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ORIGINAL ARTICLE

Background: Pneumococcal conjugate vaccines (PCVs) prevent 
invasive pneumococcal disease and pneumonia. However, some low- 
and middle-income countries have yet to introduce PCV into their 
immunization programs due, in part, to lack of certainty about the 
potential impact. Assessing PCV benefits is challenging because spe-
cific data on pneumococcal disease are often lacking, and it can be 
difficult to separate the effects of factors other than the vaccine that 
could also affect pneumococcal disease rates.
Methods: We assess PCV impact by combining Bayesian model aver-
aging with change-point models to estimate the timing and magnitude 
of vaccine-associated changes, while controlling for seasonality and 
other covariates. We applied our approach to monthly time series of 
age-stratified hospitalizations related to pneumococcal infection in chil-
dren younger 5 years of age in the United States, Brazil, and Chile.
Results: Our method accurately detected changes in data in which we 
knew true and noteworthy changes occurred, i.e., in simulated data 
and for invasive pneumococcal disease. Moreover, 24 months after 
the vaccine introduction, we detected reductions of 14%, 9%, and 9% 
in the United States, Brazil, and Chile, respectively, in all-cause pneu-
monia (ACP) hospitalizations for age group 0 to <1 years of age.

Conclusions: Our approach provides a flexible and sensitive method 
to detect changes in disease incidence that occur after the introduc-
tion of a vaccine or other intervention, while avoiding biases that 
exist in current approaches to time-trend analyses.

(Epidemiology 2017;28: 889–897)

Pneumococcus (Streptococcus pneumoniae) causes an array 
of diseases, including pneumonia and invasive pneumo-

coccal disease (IPD), resulting in almost 1 million childhood 
deaths annually in the pre-vaccine years.1 The first pneumococ-
cal conjugate vaccine (PCV7), which targeted seven of the 90+ 
pneumococcal serotypes, was introduced in 2000 in the United 
States. Newer versions of the vaccine on the market, PCV10 and 
PCV13, target 10 and 13 serotypes, respectively, are now in wide-
spread use worldwide. Accurate determination of PCV impact is 
necessary to support public health decision-making. In particular, 
many low- and middle-income countries are considering intro-
ducing or have already introduced PCVs. These countries will 
need information about the overall impact of PCVs as they decide 
whether to implement or continue to support PCVs in the future.

The ability to detect a vaccine-associated change in dis-
ease rates depends on the magnitude of the decline and the 
amount of unexplained variability in the data—a small change 
in noisy data is difficult to see. Analysis of bacterial surveillance 
data,2,3 as well as trends in national mortality,4 and hospitaliza-
tion data5 have shown that the use of PCVs led to substantial 
declines in rates of IPD among both vaccinated children and 
unvaccinated older children and adults. Estimating the impact 
of PCVs on IPD is relatively straightforward because the decline 
is large and corroborated by laboratory testing. However, mea-
suring the impact of PCVs against pneumonia is more difficult 
because the etiologic agent is rarely identified or recorded. Ran-
domized controlled trials (RCTs) suggest that PCVs should have 
a relatively modest effect of 0.1%–10.8% against syndromic 
pneumonia hospitalizations among children <2 years of age.1 In 
contrast, some time-trend studies have reported declines of up 
to 40% in all-cause pneumonia hospitalizations.6,7 However, in 
observational studies of this type, changes in healthcare systems 
and socioeconomic improvements are all nonvaccine factors 
that may influence reported reductions, as could the specificity 
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of the pneumonia case definitions. Robust methods that quantify 
the timing and magnitude of any changes that occur after vac-
cine introduction would help to strengthen estimates of vaccine 
impact and improve comparability between studies.

