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Abstract

The loss and recovery of muscle mass and function following injury and during rehabilitation 

varies among individuals. While recent expression profiling studies have illustrated transcriptomic 

responses to muscle disuse and remodeling, how these changes contribute to the physiological 

responses are not clear. In this study, we quantified the effects of immobilization and subsequent 

rehabilitation training on muscle size and identified molecular pathways associated with muscle 

responsiveness in an orthopaedic patient cohort study. The injured leg of 16 individuals with ankle 

injury was immobilized for a minimum of 4 weeks, followed by a 6-week rehabilitation program. 

The maximal cross-sectional area (CSA) of the medial gastrocnemius muscle of the immobilized 

and control legs were determined by T1-weighted axial MRI images. Genome-wide mRNA 

profiling data were used to identify molecular signatures that distinguish the patients who 

responded to immobilization and rehabilitation and those who were considered minimal 

responders. RESULTS: Using 6% change as the threshold to define responsiveness, a greater 

degree of changes in muscle size was noted in high responders (−14.9 ± 3.6%) compared to low 
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responders (0.1 ± 0.0%) during immobilization. In addition, a greater degree of changes in muscle 

size was observed in high responders (20.5 ± 3.2%) compared to low responders (2.5 ± 0.9%) at 6-

week rehabilitation. Microarray analysis showed a higher number of genes differentially expressed 

in the responders compared to low responders in general; with more expression changes observed 

at the acute stage of rehabilitation in both groups. Pathways analysis revealed top molecular 

pathways differentially affected in the groups, including genes involved in mitochondrial function, 

protein turn over, integrin signaling and inflammation. This study confirmed the extent of muscle 

atrophy due to immobilization and recovery by exercise training is associated with distinct 

remodeling signature, which can potentially be used for evaluating and predicting clinical 

outcomes.
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Introduction

Skeletal muscle remodeling occurs in response to physiological stimuli, affecting both 

muscle size and functional properties. Skeletal muscle atrophy occurs during muscle disuse, 

such as immobilization, mircrogravity as well as bed rest. The reported decrease in muscle 

size during 2 to 6 weeks of disuse ranges from 0 to 26% depending on the duration of 

disuse, the modality used and the muscles studied [1–4].

Many molecular processes have been reported to be involved in muscle atrophy, including 

pathways affecting inflammation, mitochondrial function, protein turn over, extracellular 

matrix remodeling and autophagy [5–10]. Although considerable attention has focused on 

muscle atrophy with disuse, less attention has centered on muscle recovery. A small number 

of studies performed in healthy volunteers subjected to either unloading or cast 

immobilization, reported that the recovery time following disuse is approximately equal to 

the duration of disuse. Less consensus exists on the rate of recovery in patient populations. 

Most of the studies show that recovery following an orthopaedic injury is often incomplete 

despite intense rehabilitation interventions [11–14]. In addition, considerable inter-

individual variation in the response to rehabilitation treatment exists, leading investigators to 

group patients into “responders” and “non-responders” [15,16].

The development of effective therapeutic interventions necessitates an in depth 

understanding of molecular mechanisms mediating muscle atrophy and the subsequent 

recovery. Disuse causes significant muscle remodeling, including a loss of myofibrillar 

proteins, a shift in metabolic profile from slow to fast, and vascular and neural alterations 

[5,17,18]. The rapid loss in myofibrillar protein during disuse is mediated by a transient 

decrease in protein synthesis, followed by an increase in protein degradation, resulting in net 

protein loss [5,19–21]. Gene regulating protein turnover including heat shock proteins and 

genes involved in protein degradation have been reported as one of the major pathways 

involved in muscle atrophy [22–25].
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There is strong evidence that the ubiquitin-proteasome proteolytic pathway is the primary 

system responsible for the breakdown of long-lived skeletal muscle proteins [8,26,27] and 

that the ubiquitin protein ligases E3 (e.g. atrogin-1 or FBX32) define much of its specificity 

[28–30]. In addition, genes involved in mitochondrial functions have been reported to be 

severely affected in different conditions leading to muscle atrophy including immobilization, 

unloading, space flight and cancer cachexia [5,23,31–35] although the direct trigger of the 

changes is not clear.

Conversely, increase in neuromuscular activity (e.g. during high resistance training) induces 

an increase in protein content, myonuclear number, myofiber size and muscle strength; 

created in part via a cycle of injury and muscle regeneration and remodeling. Muscle 

regeneration is a complex process, requiring the coordinated interaction between myogenic 

progenitor cells or satellite cells, growth factors, protein synthesis, cytokines, capillary 

morphogenesis, and the extracellular matrix [36]. Previous studies showed genes and 

molecular pathways involved in energy metabolism, protein ubiquitination, extracellular 

matrix remodeling, vasculature remodeling and inflammation are involved in muscle 

responses to resistant training [22,25,37–43].

Although considerable progress has been made towards defining the pathophysiology of 

muscle regeneration and hypertrophy, it should be pointed out that most of our knowledge 

today is based on information extrapolated from animal models and exercise training studies 

in healthy and aged individuals. Few studies have specifically investigated the 

pathophysiology of muscle remodeling and rehabilitation in patient populations. In this 

study, we hypothesize that the key molecular pathways involved in muscle remodeling 

during atrophy and rehabilitation are differentially activated in “responders” versus “non-

responders”. In this study, we temporal expression profiled muscle biopsies obtained from 

two groups of orthopaedic patients that showed different responsiveness to cast 

immobilization and a standardized rehabilitation intervention. The expression profiles of the 

two groups were compared to identify molecular signatures that distinguish responders from 

non-responders.

