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UFM1 founder mutation in the Roma
population causes recessive variant of
H-ABC

ABSTRACT

Objective: To identify the gene defect in patients with hypomyelination with atrophy of the basal
ganglia and cerebellum (H-ABC) who are negative for TUBB4A mutations.

Methods:We performed homozygosity mapping and whole exome sequencing (WES) to detect the
disease-causing variant. We used a Taqman assay for population screening. We developed a lucif-
erase reporter construct to investigate the effect of the promoter mutation on expression.

Results: Sixteen patients from 14 families from different countries fulfilling theMRI criteria for H-ABC
exhibited a similar, severe clinical phenotype, including lack of development and a severe epileptic
encephalopathy. The majority of patients had a known Roma ethnic background. Single nucleotide
polymorphism array analysis in 5 patients identified one large overlapping homozygous region on chro-
mosome 13. WES in 2 patients revealed a homozygous deletion in the promoter region of UFM1.
Sanger sequencing confirmed homozygosity for this variant in all 16 patients. All patients shared
a common haplotype, indicative of a founder effect. Screening of 1,000 controls from different Euro-
pean Roma panels demonstrated an overall carrier rate of the mutation of 3%–25%. Transfection
assays showed that the deletion significantly reduced expression in specific CNS cell lines.

Conclusions: UFM1 encodes ubiquitin-fold modifier 1 (UFM1), a member of the ubiquitin-like
family involved in posttranslational modification of proteins. Its exact biological role is unclear.
This study associates a UFM1 gene defect with a disease and sheds new light on possible UFM1
functional networks. Neurology® 2017;89:1821–1828

GLOSSARY
H-ABC 5 hypomyelination with atrophy of the basal ganglia and cerebellum; LOD5 logarithm of the odds; MLPA5multiplex
ligation-dependent probe amplification; SNP 5 single nucleotide polymorphism; UBA55 UFM1 activating enzyme 5; UBL5
ubiquitin-like; UFM1 5 ubiquitin-fold modifier 1; WES 5 whole exome sequencing.

Hypomyelination with atrophy of the basal ganglia and cerebellum (H-ABC) (MIM 612438) is
a rare leukodystrophy that was identified by MRI pattern analysis.1 The 2 most important MRI
features are hypomyelination and a very small or absent putamen. The disease is associated with
dominant de novo mutations in the TUBB4A gene (MIM 602662), encoding tubulin b-4A.2,3

In the Amsterdam Database of Leukoencephalopathies, a small number of patients fulfilling the
MRI criteria of H-ABC did not harbor a pathogenic TUBB4A mutation, suggesting that
mutations in at least one other gene are involved in the disease. In this study, we aimed at
identifying the causal genetic defect in this group of unsolved H-ABC cases.
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METHODS Standard protocol approvals, registrations,
and patient consents. We received approval from the ethical

standards committee for gene identification research on patients

with unclassified leukoencephalopathies at the VU University

Medical Center Amsterdam. Written informed consent was ob-

tained from the guardians of the patients participating in this

study.

Patients. Sixteen patients from 14 families fulfilled the following

MRI criteria for H-ABC: (1) hypomyelination, defined as a mildly

elevated T2 signal intensity of most cerebral white matter in com-

bination with mild T1 hypointensity, T1 isointensity, or mild T1

hyperintensity relative to the cortex4; and (2) very small or absent

putamen without signal abnormality indicating lesion or scarring

in the region where the putamen should be. We obtained DNA

from all patients, parents, and unaffected siblings and obtained

clinical data by a standardized form for physicians. We performed

Kaplan-Meier analysis in SPSS version 22 (SPSS Inc., Chicago,

IL) to estimate the median survival. For each patient, at least one

MRI was available. Two investigators evaluated MRIs by visual

assessment, as previously described.3

Analysis of the TUBB4A gene. Sanger sequencing of the

TUBB4A gene was performed in 16 patients as previously

described.3 In addition, we performed multiplex ligation-

dependent probe amplification (MLPA) analysis of the TUBB4A
gene in 9 patients according to manufacturer’s instructions

(MRC-Holland, Amsterdam, the Netherlands; complete descrip-

tion of the MLPA probe mix is available upon request).

