redundancy (De Domenico et al., 2008).

Our previous studies suggested iron might be required
for neural tube closure (Zohn et al., 2007; Mao et al.,
2010). In the N-ethyl-N-nitroso-urea (ENU)–induced flat-
iron (ffe) mouse line, we identified a hypomorphic muta-
tion in the iron exporter Fpn1 resulting in NTDs. During
neurulation, Fpn1 is expressed in tissues essential for
delivery of nutrients to the embryo (Donovan et al., 2000,
2005). Conditional deletion studies demonstrate that Fpn1
expression in the visceral endoderm and visceral
endoderm-derived lineages of the yolk sac is critical for
neural development (Mao et al., 2010). Multiple transport-
ers are localized to the apical surface of the visceral endo-
derm to mediate iron uptake from the maternal
environment, but Fpn1 is the only transporter on the basal
surface responsible for export of iron out of the visceral
endoderm to the developing embryo (Donovan et al.,
2005). Thus mutation of Fpn1 is expected to result in iron
overload in the visceral endoderm along with iron defi-
ciency in the embryo proper.

The visceral endoderm not only provides nutrients to
the embryo, but also functions as a specialized signaling cen-
ter necessary for induction of the anterior neural tube (Srini-
vas, 2006; Stower and Srinivas, 2014). Mutations that affect
formation and/or function of the anterior visceral endoderm
(AVE) result in a spectrum of phenotypes ranging from mild
anterior truncations to headless embryos (Thomas and Bed-
dington, 1996; Acampora et al., 1998; Kimura et al., 2000).
The AVE initially forms at the distal end of the embryo and
migrates to the anterior region to overlie the nascent anteri-
or neural plate (Thomas and Beddington, 1996; Rodriguez
et al., 2001; Srinivas et al., 2004). In addition to neural tube
closure defects, Fpn1 mutants show forebrain truncations
that are also dependent on expression of Fpn1 in the visceral
endoderm lineage (Mao et al., 2010). Because forebrain trun-
cations can be phenocopied by culture of wild-type embryos
with iron chelators, iron deficiency is likely responsible for
these defects (Mao et al., 2010).

Migration of the AVE is impaired in Fpn1ffe/null trans-
heterozygous embryos indicating that iron overload in the
visceral endoderm might also have a negative impact on
embryonic development (Mao et al., 2010). While a sizable
domain of anterior forebrain is initially induced in Fpn1
mutants, this anterior neural tissue is not maintained and
by embryonic day 8.5 the forebrain is severely truncated.
Thus, defects in Fpn1 mutants could be due to iron over-
load in the visceral endoderm, iron deficiency in the
embryo proper or a combination of the two. To begin to
distinguish between these possibilities, in this study we
supplemented Fpn1ffe mice with relatively high levels of
iron. Because of the hypomorphic nature of the Fpn1ffe

mutation, this is predicted to increase iron overload in the

visceral endoderm but at the same time, increase iron
transport to the embryo. Our data demonstrate that peri-
conceptional iron supplementation reduced the incidence
of NTDs in Fpn1 mutants. While additional experiments
will be necessary to definitively demonstrate this, our data
support the idea that NTDs might be due to iron deficien-
cy rather than iron overload in the visceral endoderm. Sur-
prisingly, we found that Fpn1 mutation results in folate
deficiency in wild-type and Fpn1ffe/1 dams and mutant
embryos. Yet folic acid supplementation, while improving
folate status, did not prevent NTDs in the Fpn1ffe model.

Materials and Methods
MOUSE LINES AND DIET SUPPLEMENTATION

The Fpn1ffe mouse line was described previously (Zohn
et al., 2007) and crossed onto a C3H background (C3H/
HeNcrl, Charles River Laboratories) for at least 10 genera-
tions before analysis. The diets used in this study are based
on the AIN-76A rodent diet and were manufactured by
Research Diets, Inc (New Brunswick, NJ). High iron diets
have added 0.5% carbonyl iron (Sigma) and folic acid sup-
plementation with 10 ppm folic acid compared with 2 ppm
in the control diet. A different color dye was added to each
diet for ease of identification. Wild-type or Fpn1ffe/1 females
from crosses between wild-type females and Fpn1ffe/1 males
were switched from standard rodent chow (Tekland Global
#2918 with 200 mg/kg iron and 4 mg/kg folate) to the four
diets at weaning for approximately 4 weeks before mating.