A common approach used to estimate vaccine impact is 
interrupted time series analysis, which involves using a regression 
model to evaluate changes in incidences or trends between selected 
pre- and post-vaccine years. This approach, however, requires two 
potentially problematic assumptions. First, it prespecifies the point 
in time when a change in the outcome is expected (typically at or 
shortly after vaccine introduction). This is problematic because it 
is uncertain when a vaccine will begin to exert a detectable effect, 
and the estimated reductions can depend greatly on the choice of 
the cut-off point. Also, if an unrelated trend begins shortly before 
vaccine introduction, this change could be incorrectly attributed 
to the vaccine. And a short-term spike in incidences that occurs 
shortly before vaccine introduction—such as the 2009 pandemic 
occurring just before PCV10 introduction in Brazil and PCV13 
in the United States in 2010—could influence the estimated pre-
vaccine trends and bias the results. These sources of bias are usu-
ally not well investigated. Second, investigators typically choose 
one model over all others, when in fact alternative models might 
describe the data equally well but nonetheless may yield different 
impact estimates.8 For example, a model that assumes an immedi-
ate, sudden decline in incidences due to vaccine might give biased 
results if, in fact, the decline is delayed or gradual. In practice, 
investigators do not know the structure of changes in incidence or 
which nonvaccine forces may be operating. Therefore, assuming 
that one model can describe the data adequately is not optimal.

To address these issues, we have combined change-point 
analysis9—a method to detect the timing and magnitude of changes 
in time series data—with Bayesian model averaging—a method to 
systematically integrate results from different model structures and 
covariates. Change-point modeling allows the data to reveal if and 
when any substantial change in the time series occurred, with fewer 
presuppositions. Bayesian model averaging obviates the need to 
choose a single “best” model by providing a weighted average 
of results from models fitted using different forms and combina-
tions of covariates; it also provides insight into the importance of 
each covariate included in the change-point models. This approach 
allows assessment of the uncertainties in timing and magnitude of 
any changes found in the time series. Here, we demonstrate the 
usefulness—and limitations—of this approach by applying it to the 
assessment of PCV impact in the United States, Brazil, and Chile. 
We also provide the results of a Monte Carlo simulation study that 
assessed the accuracy and precision of our approach.

METHODS

Data Sources
We obtained monthly hospitalization data from three coun-

tries: the United States, Brazil, and Chile. We focused our study 
on children <5 years of age (stratified by <12, 12–23, and 24–59 
months of age) because pediatric age groups are most likely to be 
directly affected by vaccination. PCV7 was introduced in the United 

States in February 2000, and PCV10 was introduced in Brazil and 
Chile in March 2010 and January 2011, respectively. See eAppen-
dix (http://links.lww.com/EDE/B237) for details on data sources.

In the US data, we used any mention of the relevant Inter-
national classification of diseases, ninth revision (ICD9) codes 
(eTable 1; http://links.lww.com/EDE/B237) in the hospitaliza-
tion discharge records to define patients who had IPD and pneu-
mococcal (lobar) pneumonia; for all-cause pneumonia, we used 
two definitions: the ICD9 definition that Griffin et al10 (2013) 
developed, and a less stringent but commonly used “any men-
tion” definition (referred here as the “standard definition”). In 
Brazil and Chile, codes specifically indicating pneumococcal 
pneumonia and pneumococcal infection were rarely used, and 
secondary codes were not recorded; thus, we could only analyze 
ACP defined by the “standard” definition (eTable 1; http://links.
lww.com/EDE/B237). To highlight the strengths and pitfalls of 
our approach, we also present results of the model fit to rotaviral 
enteritis and urinary tract infections (UTIs) for which no PCV 
benefits are expected. The analyses of these de-identified data 
were deemed exempt from review by the Human Investigation 
Committee at Yale School of Medicine.

Bayesian Model Averaging with Change Points: 
Overview

We combined change-point models with Bayesian model 
averaging. We fit two types of change-point models11–13: one cap-
turing sudden declines (change in mean) and the other capturing 
gradual declines over time (change in slope). To allow for the pos-
sibility that no significant change occurred, we also fit models with 
no change point. To capture time trends not explained by the change 
points, all models included a smooth function of time, which was 
estimated using a nonparametric mixed model approach, and there-
fore lead to inclusion of random effects (for details, see eAppendix; 
http://links.lww.com/EDE/B237). We also allow a set of covariates 
to be included in the model, and the outcome Yj

 is assumed to fol-
low a Poisson distribution with mean µ j .