Single nucleotide polymorphism (SNP) array analysis.
We executed SNP array analysis (CytoScan HD array; Affyme-

trix, Santa Clara, CA) according to the manufacturer’s protocol

in 5 patients to identify runs of homozygosity larger than 1 Mb and

overlapping regions (Nexus version 7 [BioDiscovery, Hawthorne,

CA]). SNP array-based genotypes were created using Chromosome

Analysis Suite 2.1.0.16 (Affymetrix).

Whole exome sequencing (WES). We performed WES on

genomic DNA from 2 patients and analyzed data as previously

described.5 Based on family data indicating consanguinity and

shared Roma (Gypsy) ethnic background for several families,

variant filtering was executed under the hypothesis of a homozy-

gous recessive inheritance model. We focused on rare variants,

exonic as well as intronic, located in the identified overlapping

homozygous region, filtering for a minor allele frequency of less

than 1% in public databases (dbSNP, 1000 Genomes Project,

Exome Variant Server, and NHLBI Exome Sequencing Project)

as well as an occurrence below 1% in the heterozygous state and

absence in the homozygous state in our in-house WES control

database.

Segregation of the UFM1 variant and exclusion of other
mutations in the region of interest. After identification of the
Chr13 (GRCh38): g.38349765_38349767del UFM1 variant by

WES, hereafter called c.-273_-271delTCA (NM_001286704.1),

we performed segregation analysis in all patients, parents, and

healthy siblings by Sanger sequencing. In 3 patients, we investi-

gated all exons and intron-exon boundaries of the protein-

encoding genes present in the overlapping homozygous region

that was identified by SNP array analysis by Sanger sequencing.

Primers were designed using Primer 3, V.0.4.0 (tables e-1 and e-2

at Neurology.org).6

Microsatellite marker haplotype analysis. To analyze a pos-
sible founder effect in all patients and see if the shared haplotype

identified by SNP array analysis could be further narrowed down,

we genotyped microsatellite and SNP markers spanning 2.4 Mb

around UFM1 (table e-3) in 16 patients, 24 parents, and 6 sib-

lings. For the microsatellite marker analysis, we analyzed PCR

products with an Applied Biosystems (Mulgrave, Australia)

Genetic Analyzer 3730 with GS-500 Liz as a size standard. For

the SNP marker analysis, we performed Sanger sequencing. We

used control DNA from CEPH individual 1347-02 as a reference

and analyzed the data with GeneMapper v3.7 software.

Carrier frequency rate analysis. We tested a panel of 670

Roma controls from a range of subisolates collected for popula-

tion genetic and genetic epidemiology studies7 for the c.-273_-

271delTCA UFM1 mutation using custom-designed TaqMan

SNP Genotyping Assays (Applied Biosystems; primers in table

e-4). Because one individual originating from a community in

Eastern Slovakia was homozygous for the variant, we sub-

sequently screened an additional panel of 273 samples from

Roma adults from Eastern Slovakia8 and a panel of 57 samples

from inhabitants of the community in question.

Logarithm of the odds (LOD) score. Upon identification of

the candidate variant, we calculated a LOD score on the basis of

the following assumptions: autosomal recessive pattern of inher-

itance, complete penetrance, and equal distribution between male

and female participants. We applied 2 calculations, one based on

all 12 families in which DNA of both parents was available, and

one excluding the families that were used for the original candi-

date region and candidate variant selection to avoid possible ascer-

tainment bias. Unaffected siblings were also included.

Construction of UFM1 promoter reporters and
transfections. We cloned the wild-type and mutant UFM1
promoter (c.-1889 to c.-1 of NM_001286704.1) into the pNL1.1

reporter (Promega, Madison, WI) using the infusion protocol

(Clontech, Mountain View, CA; oligonucleotide primers in table

e-5). The pNL1.1 plasmid encodes nanoluciferase, a sensitive

reporter protein for chemiluminescence-based assays (Promega).