MATING EXPERIMENTS AND PHENOTYPIC ANALYSIS

Females were mated with wild-type or Fpn1ffe/1 males and
copulation verified by the presence of a vaginal plug 0.5
days post coitum (dpc). Pregnant females were kept on diets
until sacrificed at 9.5 or 11.5 dpc. Upon sacrifice, maternal
blood was retrieved by cardiac puncture. Blood was allocat-
ed to heparin-coated tubes for analysis of folate levels in
whole blood, uncoated Eppendorf tubes for serum separa-
tion and analysis of serum ferritin levels or EDTA (Eethyle-
nediaminetetraacetic acid) coated tubes for complete blood
counts (CBCs). Embryos were dissected and exencephaly
assessed by visual inspection. Yolk sacs were used to geno-
type embryos as described previously (Zohn et al., 2007;
Mao et al., 2010). A proportion of embryos dissected at 9.5
dpc were subjected to in situ hybridization analysis with a
digoxigenin-labeled antisense probe targeting Six3 (Mao
et al., 2010). These embryos were also used to measure the
size of the forebrain, crown-rump length, and somite num-
bers. Embryos dissected at 11.5 dpc were used for analysis
of folate levels.

ANALYSIS OF FERRITIN AND FOLATE IN DAMS AND EMBRYOS

Serum ferritin levels were determined by enzyme-linked
immunosorbent assay (ELISA) according to manufactures
instructions (Abnova Ferritin [Mouse] ELISA Kit
#KA1941). Folate levels were determined by the
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microbiological method using Enterococcus hirae (ATCC
8043) as described (Horne and Patterson, 1988; Molloy
and Scott, 1997). For determination of folate content in
embryos, 11.5 dpc embryos were processed as described
(Kur et al., 2014) then folate levels determined by the
Microbiological assay. Blood samples were sent to Charles
River Laboratories, Inc (USA) for CBC analysis.

STATISTICAL METHODS

Statistical analyses were performed using GraphPad Prism
software (GraphPad Software Inc., La Jolla, CA). All results
are reported as mean 6 SE. The Fisher’s exact test was
used to determine significance of reductions in NTD fre-
quency. The significance of the effect of diets on nutrient
levels and CBC analyses were determined using two-factor
analysis of variance (ANOVA) with posthoc analysis by
Sidak’s multiple comparisons or Tukey tests as indicated.
Significance of changes in forebrain size, embryo weight,
and crown rump length were determined by the unpaired
t test.

Results
IRON SUPPLEMENTATION REDUCES THE INCIDENCE OF NTD IN FPN1FFE/

FFE MUTANT EMBRYOS

To determine if iron supplementation could reduce the
incidence of NTD in Fpn1ffe/ffe mutant embryos, Fpn1ffe/1

females were fed either a standard synthetic control diet
or the identical diet supplemented with 0.5% carbonyl
iron for 4 weeks beginning at weaning. Supplemented
females were mated to Fpn1ffe/1 males and timed preg-
nancies recorded. For these studies, a relatively high dos-
age of supplemental iron (0.5% carbonyl iron) was used.
Previous work demonstrated that the Fpn1ffe mutation
results in greatly reduced activity of the Fpn1 iron trans-
porter (Zohn et al., 2007). Thus, we reasoned a high dos-
age of iron would be needed to allow for sufficient iron
transport on this hypomorphic mutant background.

While Fpn1ffe/ffe mutants do show both exencephaly
and spina bifida (Mao et al., 2010), spina bifida is difficult
to assess at earlier stages of development and only exen-
cephaly was scored in this study. At 9.5 dpc, exencephaly
was counted in 13 to 24 somite-staged embryos by visual
inspection when the neural folds failed to transform from
the convex to midline convergent morphology. In embryos
dissected at 11.5 dpc, exencephaly was scored when the
brain exhibited the “cauliflower like” morphology typical
of exencephaly. As shown in Figure 1, the frequency of
NTDs in embryos from dams fed the control diet was
approximately 75% (n 5 48). Supplementation with 0.5%
carbonyl iron significantly reduced the incidence of NTDs
to 40% (p 5 0.0002). No difference was observed in the
frequency of NTDs between embryos analyzed at 9.5 and
11.5 dpc (Supporting Figure S1, which is available online).
These data demonstrate that NTDs in Fpn1ffe mutants can
be prevented by periconceptional iron supplementation.