The three model structures were as follows:
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T

jZ X g t( )= ( )+ + + ( )log β β0  
(No change point)

 
(1)

log logµ j j j
T

j

t

Z X g t

I
j

( )= ( )+ + + ( )
+



−( )

β β

α
θ

0

(Change in mean) (2)

log logµ j j j
T

j

j t

Z X g t

t I
j

( )= ( )+ + + ( )
+ −( )



−( )

β β

α θ
θ

0

(Change in slope) (3)

where for time t j , Yj
is the number of cases, Z j  is 

an offset term representing the total number of hospitaliza-
tions excluding Yj

, g t j( )  is a smooth function of time, 

X X X Xj j j pj

T
= …( )1 2, , ,  and ββ= …( )β β β1 2, , , p

T

 are the vec-

tors of covariates and p regression coefficients, respectively, 
α  is the coefficient of change point, i.e., the change in 
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expected counts due to the intervention that occurs at time θ ,  
and Iu  is an indicator function that is 1 when its subscript is 
greater than 0 and is 0 otherwise, and j= …1 2, , ,n  with n as the 
number of time points.

For Bayesian model averaging, we fit each of the three 
model structures with all possible combinations of covariates 
and each candidate change point. This resulted in a large set of 
candidate models. For details of the estimation procedure, see 
eAppendix (http://links.lww.com/EDE/B237).

We placed two restrictions on our models. First, to mini-
mize edge effects, which are typical in the analyses of time 
series data and can lead to biased results, we assumed the 
probability that a change point occurred in the first or last 6 
months of the time series was 0. Second, in data applications 
where more than one change point was needed to capture the 
variation in the data, we required each point be separated by at 
least 12 months from all others, to avoid capturing short-term 
epidemic patterns.

Estimating the Counterfactual Predictions
To estimate the decline in incidences that occurred after 

vaccine introduction, it is necessary to compare the model-
averaged fitted incidences with an estimate of the counterfac-
tual incidence (counterfactual prediction)—what would have 
been expected to occur if the vaccine was not introduced. We 
estimated the counterfactual incidence by using the model that 
was fit to the entire data.

While estimating the counterfactual predictions, there are 
three possible scenarios to consider: (1) no change in incidence; 
(2) change in incidence before the vaccine; and (3) change in 
incidence after the vaccine. If there were no changes or a change 
occurred before the vaccine, no change should be attributable 
to the vaccine, and the counterfactual predictions should align 
with model-averaged fitted values. In contrast, if the change 
occurred after vaccine introduction, this change should be 
attributed to the vaccine. To implement this idea in our models, 
we multiplied the regression coefficients of the change points 
(α in equations 2 and 3) by the sum of the posterior probabilities 
from the models that indicated a change occurred before the 
vaccine or no change at all. If the models with a change point 
before the vaccine fit the data better, we multiply α (equations 
2 and 3) with a number close to 1 and the counterfactual pre-
dictions will be close to model-averaged fitted values. On the 
contrary, if the models with a change point after the vaccine 
fit the data better, we multiply α with a number close to 0, and 
the counterfactual predictions will be further away from model-
averaged fitted values.

We obtained the incidence rate ratio (IRR)—a measure 
of the magnitude of the change for each time point—by divid-
ing model-averaged fitted values by counterfactual predictions. 
We obtained 95% bootstrap confidence intervals for the IRR 
(for details, see eAppendix; http://links.lww.com/EDE/B237).

We assessed the uncertainty associated with the exis-
tence and location of each change point using the distribution 

of posterior probabilities. The sum of the posterior probabili-
ties for the models with a change point gives an indication of 
the confidence that there was a substantial change in the time 
series data—posteriors close to 1 indicates strong evidence 
of a change, values close to 0 indicate strong evidence of no 
change, and values close to 0.5 indicate uncertainty about 
whether there was a change.