We transfected the UFM1 promoter reporters into HeLa (cervix

carcinoma), SY-5Y (neuroblastoma), H02-F2 (oligoden-

drocytoma), and U373 (astroglioma) cell lines. The pNL1.1 empty

vector was included as negative control. To normalize for trans-

fection differences, we cotransfected the pGL3 plasmid (Promega)

that expresses firefly luciferase driven by the SV40 promoter

(Promega). All cells were grown in DMEM/F-12 with 10% fetal

bovine serum at 378C under 5% CO2. We performed the trans-

fections in white, half area 96-well plates with clear bottom. One

day before transfection, we seeded 3,000 cells per well. We trans-

fected 5 ng pNL1.1-based vector and 75 ng pGL3 vector using

Fugene 6 (1:3 ratio of Fugene 6:DNA; Promega). We measured

firefly luciferase and nanoluciferase activity with a microplate reader

(Victor2; Perkin-Elmer Life Sciences, Waltham, MA) 40 hours

post-transfection according to the manufacturer’s protocol. Nano-

luciferase activity was normalized to firefly luciferase activity.

Results were expressed as mean of 2 independent experiments

performed in duplicate. Factor correction was applied to eliminate

between-session variation.9 Differences were analyzed by Student t
test.

RESULTS Sixteen patients from 14 families were
included in the study; 3 patients had similarly affected
deceased siblings, for whom we did not have DNA.
Parental consanguinity was reported in 7 families and
2 families were related. All but 2 families were known
to originate from the Roma population, which led us
to suspect a common founder effect. In our search
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strategies, we therefore chose to focus on a rare variant
with homozygous autosomal recessive inheritance.

The clinical phenotype consists of a severe encephalopa-

thy with early death. Detailed clinical characteristics of
all patients are described in table e-6. In table 1, we
compared the present cohort with our published cohort

of 41 patients with H-ABC with TUBB4A mutations,
separately considering patients with the common TUB-
B4A mutation and patients with a different mutation,
who exhibited a more severe phenotype.3 All current
patients demonstrated severe developmental delay, typ-
ically without intentional movements and language
development. Almost all patients exhibited spasticity

Table 1 Clinical data on TUBB4A- andUFM1-mutated patients with hypomyelination with atrophy of the basal
ganglia and cerebellum

General characteristics
TUBB4A common
mutation (c.745G>A)a

Other TUBB4A
mutationsa

UFM1 founder
mutation

No. of patients 25 16 16

Sex, male/female 12/13 7/8 8/8

Median age (range)b 14 y (2–29 y) 10 y (3–25 y) 18 mo (3 mo–7 y)

Patients with affected siblings 1 0 7 (5 families)

Median age at first signs (range) 1.5 y (3 mo–3.0 y) 3 mo (birth–6 mo) 2 mo (birth–3 mo)

Neurologic development, %

Maximum motor milestone

Walking without support 76 0 0

Sitting to walking with support 24 50 0

Touching/grasping/holding 0 25 6

No intentional movements 0 25 94

Maximum language

Single words up to normal language 100 6 0

None 0 94 100

Maximum level of comprehension

Normal or decreased intelligence 100 44 0

Social awareness only 0 56 100

Neurologic symptomatology, %

Spasticity 96 94 81

Ataxia 88 31 (remainder NE) NE

Extrapyramidal movements 96 100 75

Seizures 12 53 75 (100 $18 mo)

Current speech

Normal or dysarthric speech 48 0 0

No speech 52 100 100

Current level of comprehension

Decreased intelligence 100 19 0

Social awareness only 0 81 100

Other characteristics, %

Tube feeding (range age at start) 46 (11–26 y) 75 (1–9 y) 81 (6 mo–4 y)

Tracheostomy (range age at start) 0 6 (15 y) 38 (10–17 mo)

Height <2 SD 40 87 73

Weight <2 SD 48 88 62

Microcephaly 9 69 100

Deceased patients (age range) 4 (12 y) 13 (20–25 y) 56 (7 mo–7 y)