At 9.5 dpc, crown-rump measurements indicate that
Fpn1ffe mutant embryos were smaller than wild-type litter-
mates on both the control (p 5 0.06) and high iron (p �
0.01) diets (Fig. 2A). While smaller, mutant embryos dis-
sected at 9.5 dpc were not developmentally delayed com-
pared with wild-type littermates as indicated by somite
numbers (Fig. 2B). Similarly, developmental stage was
essentially the same in embryos dissected at 9.5 dpc from
dams fed the control versus high iron diets (Fig. 2B).
Weights of wild-type versus mutant embryos dissected at
11.5 dpc from dams fed either control or high folic acid
diets were similar (p > 0.05). However, weights of mutant
and wild-type embryos from dams fed the high iron diet
were smaller than embryos from dams fed the control
diets (p � 0.005; Fig. 2C).

NTDS IN THE FPN1FFE/FFE LINE ARE NOT PREVENTED BY FOLATE
SUPPLEMENTATION

To determine if folic acid supplementation can prevent
NTDs in the Fpn1ffe model, heterozygous females were a
fed diet containing 10 or 2 ppm folic acid (high folic acid
and control diets, respectively) for 4 weeks before mating.
This protocol prevents NTDs in some mouse lines (Carter
et al., 1999; Marean et al., 2011), but in others has a nega-
tive impact on embryonic development (Marean et al.,
2011). While no obvious adverse effects on development
were observed on the Fpn1ffe background, folic acid sup-
plementation did not reduce the frequency of NTDs in
Fpn1ffe/ffe mutants (Fig. 1B; 82 vs. 75% p > 0.05). To
determine if dual supplementation with folic acid and iron
could further reduce the incidence of NTDs, Fpn1ffe/1

females were supplemented with a diet that contains both
10 ppm folic acid and 0.5% carbonyl iron. Dual supple-
mentation did not reduce the frequency of NTDs beyond
the reduction seen with iron supplementation alone (31
vs. 40%; p > 0.05). These results demonstrate that NTDs
in the Fpn1ffe/ffe mutant line are not prevented by folate
supplementation.

Folate supplementation alone had no effect on the size
of 9.5 dpc mutant embryos, but dual supplementation
improved crown-rump length of mutant embryos (p �
0.05; Fig. 2A). On the other hand, somite/developmental
stage was not altered by maternal diet (p > 0.05; Fig. 2B).
Weights of embryos dissected at 11.5 dpc were similar
between wild-type and mutant embryos from folate or
dual supplemented dams; and dual supplementation
restored the reduction in embryo weight observed with
iron supplementation (Fig. 2C).

IRON SUPPLEMENTATION INCREASES THE IRON STATUS OF WILD-TYPE
AND FPN1FFE/1 DAMS

The effect of supplementation on iron status of wild-type
and Fpn1ffe/1 dams was determined. Measurements of fer-
ritin levels in the serum of pregnant dams served as a
proxy of stored iron (Fig. 3). Maternal ferritin levels were
increased with iron supplementation in both wild-type
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dams (1.51 6 0.45 vs. 7.85 6 1.00 lg ferritin/ml; p �
0.001) and to a greater degree in Fpn1ffe/1 dams (2.32 6

0.46 vs. 15.81 6 1.94 lg ferritin/ml; p � 0.0001). This
enhanced increase in ferritin was expected because the
Fpn1ffe is a model of the iron overload disorder hemochro-
matosis type IV (Zohn et al., 2007). Folic acid supplemen-
tation did not alter the iron status of neither wild-type
(1.51 6 0.45 vs. 0.79 6 0.27 lg ferritin/ml; p > 0.05) nor
Fpn1ffe/1 dams (2.32 6 0.46 vs. 1.81 6 0.19 lg ferritin/
ml; p > 0.05). Dual supplementation with iron and folic
acid had no further effect on elevated iron status in wild-
type dams (7.87 6 1.00 vs. 7.29 6 0.71 lg ferritin/ml; p
> 0.05). In Fpn1ffe/1 dams, dual supplementation reduced
the iron overload observed with iron supplementation
alone (7.63 6 2.41 vs. 15.81 6 1.94 lg ferritin/ml; p �
0.001).

HIGH DOSE IRON SUPPLEMENTATION INFLUENCES FOLATE STATUS

To determine if folic acid supplementation increased folate
status of dams, the folate content of whole maternal blood
was compared between wild-type and Fpn1ffe dams (Fig.