Bayesian Model Averaging with Change Points: 
Applications

National-level Hospitalizations
We applied Bayesian model averaging with change 

points to the national-level hospitalization data from the 
United States, Chile, and Brazil. All analyses were stratified 
by age group, and separate models were fit for each disease 
outcome (eTable 1; http://links.lww.com/EDE/B237). In each 
analysis, the total number of hospitalizations in the relevant age 
group and year, excluding the hospitalizations for the outcome 
of interest, was used as the denominator. As a starting point 
for all of the analyses, we allowed a single change point at an 
unknown time. Because the resulting posterior model probabil-
ities suggested that we needed two change points, i.e., we had 
a bimodal posterior distribution, to explain the patterns in the 
United States and Chile, we reanalyzed these data allowing up 
to two change points that were separated by at least 12 months. 
In Brazil, a health program (Pact for Health) targeting diarrhea 
and pneumonia began in 2006, and a 2008 healthcare delivery 
system reform affected the specificity of coding; thus, for Bra-
zil, we included two fixed change points in January 2006 and 
2008 (a dummy variable for before or after that time point) and 
allowed a single change point any time after January 2009. In 
the analysis of pneumonia and invasive pneumococcal disease, 
all models included harmonic terms with 6- and 12-month peri-
ods to capture the seasonal structure of the data. In addition, we 
included age-adjusted numbers of influenza hospitalizations as 
a covariate to control for the severity of different influenza sea-
sons; numbers of influenza cases were aggregated over all age 
groups to provide an estimate of influenza activity across the 
population and avoid known age-specific coding biases.

Simulation Studies
We generated five sets of simulated time series that 

resembled observed time series in terms of number of monthly 
cases, seasonality, and degree of random unexplained vari-
ability but on which we imposed changes of known timing and 
magnitude. For each set, we generated 100 time series that fol-
lowed a Poisson distribution, and parameters for this distribu-
tion were extracted from invasive pneumococcal disease and 
pneumonia time series from the United States, Chile, and Bra-
zil using a Poisson regression model in PROC MCMC (SAS 
Inc., Cary, NC).14 The last simulation study used parameters 
obtained from Brazil pneumonia series and was used to dem-
onstrate the performance of Bayesian model averaging with 
change points in the absence of a vaccine effect. For details 
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on construction of simulated data, see eAppendix (http://links.
lww.com/EDE/B237).

We evaluated the performance of the proposed models 
first in terms of IRR estimations by comparing the median 
estimated IRR of all 100 simulated data sets to the true IRR 
value at 12 months after the change point. At the same time 
point, we also assessed the uncertainty associated with IRR 
estimation through coverage of the 2.5 and 97.5 percentiles 
of estimated IRR values based on 100 simulation runs. We 
assessed the precision of our change-point estimates by com-
paring the true change-point locations to mean change-point 
locations, which were calculated as the average of the time 
points in each simulation run that had the largest posterior 
probability.

We compared the performance of Bayesian model aver-
aging with change points in estimating IRR to interrupted time 
series approach in simulated data and real data applications. 
See eAppendix (http://links.lww.com/EDE/B237) for details.

Bayesian model averaging with change points was per-
formed using the GAMM4 package in R V3.1.3 (R, Vienna, 
Austria),15 and a sample R code (http://links.lww.com/EDE/
B238) along with a data set (http://links.lww.com/EDE/B239) 
is available as supplementary materials.