Abbreviation: NE 5 not evaluable because of lack of intentional movements.
aData from Hamilton et al.3
bAge at time of obtaining clinical characteristics.
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and extrapyramidal movement abnormalities, mostly
dystonia. Seizures were frequent and present in all pa-
tients 18 months and older. The epilepsy was often
severe and drug-resistant, including West syndrome.
Stunted growth was frequent and all patients had
microcephaly. Six patients underwent tracheostomy
between 6 and 17 months, 4 of whom were on inter-
mittent or permanent ventilation.Median survival was 2
years. Nine patients died at ages between 7 months and
7 years, most often due to respiratory insufficiency.
Compared to the cohort of TUBB4A-mutated patients,

the present patients were all at the most severe end of the
H-ABC spectrum.

MRI shows severe hypomyelination, putamen atrophy,

and distinctive caudate nucleus abnormalities. Detailed
MRI findings are outlined in table e-7, and a summary
is presented in table 2, comparing the MRI character-
istics of this cohort of patients to the early MRI charac-
teristics in TUBB4A-mutated patients with H-ABC.3

The first MRIs invariably revealed severe lack of
myelin (figure 1) suggesting hypomyelination,
although a single MRI does not allow an MRI-based
diagnosis of hypomyelination in infants. None of the
patients showed a normal putamen and in all patients
the caudate nucleus was small. In all, the lateral part of
the head of the caudate nucleus showed an area of
abnormally high signal on T2-weighted images, result-
ing in a signal intensity similar to the hypomyelinated
white matter. By contrast, in patients with TUBB4A
mutations, the caudate nucleus signal was normal
(74%) or hyperintense throughout (26%).3 Atrophy
of the caudate nucleus led to widening of the anterior
horns of the lateral ventricles. In addition, in 50% of
patients there was a moderate dilation of lateral and
third ventricles. On the first MRI, 56% of patients had
mild cerebellar atrophy, restricted to the vermis.

The follow-up MRIs showed slight progress of mye-
lination after 3–13 months in 3 out of 5 patients with
a follow-up scan, but myelination remained severely
deficient, confirming hypomyelination. In 2 patients,
progression of the cerebral atrophy was observed. In 4
patients who initially lacked cerebellar atrophy, follow-
upMRIs revealed cerebellar atrophy after 3–15 months.

Genetic analysis identifies UFM1 as the only candidate

gene. Sanger sequencing was negative for TUBB4A
mutations in 16 patients, and MLPA analysis revealed
neither TUBB4A deletions nor duplications in the 9
patients who were investigated.

An SNP array identified a 0.8-Mb overlapping
homozygous region on chromosome 13q13 (genomic
coordinates 37,940,556–38,786,096 GRCh38) shared
by all 5 patients in whom the SNP array was performed
(figure 2A). This region encompasses long intergenic
noncoding RNAs, theUFM1 gene and the first 6 exons
of the FREM2 gene (NM_207361.5). UFM1 encodes
ubiquitin fold modifier 1. FREM2 encodes FRAS1-
related extracellular matrix protein 2 and is associated
with Fraser syndrome, a developmental and malforma-
tive disorder involving multiple organs.

WES analysis of 2 patients revealed a single
homozygous 3 bp deletion in the promoter of
UFM1 (MIM 610553) as candidate causal muta-
tion: c.-273_-271delTCA (NM_001286704.1,
dbSNP rs747359907). No other rare variants were de-
tected in the candidate region. The variant has been
reported to dbSNP in heterozygous state by 2