4A). Folate levels were lower in blood from pregnant
Fpn1ffe/1 females than wild-type dams fed a control diet
(34.99 6 1.48 vs. 42.69 6 1.55 ng folate/ml; p � 0.05),
indicating that Fpn1 deficiency has some impact on folate
status. Folate levels increased with folic acid supplementa-
tion in both wild-type (42.69 6 1.55 vs. 50.83 6 1.82 ng
folate/ml; p � 0.05) and Fpn1ffe/1 (34.99 6 1.48 vs. 47.29
6 1.95 ng folate/ml; p � 0.001) dams. Surprisingly, sup-
plementation with 0.5% carbonyl iron significantly
reduced maternal folate levels in wild-type dams (42.69 6

1.55 vs. 21.60 6 2.20 ng folate/ml; p � 0.0001), which
was ameliorated by dual supplementation (42.69 6 1.55
vs. 37.63 6 3.75 ng folate/ml; p > 0.05). Folate levels
were also reduced in Fpn1ffe/1 dams on the high iron diet
(42.69 6 1.55 vs. 26.49 6 0.95 ng folate/ml; p � 0.001)
and improved with dual supplementation (42.69 6 1.55
vs. 32.14 6 1.15 ng folate/ml; p � 0.05).

Folate levels were also measured in embryos dissected
at 11.5 dpc (Fig. 4B). Fpn1ffe/ffe mutant embryos showed
reduced folate levels compared with wild-type littermates
(35.69 6 3.17 vs. 13.17 6 2.62 ng folate/g protein; p �

FIGURE 1. Periconceptional supplementation

with a high iron diet but not folic acid prevents

NTDs in the Fpn1ffe mouse line. Normal neural

tube closure in a 9.5 dpc Fpn1ffe/1 embryo (A)

compared with exencephaly in an Fpn1ffe/ffe

mutant (A0) from a dam fed the control diet.

(A00) Normal morphology and neural tube clo-

sure in an Fpn1ffe/ffe mutant from a dam fed

the high iron diet. Scale bar 5 1 mm. B: Fre-

quency of NTDs in Fpn1ffe/ffe mutant embryos

from dams supplemented with control (yellow

bar), high folic acid (10 ppm, orange bar),

high iron (0.5% carbonyl iron, blue bar), or

high folic acid and iron (purple bar) diets for 4

weeks before mating. Statistical significance

was determined by the Fisher’s exact test and

p-values: 50.0002***, �0.0001****, or non-

significant (ns). The number of samples repre-

sented in each group is indicated.
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0.05). Folate levels did not correlate with NTDs when
comparison was made between Fpn1 mutants with or
without NTDs from dams fed the control diet (16.71 6

7.76 vs. 23.08 6 8.52 ng folate/gm protein; p > 0.05, n 5

3, not shown). Folate levels increased with folic acid sup-
plementation in both Fpn1ffe/ffe mutant embryos (13.17 6

2.62 vs. 43.97 6 4.05 ng folate/gm protein; p � 0.001)
and wild-type littermates (35.69 6 3.17 vs. 56.92 6 8.32
ng folate/gm protein; p � 0.05). Supplementation with
0.5% carbonyl iron greatly reduced folate levels in wild-
type littermates (35.69 6 3.17 vs. 8.37 6 1.70 ng folate/

FIGURE 2. Effects of iron and folate supplementation on embryo size and

developmental stage. Comparison of crown to rump length (A) and somite

numbers (B) of embryos from Fpn1ffe/ffe mutant embryos (white bars in A)

and wild-type littermates (colored bars in A) dissected at 9.5 dpc from dams

supplemented with control (yellow), high folic acid (10 ppm, orange), high

iron (0.5% carbonyl iron, blue), or high folic acid and iron (purple) diets for 4

weeks before mating. C: Comparison of weights of Fpn1ffe/ffe mutant embryos

and wild-type littermates dissected at 11.5 dpc from dams fed the various

diets for 4 weeks before mating. Statistical significance was determined by

unpaired t test in A and C, and by two-factor ANOVA with posthoc Sidak’s

multiple comparisons test in B. p-values: �0.05*, �0.01**, or nonsignificant

(ns).