RESULTS

Performance of Models on Simulated Time 
Series

We applied Bayesian model averaging with change 
points to five sets of 100 simulated time series, which had 
different effect sizes and number of years observed (eTable 
2; http://links.lww.com/EDE/B237). The method accurately 
detected the timing and magnitude of changes when vaccine 
effect was large (similar to the ~60% reduction seen in inva-
sive pneumococcal disease in the United States3) (eFigure 
1; http://links.lww.com/EDE/B237). The model accurately 
captured both the timing of the change and the magnitude of 
the decline after the simulated vaccine introduction. In the 
simulated data where there was no imposed vaccine effect, 
Bayesian model averaging with change points—correctly—
did not detect a change in 69% of the simulated time series. 
The method performed well when estimating the change-point 
location(s) in simulated data where the imposed decline was 
smaller and several years of data before and after vaccine were 
available (the data were similar to ACP [definition in 10] in 
the United States and Brazil). However, when only 2 years of 
post-vaccine data were available, as was the case with simu-
lated data that resembled all-cause pneumonia in Chile, IRR 
estimates were slightly biased. Finally, when the expected IRR 
was small, change-point estimate was less accurate, with up to 
a year between this estimate and true change point.

The comparison of Bayesian model averaging with 
change points with interrupted time series analysis (eTable 3; 
http://links.lww.com/EDE/B237) showed that for data with a 

single change point (similar to characteristics of Brazil all-
cause pneumonia data), these methods gave mostly compara-
ble results. With two change points, the results of interrupted 
time series analysis and Bayesian model averaging with 
change points were closest when the cut-off for interrupted 
time series was close to the mean second change point cal-
culated with Bayesian model averaging with change points 
(eTable 2; http://links.lww.com/EDE/B237) (for details, see 
eAppendix; http://links.lww.com/EDE/B237).

Estimates of Changes Following the 
Introduction of PCVs

Within 24 months of vaccine introduction, large 
declines (36%–43%) had occurred in rates of invasive pneu-
mococcal disease in the United States among children under 
5 years of age. For invasive pneumococcal disease, the prob-
ability that at least one change point occurred after vaccine 
introduction was strong (probability of 0.999 for age groups 
<12-, 12–23-, and 24–59-month-olds). The posterior prob-
abilities indicated that a second change point occurred 4–7 
years after vaccine introduction as disease rates leveled out 
(Figure 1 and Table). By 24 months after PCV7 introduction, 
pneumococcal (lobar) pneumonia declined by 36%, 43%, and 
32% among children <12, 12–23, and 24–59 months of age 
in the United States, respectively. The corresponding prob-
abilities that a change occurred after PCV7 introduction were 
0.977, 0.999, and 0.999 (eFigure 2; http://links.lww.com/
EDE/B237; Table).

All-cause pneumonia declined by 14%, 9%, and 9% 
among <12-month-olds in the United States, Brazil, and Chile, 
respectively, at 24 months after PCV introduction. The prob-
abilities that a decline occurred after PCV introduction were 
0.956, 0.498, and 0.998 in the United States, Brazil, and Chile, 
respectively. For older children, the probability of a decline 
after PCV introduction was in all three countries greater than 
0.8. Using a definition of ACP that is more specific for pneu-
mococcus,10 the decline in the Unites States was, as expected, 
larger at 26% (Figure 2; eFigures 3–6; http://links.lww.com/
EDE/B237; Table).

Our method can make use of covariates to control for 
changes that are unrelated to vaccination. For example, for 
the stringent all-cause pneumonia definition10 in the United 
States, there was weak evidence that influenza (eTable 1; 
http://links.lww.com/EDE/B237) should be included in the 
model for <12-month-olds (probability = 0.389), while there 
was strong evidence (probability = 0.891) that it should be 
included in models for 24–59-month-olds (Table).

We compared the results of Bayesian model averag-
ing with change points to an interrupted time series model 
(eTable 4; http://links.lww.com/EDE/B237). The estimates for 
the decline in pneumonia hospitalizations after PCV introduc-
tion obtained from the former method were generally closer to 
zero (i.e., smaller effects) (for details, see eAppendix; http://
links.lww.com/EDE/B237).
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FIGURE 1. The plots on the left represent, IPD hospitalizations versus time for 10 US states by age group, showing observed IPD 
hospitalizations per month (black), model-averaged fitted values (orange, solid) with their 95% approximate pointwise confi-
dence intervals (orange, dotted), and counterfactual predicted values (blue). The estimated decline at specific time points (green 
triangles) is shown, with their respective 95% bootstrap confidence intervals. The blue dots at the bottom represent the prob-
ability of a change occurring at that point. The color gets darker as the probability increases. The first and second sets of dots are 
for the first and second change points, respectively. The level plots on the right are posterior probabilities corresponding to the 
plots on the left for the locations of the first (x axis) and second (y axis) change points. The dashed lines represent the time that 
the PCV7 (January 2000) is introduced.
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Estimates of Changes in Nonpneumococcal 
Outcomes