Table 2 Early MRI findings in TUBB4A- and UFM1-mutated patients

TUBB4A-mutated
patients MRI <2 y
after onseta

UFM1-
mutated
patients

No. of patients 23 16

Age of patientsb 6 mo–5 y 3 mo–2 y

Myelination, %c

Moderate lack of myelind 52 0

Severe lack of myeline 35 87

Almost complete lack of myelinf 13 13

Basal ganglia, %

Putamen

Normal 30.5 0

Atrophic 39 13

Not visible 30.5 87

Caudate nucleus

Normal 70 0

Atrophic 26 100

Not visible 4 0

Abnormal signal of lateral aspect head 0 100

Atrophy, %

Cerebral atrophy

Absent 78 37

Present 22 63

Atrophy corpus callosum

Absent 83 69

Present 17 31

Cerebellar atrophy

Absent 9 19

Present 91 81

aData from Hamilton et al.3
bAge at MRI (for the UFM1-mutated patients, in the case of multiple MRIs, the latest MRI is
ranked).
c In patients ,12 months, myelination is scored relative to calendar age.
dDefined as hyperintense signal of the cerebral hemispheric white matter on T1-weighted
images and hyperintense signal on T2-weighted images relative to cortex.
eDefined as isointense signal of the cerebral hemispheric white matter on T1-weighted
images and hyperintense signal on T2-weighted images relative to cortex.
f Defined as hypointense signal of the cerebral hemispheric white matter on T1-weighted
images and hyperintense signal on T2-weighted images relative to cortex.
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independent submitters with unknown allele frequency.
UFM1mutations have not been associated with a disease
phenotype. The deleted nucleotides are moderately to
highly conserved based on PhyloP conservation scores
ranging from 0.32 to 2.09 and Phast conservation scores
from 0.89 to 0.98.

Sanger sequencing confirmed that segregation of
the UFM1 deletion was in perfect agreement with
inheritance of the disease in all families.

Sanger sequencing of all exons and intron–exon
boundaries in the shared haplotype in 3 patients re-
vealed no other possible pathogenic variants.

Figure 1 MRI findings in TUBB4A (left) and UFM1 (right) mutated patient with hypomyelination with atrophy of the basal ganglia and
cerebellum

Sagittal T1-weighted (A–D) and axial T2-weighted (E, F) and T1-weighted (G, H) images in a patient with the common dominant c.745 G.A TUBB4Amutation at
age 3 years (A, C, E, G) and a patient with the homozygous recessive UFM1 mutation at age 13 months (B, D, F, H). The patient with the common TUBB4A
mutation shows a mildly hyperintense white matter signal on T1-weighted (C, G) and T2-weighted (E) images, indicating a moderate lack of myelin. In theUFM1-
mutated patient, the white matter T1 signal is hypointense, indicating a profound lack of myelin (D, H). This patient also shows mild cerebral atrophy (F, H). Both
patients have a mild cerebellar atrophy (A–D), most notable at the vermis (A, B). In both patients, there is no putamen visible and there is no visible lesion in this
region (arrowheads in E–H). In the TUBB4A-mutated patient, the caudate nucleus has a normal signal (arrow in E). In the UFM1-mutated patient, the caudate
nucleus is atrophic and the lateral part of the head has an abnormal hyperintense T2 signal (arrow in F) and hypointense T1 signal (arrow in H).

Figure 2 Founder mutation haplotype analysis

Schematic representation of the candidate region on chromosome 13q13 containingUFM1 and part of FREM2. The area of
overlapping haplotype is highlighted in light blue: section A depicts the results of the single nucleotide polymorphism (SNP)
array in 5 patients: 238 overlapping homozygous SNPs starting with rs17068530 and ending with rs248423 (shown in
black), flanked by rs9532135 and rs9566363 (shown in red). Section B depicts the microsatellite and SNP markers
analyzed in the candidate region, which confirmed the presence of a common haplotype in all patients (markers depicted
in black), flanked by microsatellite markers D13S219 and D13S1288 (shown in red).

Neurology 89 October 24, 2017 1825



LOD score calculation confirms linkage and haplotype

analysis reveals a founder effect. LOD score calculations
for the UFM1 variant showed a maximum LOD
score of 9.18 when all 12 families were included in
the calculation, and a maximum LOD score of 5.32
when the families used for identification of theUFM1
variant were excluded.