FIGURE 3. Supplementation with a high iron diet increases iron stores in wild-type

and Fpn1ffe/1 dams. Serum was obtained from pregnant dams upon dissection

of embryos at 9.5 or 11.5 dpc. Dams were supplemented with control (yellow

bar), high folic acid (10 ppm, orange bar), high iron (0.5% carbonyl iron, blue

bar), or high folic acid and iron (purple bar) diets for 4 weeks before mating. Ferri-

tin levels were determined by ELISA and served as a proxy for stored iron levels.

Maternal serum ferritin was measured in three samples in the wild-type (WT)

group and five in the Fpn1ffe/1 group. Statistical significance was determined by

two-factor ANOVA with posthoc Sidak’s multiple comparisons test. p-values:

�0.05*,�0.01**,�0.001***,�0.0001****, or nonsignificant (ns).

FIGURE 4. Folate levels in dams and embryos. A: Determination of RBC folate

levels in pregnant dams. Whole blood was obtained from pregnant wild-type

(WT) or Fpn1ffe/1 dams at 9.5 or 11.5 dpc. Dams were supplemented with

control (yellow bar), high folic acid (10 ppm, orange bar), high iron (0.5%

carbonyl iron, blue bar), or high folic acid and iron (purple bar) diets for 4

weeks before mating. B: Determination of folate levels in 11.5 dpc wild-type

(Fpn11/1) and Fpn1ffe/ffe embryos from dams fed the various diets. The num-

ber of samples represented in each group is indicated. The Sidak’s test was

used to determine significance of multiple comparisons within a genotype and

the Tukey test across genotypes. p-values: �0.05*, �0.01**, �0.001***,

�0.0001**** or nonsignificant (ns). The number of samples represented in

each group is indicated.

BIRTH DEFECTS RESEARCH (PART A) 00:00–00 (2016) 5



gm protein; p � 0.01), which was restored with dual sup-
plementation with iron and folic acid in wild-type embry-
os. Iron supplementation slightly but not significantly
reduce folate levels in Fpn1ffe/ffe mutant embryos (13.17 6

2.62 vs. 5.63 6 3.00 ng folate/gm protein; p 5 0.12),
which improved to control levels with dual supplementa-
tion (13.17 6 2.62 vs. 15.92 6 3.14 ng folate/gm protein;
p > 0.05).

HIGH DOSE IRON SUPPLEMENTATION RESULTS IN MACROCYTIC ANEMIA
TYPICAL OF FOLATE DEFICIENCY

Folate and iron status can affect the red blood cell (RBC)
composition as measured by CBC analysis. Thus the effect
of iron and folic acid supplementation on hematologic
parameters was determined (Table 1). There was no sig-
nificant difference in total RBCs, hemoglobin, hematocrit,
mean corpuscular volume, mean corpuscular hemoglobin,
or RBC distribution width between wild-type or Fpn1ffe/1

dams on the control diet or with folate supplementation.
The high iron diet reduced RBC numbers and increased
both the mean corpuscular volume and mean corpuscular
hemoglobin in both the wild-type and Fpn1ffe/1 dams
(Table 1). These hematological findings are consistent with
the macrocytic anemia that occurs with folate deficiency.
Dual supplementation with iron and folic acid reverted
these changes in the wild-type, but not Fpn1ffe/1 dams.

IRON SUPPLEMENTATION PREVENTS FOREBRAIN TRUNCATIONS IN
FPN1FFE/FFE MUTANT EMBRYOS

Our previous studies demonstrate that Fpn1ffe/ffe mutant
embryos show forebrain truncations (Mao et al., 2010). To
determine if iron, folate, or combined supplementation can
rescue forebrain defects in Fpn1ffe/ffe mutants, the size of
the forebrain was measured in 9.5 dpc embryos from
pregnant dams fed the various diets. Measurements were
taken from the most rostral point of the eye vesicle to the
most rostral point on the forebrain (Fig. 5A). As previously
demonstrated in embryos from dams fed standard mouse
chow (Mao et al., 2010), the forebrain was significantly
smaller in Fpn1ffe/ffe mutant embryos compared with wild-
type littermates from dams fed the control diet (0.44 6

0.02 vs. 0.28 6 0.007 mm; p � 0.0005). Interestingly,
Fpn1ffe/ffe mutant embryos without NTDs had normal sized
forebrains regardless of diet (data not shown), thus all
measurements were done on embryos with NTDs. The
high folic acid diet had no significant effect on the reduced
forebrain size of Fpn1ffe/ffe mutants (0.44 6 0.002 vs. 0.26
6 0.01 mm; p � 0.0005) but iron supplementation alone
or dual supplementation restored forebrain size to wild-
type levels in mutants with NTDs (0.44 6 0.02 vs. 0.38 6

0.03 mm; p > 0.05) and (0.44 6 0.02 vs. 0.32 6 0.05
mm; p > 0.05), respectively.