In the United States, Bayesian model averaging with 
change points did not detect a decline in rotaviral enteri-
tis immediately after PCV introduction (as expected) but 
detected a decline in <12-month-olds after 2006, coinci-
dent with the introduction of the rotavirus vaccine. We also 
detected a decline in the number of UTI cases in the United 
States after 2000 among infants <12 months of age and among 
children 12–23 months of age. In Brazil, we did not detect 
any changes in UTI cases in infants <12 months of age after 
PCV introduction (eFigure 7 and eTable 5; http://links.lww.
com/EDE/B237). These patterns highlight the need for cau-
tion when attributing trends from these types of analyses to a 
specific intervention.

DISCUSSION
The benefits of a public health intervention are typically 

assessed from time series data using a regression model that 
compares disease rates and trends before and after the inter-
vention. The advantage of Bayesian model averaging with 
change points over this traditional approach is two-fold. First, 
it estimates the time at which a change in incidence occurred 
rather than imposing a preselected time frame on the analysis, 

making it less likely that an unrelated trend from before vac-
cine introduction would be attributed to the vaccine. Second, 
it removes the need to choose a single “best” model struc-
ture to describe the data. In practice, analysts might not know 
the structure of change(s) in incidences or the covariates that 
describe the data best. We avoid this limitation by fitting a 
number of possible models with different combinations of 
covariates.

We have demonstrated the advantages of Bayesian 
model averaging with change points by assessing PCV impact 
in three different epidemiologically distinct settings. Two of 
these were middle-income countries for which we only had 
data on all-cause pneumonia, the pneumococcal outcome that 
is least specific and therefore most challenging to assess. We 
believe that this method could be used effectively to evaluate 
the impact of other vaccines and public health interventions in 
many such settings, including low-income countries in which 
the data are even more challenging.

Comparison of Bayesian model averaging with changes 
points and interrupted time series analysis indicates that both 
methods yield similar results when there is a single change 
point in the data and the latter correctly specifies this point as 
the cut-off. In practice, however, the exact point to interrupt 
the time series may not be optimal. Our results show that if the 

TABLE.  Estimated Percent Decline ([1-IRR] × 100) and Probabilities that Changes Occurred After Vaccination by Age Group, 
Country, and Outcome

Outcome/Age Group

Percent Decline 24 
Months After Vaccine 

Introduction (95% 
CI), %

Percent Decline 48 
Months After Vaccine 

Introduction (95% 
CI), %

Probability of Any 
Change in the Time 

Series

Probability of Any 
Change Occurring 

After Vaccine 
Introductiona

Probability 
that Influenza 

Influences 
Estimates

Invasive pneumococcal disease (United States)

  0 to <12 43 (26, 51) 64 (42, 66) 1.000 0.999 0.638

  12–23 77 (52, 78) 76 (58, 81) 1.000 0.999 0.623

  24–59 36 (20, 42) 61 (40, 65) 1.000 0.999 0.439

Pneumococcal (lobar) pneumonia (United States)

  0 to <12 36 (21, 38) 37 (21, 40) 1.000 0.977 0.640

  12–23 43 (25, 47) 44 (26, 45) 1.000 0.999 0.736

  24–59 32 (21, 42) 28 (7, 32) 1.000 0.999 0.720

All-cause pneumonia

  0 to <12 (US definition by Griffin et al10) 26 (10, 28) 33 (11, 34) 1.000 0.994 0.389