Haplotype analysis showed that all patients were
homozygous for an identical haplotype containing
the UFM1 mutation, indicative of a founder effect
(table e-3). The smallest putative shared region was
flanked by microsatellite markers D13S219 and
D13S1288 (figure 2B).

Population screening reveals high carrier rates in Roma

subisolates. An important step for validation was to
prove absence of homozygosity for the UFM1 deletion
among healthy Roma individuals. Screening of 670
Roma controls revealed 30 carriers with an overall car-
rier rate of 4.5% among different Roma communities
across Europe and one individual who was homozy-
gous for the deletion. Retrospective review of this case
revealed that this sample was derived from a boy with
severe encephalopathy with spasticity, who had died at
age 2.5 years and had erroneously been included
among the controls. He had a similarly affected sibling,
who had also died. No imaging had been performed,
but the severe phenotype was similar to that of the
patients in this study. The child lived in an endoga-
mous community in Eastern Slovakia with a high rate-
of consanguinity. An additional panel of Eastern
Slovak Roma samples revealed a carrier frequency of
3.3% (9 out of 273). Subsequent investigation of the
carrier rate in the specific community where the homo-
zygous individual came from revealed a carrier rate of
approximately 25% (14 out of 57 individuals).

The promoter mutation reduces reporter gene expression

in specific CNS cell lines. To study the effect of the
deletion on promoter activity in different cell types,
the candidate promoter sequence with or without
the deletion was cloned into luciferase vectors and
transfected into different cell lines to test its activity.
The deletion significantly reduced promoter activity
in SY-5Y and U373 but not in HeLa and HOG-F2
cell lines (figure 3).

DISCUSSION This study, focused on identifying
the mutated gene in patients with H-ABC without
TUBB4A mutations, revealed a homozygous 3-bp
deletion in the UFM1 promoter area, which perfectly
segregates with the disease. Most patients were known
to have a Roma background, and haplotype analysis
indicated that the shared UFM1 deletion originates
from a common ancestor. Within the candidate
region, the UFM1 promoter deletion was the only
candidate. The Taqman screening assay confirmed
a high carrier frequency and absence of homozygos-
ity for the mutation among healthy Roma controls.
Worldwide, our centers in Amsterdam and Wash-
ington know by far the highest number of patients
with H-ABC and up until now we have not identi-
fied other UFM1 mutations in unrelated families.
The genetically isolated Roma population harbors
several unique autosomal recessive disorders caused
by “private” founder mutations in genes, in which
no other mutations have been found until now.10,11

In a luciferase assay, we showed that the UFM1 pro-
moter deletion results in a significantly reduced
transcription activity only in selected neural but
not in other cell lines. This finding supports the
pathogenicity of the mutation and suggests a cell-
specific effect.

Figure 3 c.-271_-271delTCA reduces UFM1 promoter activity in SY-5Y neuroblastoma and U373 astroglioma cell lines

(A–D) c.-273_-271delTCA in humanUFM1 (hUFM1) promoter significantly reduces reporter gene expression in SY5Y (p5 0.001) and U373 (p5 0.014) but
not in HeLA (cervix carcinoma) or HOG-F2 (oligodendrocytoma) cell lines. Promoter activity was measured with dual luciferase reporter assays. The nano-
luciferase/firefly luciferase ratio measured in cells transfected with wildtype hUFM1was arbitrarily set at 1 on the y-axis. delTCA indicates cells transfected
with human UFM1 promoter harboring c.-273_-271delTCA. Data represent mean 6 SD values obtained from 2 independent experiments testing the
luciferase activity in duplo and were analyzed by 2-tailed t test.
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UFM1 encodes ubiquitin-fold modifier 1 (UFM1),
a ubiquitin-like (UBL) protein, which is ubiquitously
expressed, including in brain.12 UFM1 is hypothesized
to post-translationally modify (“ufmylate”) proteins in
a manner analogous to ubiquitination.12,13 Ubiquitin
and UBL pathways are involved in control of numerous
functions, including signal transduction, transcriptional
regulation, and stress response.14 Several studies indicate
an association between the UFM1 pathway and both
neurodevelopment and neurodegeneration.15,16 Its exact
biological role and working mechanism are poorly
understood. Most evidence points to a role of UFM1
in endoplasmic reticulum homeostasis and protection
against apoptosis.17–19