Discussion
Our previous studies of the Fpn1ffe mouse line suggested
that NTDs and forebrain truncations could be due to TA
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either iron deficiency in the embryo or iron overload in
the visceral endoderm (Mao et al., 2010). In this study, we
supplemented Fpn1ffe pregnancies with a relatively high
iron diet and determined the effect on the incidence of
NTDs and forebrain truncations. We predicted that iron
supplementation would improve iron deficiency but also
worsen iron overload in the visceral endoderm. Our data
demonstrate that both NTDs and forebrain truncations are
prevented by iron supplementation suggesting that these
defects are likely due to iron deficiency. However, future
experiments to measure iron levels in embryos and the
visceral endoderm under these conditions are needed to
definitively prove this assumption. Our data also suggest
that NTDs in the Fpn1ffe model are folate resistant. While
the Fpn1ffe mutant embryos have lower folate levels than
wild-type littermates, folic acid supplementation did not
prevent NTDs. These findings are not entirely surprising
as folate deficiency alone is not sufficient to cause NTDs in
the absence of additional factors (Burgoon et al., 2002;
Burren et al., 2008, 2010). Thus our data indicate that
NTDs in the Fpn1 mouse line are iron responsive but
folate resistant.

INTERACTION OF IRON SUPPLEMENTATION AND FOLATE DEFICIENCY

Our data highlight an important interaction between high
levels of iron supplementation and folate status. While
supplementation with relatively high levels of iron did pre-
vent NTDs in the Fpn1 mutant mouse line, it had negative
effects on folate status in wild-type dams and embryos.
Wild-type dams with high levels of iron supplementation
showed signs of macrocytic anemia consistent with folate
deficiency. This was further supported by improvement of

anemia with the addition of folic acid supplementation.
High levels of iron supplementation also resulted in
reduced weight of embryo dissected at 11.5 dpc that were
restored with dual supplementation. Human data support
this negative interaction between high levels or iron sup-
plementation/iron overload and folate status. For example,
macrocytic anemia has been reported in individuals with
the iron overload disorder hemochromatosis (see Koszew-
ski, 1952; Granville and Dameshek, 1958; Arakawa et al.,
1965; Toghill, 1965; for examples).

In our experiments, we used a relatively high level of
iron supplementation to overcome the reduced iron trans-
port activity of the Fpn1 transporter in the Fpn1ffe model.
While these dosages are not likely given to pregnant wom-
en, this level of supplementation is within the range of
carbonyl iron dosages given in humans with severe ane-
mia. Recommendations for iron supplementation in human
populations range from 16 mg iron per day in Canada to
60 mg iron per day by the World Health Organization
(Stoltzfus and Dreyfuss, 1998; Cockell et al., 2009). In the
United States, the average multivitamin has 18 mg iron
and prenatal vitamins contain 30 mg carbonyl iron. How-
ever, for severe iron deficiency anemia, dosages of 120 to
360 mg/day carbonyl iron is given (7- to 20-fold increase)
and 90 to 150 mg/day (5- to 8.3-fold increase) is typically
prescribed during pregnancy.

To compare with guidelines in rodents, the National
Research Council recommends 35 mg/kg iron in the aver-
age rodent diet and twice this amount during pregnancy
(Subcommittee on Laboratory Animal Nutrition, 1995).
Thus the addition of 0.5% (500 ppm) carbonyl iron used
in this study represents an approximate 15-fold increase

FIGURE 5. Forebrain truncations in Fpn1ffe/ffe mutant embryos are rescued by supplementation with a high iron diet. A: In situ hybridization to detect Six3 expres-

sion in 9.5 dpc embryos. The forebrain was measured from the rostral point of the optic vesicle (stained by Six3) to the most rostral point of the forebrain as indi-

cated by white line. B: Forebrain measurements in 9.5 dpc wild-type (Fpn11/1) and Fpn1ffe/ffe embryos from dams fed control (yellow bar), high folic acid (10

ppm, orange bar), high iron (0.5% carbonyl iron, blue bar), or high folic acid and iron (purple bar) diets for 4 weeks before mating. Statistical significance was

determined by the unpaired t test. p-values: �0.0005***, or nonsignificant (ns). The number of samples represented in each group is indicated.
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over the recommended supplementation levels for rodents
but is well within the range of dosages recommended for
patients with severe anemia. Future studies will determine
if iron supplementation with equivalent dosages used dur-
ing human pregnancy would also have a similar effect on
folate status of mouse dams and embryos.