  0 to <12 (US standard definition) 14 (8, 22) 19 (9, 24) 1.000 0.956 0.650

  0 to <12 (Brazil) 9 (3, 14) 10 (4, 19) 1.000 0.498 0.559

  0 to <12 (Chile) 9 (1, 17) — 1.000 0.998 0.153

  12–23 (US definition by Griffin et al10) 10 (2, 12) 10 (2, 12) 0.999 0.995 0.760

  12–23 (US standard definition) 5 (1, 7) 6 (1, 7) 0.933 0.933 0.774

  12–23 (Brazil) 6 (1, 9) 7 (1, 10) 0.816 0.941 0.165

  12–23 (Chile) 18 (4, 26) — 0.815 0.915 0.415

  24–59 (US definition by Griffin et al10) −3 (−5, 1) −3 (−6, 1) 0.999 0.998 0.891

  24–59 US standard definition) −2 (−3, 1) −4 (−5, −1) 0.999 0.998 0.678

  24–59 (Brazil) 9 (3, 11) 11 (4, 13) 0.999 0.923 0.814

  24–59 (Chile) 5 (−1, 6) — 0.392 0.885 0.224

aProbability conditional on there being any change.
CI indicates confidence interval.

http://links.lww.com/EDE/B237
http://links.lww.com/EDE/B237
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data are not interrupted at the correct time point, the estimate 
of interrupted time series will be biased. Moreover, it tends to 
estimate larger percent declines for data with more than one 

change point (eTable 3; http://links.lww.com/EDE/B237). For 
analysts who decided to perform interrupted time series as the 
primary analysis and where there is strong prior information 

FIGURE 2. The plots on the right are ACP hospitalizations versus time for Brazil (first row), 10 US states (second row), and Chile 
(third row) for age group 0–12 months, showing observed ACP hospitalizations per month (black), model-averaged fitted values 
(orange, solid) with their 95% approximate pointwise confidence intervals (orange, dotted), and counterfactual predicted values 
(blue). The estimated decline at specific time points (green triangles) is shown, with their respective 95% bootstrap confidence 
intervals. The blue dots at the bottom represent the probability of a change occurring at that point. The color gets darker as the 
probability increases. In the second and third rows of the plot, the first and second sets of dots are for the first and second change 
points, respectively. The level plots on the right are posterior probabilities (in the second and third rows) corresponding to the 
plots on the left (in the second and third rows) for the locations of the first (x axis) and second (y axis) change points. The dashed 
lines represent the time that the pneumococcal conjugate vaccine is introduced.

http://links.lww.com/EDE/B237
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about when the change should occur, we would suggest that 
Bayesian model averaging with change points would provide 
a useful secondary analysis with an additional confirmatory 
information (the timing of the change).

Because contact patterns between age groups are not 
uniform, and the etiology of pneumonia varies by age, the 
change-point locations and magnitudes could differ by age 
group. Therefore, we performed a separate analysis for each 
age group and disease outcome. Our analysis supported this 
approach as the declines in some disease outcomes are ear-
lier in vaccinated children compared with unvaccinated adults 
(who are indirectly protected).

The estimated decline in invasive pneumococcal dis-
ease in children under 24 months of age was consistent with 
results from active surveillance studies; pneumococcal (lobar) 
pneumonia in the United States, an outcome that is more spe-
cific for pneumococcal pneumonia than all-cause pneumonia, 
declined in a similar pattern after PCV introduction. However, 
our estimates of the decline in all-cause pneumonia (standard 
definition) among children <24 months of age were notably 
smaller than some published estimates from trend studies. For 
example, Afonso et al7 (2013) estimated a 24%–29% decline 
in Brazil, and Grijalva et al6 (2007) found a 39% decline in 
all-cause pneumonia (stringent definition) in the Unites States. 
Some of the differences between our results and published 
studies could be due to differences in the definition of pneu-
monia used; in fact, we detected a larger decline (26%) when 
using the stringent all-cause pneumonia definition,10 suggest-
ing that this definition is more specific to pneumococcus than 
the standard definition. Our estimates, however, are more con-
sistent with the declines in clinical pneumonia estimated in 
RCTs.1 Importantly, when there is uncertainty about whether 
a trend begins before or after vaccine, Bayesian model averag-
ing with change points is inherently more conservative in esti-
mating the amount of change that occurred after vaccine than 
interrupted time series or other similar methods. Comparisons 
with these other methods can be helpful to highlight situations 
where the simpler interrupted time series approaches might be 
biased and further analytical attention is needed.