Genetic defects in the ubiquitin-proteasome sys-
tem have been associated with several neurologic dis-
orders, particularly cerebellar ataxias.20,21 Recently,
various recessive mutations in UBA5, encoding
UFM1 activating enzyme 5 (UBA5), were associated
with a progressive, childhood-onset cerebellar
ataxia.19,22,23 The most severe variants presented with
infantile onset encephalopathy with hypotonia, spas-
ticity, movement abnormalities, refractory epilepsy,
microcephaly, failure to thrive, and cerebellar atro-
phy,19,22 similar to the encephalopathy in our pa-
tients. Strikingly, biochemical and experimental
findings indicated that the described UBA5 muta-
tions result in UFM1 system impairment.19,22,23

Drosophila models with knockdown of UBA5 and
UFM1 homologues exhibited a neurologic phenotype
with reduced motor activity and shortened lifespan,
with UFM1 knockdown resulting in the most severe
phenotype.23 CNS-specific knockout of Ufm1 in
mice caused neonatal death with microcephaly and
apoptosis of neurons in specific brain regions.22

Altogether, existing data suggest that the UFM1
system is crucial for neuronal development, function,
and protection against apoptosis.14–19,22,23 This con-
cept is substantiated by the current study, showing
association of UFM1 mutations with an infantile-
onset, severe epileptic encephalopathy and failure of
development. Intriguingly, while the Ufm1 knockout
mouse showed apoptosis in restricted brain areas,
MRI also suggests apoptosis of selected neuronal cell
populations in both TUBB4A- and UFM1-related
H-ABC, substantiated by histopathology in the first.1,24

Muona et al.22 suggest that ufmylation may be spatio-
temporally regulated and cell type–specific. Specificity is
reinforced by the results of our transfection studies
showing that only selective neural cell lines are vulner-
able for the promoter mutation.

The relationship between H-ABC caused bymono-
allelic TUBB4A mutations and H-ABC caused by
biallelic UFM1 mutations is unclear. TUBB4A muta-
tions are associated with a disease spectrum ranging from
early infantile, severe encephalopathy to adult-onset

dystonia type 4, with a strong genotype–phenotype
correlation.3 All patients with the c.-273_-271delTCA
UFM1 promoter mutation have an early infantile,
severe encephalopathy with early death. Although the
UFM1-mutated patients fulfill the MRI criteria of
H-ABC, they consistently have an additional feature:
signal abnormality of the lateral part of the head of
the caudate nucleus suggestive of local apoptosis. This
feature has not been observed in TUBB4A-related
H-ABC and may be pathognomonic for UFM1-related
H-ABC. Whether UFM1-related disease and
TUBB4A-related disease are basically variants of one
disease or unrelated phenocopies is still to be clarified.
The striking similarity between the 2 suggests that the
encoded proteins may be at least partially involved in
the same processes. A possible link could be that
ufmylation is involved in the regulation of microtu-
bule dynamics, which has been shown for other
UBLs.25 Recently, recessive ZNF335 mutations were
described in a single family, in which patients dis-
played features compatible with early-onset severe
H-ABC.26 Further confirmation and characterization
are necessary, but if the finding is confirmed in other
families, studies focused on possible crossroads of
tubulin b-4A, ubiquitin-fold modifier 1, and zinc
finger protein 335 are warranted. Considering that
a few patients with H-ABC are presently still genet-
ically unclassified despite targeted Sanger sequencing
and whole exome and genome sequencing, some
more genes and proteins may be added.

The current study sheds new light on possible
UFM1 functional networks and directly benefits pa-
tients and families. The identification of the disease-
causing variant enables better clinical and genetic
counseling, the possibility of prenatal testing, and
the option of carrier testing in populations with a high
carrier frequency.
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