Iron and folate share many commonalities (Herbig and
Stover, 2002). Simultaneous deficiencies are common espe-
cially during pregnancy and result in complications includ-
ing increased risk of anemia, low birth weight, premature
birth, and mortality. Both iron and folate serve as cofactors
for enzymatic reactions involved in a variety of metabolic
processes including DNA repair and synthesis. Iron supple-
mentation might influence folate status at multiple levels.
For example, Ferritin catabolizes folate into inactive
metabolites (Suh et al., 2000, 2001). Another molecular
link is the regulation of cytoplasmic serine hydroxymethyl-
transferase levels by iron (Oppenheim et al., 2000, 2001).
Thus the high levels of ferritin in the serum of dams sup-
plemented with iron could potentially cause or otherwise
contribute to folate deficiency by catabolism of folate.

On the other hand, sites of iron and folate absorption
and hemostasis in the mother and fetus overlap signifi-
cantly and iron overload in these tissues could potentially
interfere with folate absorption and/or metabolism. The
primary site of both folate and iron absorption from the
diet occurs in the enterocytes of the small intestine with
common and distinct transporters (Lipinski et al., 2013;
Visentin et al., 2014). Once absorbed, iron and folate are
delivered to the liver for storage and/or mobilization to
the circulation (Gambling et al., 2011; Lipinski et al., 2013;
Visentin et al., 2014). Iron overload occurs in both intesti-
nal enterocytes and liver macrophages with mutation of
Fpn1 (Donovan et al., 2005; Zohn et al., 2007). With the
relatively high levels of iron given in this study, both sites
likely are overloaded with iron potentially interfering with
folate absorption and/or metabolism. Similarly, delivery of
iron and folate to the embryo during neurulation depends
upon the visceral endoderm of the yolk sac (Zohn and Sar-
kar, 2010) and this tissue also likely becomes overloaded
in Fpn1ffe/ffe mutant embryos with high levels of iron sup-
plementation. This could further reduce transport of folate
to the embryo.

ROLE OF FPN1 IN TRANSPORT OF OTHER METALS

Fpn1 also transports other metals and Fpn1ffe/1 mice
show reduced manganese and zinc levels (Yin et al., 2010;
Madejczyk and Ballatori, 2012; Seo et al., 2016). Deficien-
cies of both of these is implicated in increased NTD risk
(Sever and Emanuel, 1973; Cavdar et al., 1980; Soltan and
Jenkins, 1982; Buamah et al., 1984; Scott et al., 1990; Velie
et al., 1999; Vats et al., 2011; Chandler et al., 2012). How-
ever, there is an inverse relationship between iron absorp-
tion and absorption of zinc and manganese (Erikson et al.,
2002, 2004; Garcia et al., 2007) and iron supplementation

competes with Fpn1-mediated transport of these and oth-
er metals (Davis et al., 1992; O’Brien et al., 2000; Thomp-
son et al., 2006; Hansen et al., 2009; Zhang et al., 2016).
Thus our data that iron supplementation prevents NTDs in
this mouse line argue against the possibility that zinc or
manganese deficiency are responsible for NTDs in this
model. However, additional experiments will be necessary
to definitively rule out the involvement of other metals to
NTDs in the Fpn1ffe model.

CONCLUSIONS

It is well established that iron deficiency during pregnancy
results in increased risk of complications such as prema-
ture birth, reduced birth weight, and intellectual disability
(Gambling et al., 2011). Because of the increased iron
requirement during pregnancy and the difficulty of replen-
ishing stores under these conditions, it is important that
sufficient iron stores are present before conception
(Bothwell, 2000). Our results presented here and in our
previous studies (Mao et al., 2010; Zohn et al., 2007)
make a strong case that sufficient iron stores at concep-
tion are also important for successful neural tube closure.
This study provides additional support for the possibility
that iron deficiency could play a role in NTDs in humans
and periconception iron supplementation might prevent
some folate resistant NTDs.
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