Covariates can be incorporated into Bayesian model 
averaging with change points to control for changes in inci-
dence unrelated to vaccination. As an example, we included 
age-aggregated influenza hospitalizations (ICD10 J09–J11) as 
a covariate to control for the highly variable severity of seasonal 
influenza because a severe influenza season could bias IRR and 
change-point estimates for pneumonia (and potentially hospi-
talizations caused by pneumococcus specifically as well).16,17 
For instance, a severe flu season immediately after vaccine 
would lead to an increase in pneumonia hospitalizations and 
mask the effect of the vaccine, while a severe season before vac-
cine would exaggerate the effect. The influenza covariate allows 
us to subtract out the effect of influenza from the estimates. 
Although including this covariate might bias the estimates if 
the vaccine reduces hospitalizations coded as influenza or if 

coding patterns changed after vaccine, it is still important to 
control for influenza season severity for the reasons mentioned 
above. By summing the weights of models that include influ-
enza, we obtained an estimate of the probability that influenza 
appreciably influenced the results; values close to 1 were strong 
evidence that it did, values near 0 were strong evidence that it 
did not, and values near 0.5 were inconclusive (Table).

Our approach has limitations. First, Bayesian model 
averaging with changes points requires an investigator to 
determine the number of change points before fitting the 
models; we are developing a more flexible approach that will 
estimate the appropriate number of change points. Second, its 
algorithm is computationally heavy due to the smooth func-
tions of time used in the models. Therefore, fully Bayesian 
approaches that employ spike-and-slab priors will be explored 
to overcome this burden. Third, more simulation studies are 
required to determine the effects of sample size, unexplained 
variability, and effect size on the accuracy of the estimates. 
Finally, an inherent limitation of both Bayesian model averag-
ing with change points and interrupted time series is the need 
to assume that any trends that occurred before vaccine would 
continue indefinitely into the post-vaccine period. Incorporat-
ing information on contemporaneous control variables into 
the analysis18 could help to relax these assumptions and gen-
erate more credible counterfactual estimates.

As with any trend analysis, the results of Bayesian 
model averaging with change points should be interpreted 
cautiously. Although it strengthens inferences on vaccine 
impact by estimating the timing and magnitude of the change 
after the intervention, unrelated factors can still influence 
trends in incidences. For instance, we found changes in UTI 
hospitalizations in the United States (but not in Brazil) after 
PCV introduction that cannot plausibly be attributed to PCV. 
One solution to this problem would be to identify an appro-
priate set of comparison outcomes that share the same set of 
confounders as the disease of interest but is not influenced by 
the intervention.19 Identifying these outcomes is challenging 
in practice, as using an inappropriate outcome might lead to a 
misleading association between the vaccine and the compara-
tor outcome. We chose UTI and rotaviral enteritis to demon-
strate the challenge in selecting such outcomes and to reiterate 
that caution should be exercised when attributing any change 
found in pneumonia-related hospitalizations to the vaccine.

In conclusion, we have proposed a flexible approach 
to evaluate the impact of PCVs, as well as any public health 
intervention. Our approach estimates the location and mag-
nitude of the change in disease incidence by fitting a num-
ber of alternative models that account for different potential 
covariates and different structures of the change. Unlike cur-
rent approaches, our method removes the need to subjectively 
select the change point in the time series and calculate the 
intervention impact accordingly. The utility of our approach is 
demonstrated via simulation studies and real data with strong 
and known vaccine effects.
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