Methods

Participants

Twenty-four individuals (13 men, 11 women; mean age 26.7 ± 8.3 years) participated in this 

study (Table 1). Of these 24 subjects, 16 participated in all of the tests and measures at all of 

the four time points (see next paragraph). These 16 were included in the gene profiling 

portion of the study. All subjects had sustained an injury to the lower leg that was treated 

conservatively (4–6 weeks of immobilization). Following immobilization, each subject 

completed 6 weeks of a structured rehabilitation program focused on progressive resistance 

training of the ankle plantarflexor musculature as previously described [14]. The study was 

approved by the institutional review board at the University of Florida and Children’s 

National Medical Center. All subjects provided their signed and informed consent before 

participating in the study.
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Muscle cross-sectional area

Magnetic resonance imaging (MRI) was performed on either a 1.5T (Signa, GE Medical 

Systems) or 3.0T (Achieva, Philips Medical Systems) whole-body scanner at the following 

time points: at the end of the 4–6 week immobilization period for a baseline measure, (pre-

rehab), 3 weeks into the rehabilitation program (mid-rehab), following the 6 week 

rehabilitation program, (post-rehab), and 6 months after immobilization (control). Subjects 

were placed in a supine position with their lower leg positioned in either a lower-extremity 

quadrature coil (1.5T) or an 8-channel sensitivity encoding, receive-only extremity coil 

(3.0T). MRI was done on both lower legs for each subject covering the area from the tibial 

tuberosity to the proximal Achilles tendon. Three-dimensional transaxial fat-suppressed 

gradient echo images were acquired with an optimized field of view (12–16 cm2), matrix 

231 × 231 pixels, and a 7mm slice thickness. Acquisition parameters were TR/TE=17.6/3.3 

ms and flip angle=10° at 1.5T, and TR/TE=17.5/1.9 ms and flip angle=20° at 3.0T.

The head of the medial gastrocnemius was manually outlined using OsiriX Imaging 

Software, an open-source software. The axial image with the largest cross-sectional area 

(CSA) in the series was identified. The average of three consecutive slices (the slice with the 

greatest CSA, the slice below, and the slice above) was calculated to determine the maximal 

CSA (CSAmax) for the medial gastrocnemius. Based on the changes in CSAmax the 

subjects were grouped in high or low responders. Subjects with changes in CSAmax > 6% 

were categorized as a high response subject, <6% is defined as a low response subject. The 

cut-off value of 6% was selected by taking into account the reproducibility of the MR 

CSAmax measurements and the amount of atrophy that was considered clinically 

meaningful [14].

All statistical analyses were performed with SPSS for Windows, Version 16.0 (SPSS Inc., 

Chicago, IL). Independent t-tests were used to compare the maximal CSA between different 

groups. A significance level of p<0.05 was used for all comparisons. Data were presented as 

mean ± SEM.

Muscle biopsy

A total of 4 biopsies were obtained at different time points (pre-rehab, mid-rehab, post-rehab 

and control) from the medial gastrocnemius. Skin was first sterilized and anesthetized with a 

2% lidocaine hydrochloride solution. The orthopaedic surgeon then made a small incision 

(less than 1/4″) in the skin and fascia, a sterile biopsy needle was inserted, and a small 

amount of tissue was removed. All biopsy tissue was snap frozen in liquid nitrogen and 

stored at −80°C for further analysis.

Expression profiling

Affymetrix Human Genome U133 Plus 2.0 microarrays containing approximately 47,000 

transcripts were used for the expression profiling experiment. Standard procedures including 

total RNA isolation, cDNA synthesis, cRNA labeling, microarray hybridization and image 

acquisition were done as described in the manufacturer’s protocol and our previous 

publications [44,45]. Briefly, total RNA samples were isolated with TRIzol reagent 

(Invitrogen) then purified with RNeasy MinElute Cleanup Kit (Qiagen) following the 
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manufacturer’s protocol. Two hundred nanograms of total RNA from each sample were 

reverse-transcribed to double-stranded cDNA followed by in vitro cRNA synthesis using 

one-cycle target labeling and control reagents and protocol (Affymetrix). Biotin-labeled 

cRNA was then purified using GeneChip® Sample Cleanup Module (Affymetrix) and 

fragmented randomly prior to hybridizing to the microarrays over night. Each array was 

washed and stained using the Affymetrix Fluidics Station 450, and then scanned using the 

GeneChip® Scanner 3000. The quality control criteria developed at Children’s National 

Medical Center Microarray Center for each array were followed [46].

The array image analysis was performed using Microarray Suite 5.0 (MAS 5.0) (Affymetrix, 

CA). After the absolute analysis, the gene expression values were imported into GeneSpring 

11.0 (Silicon Genetics) for data filtering and statistical analysis. First, genes were filtered 

with numbers of present calls across the arrays analyzed. Genes with at least 7 present calls 

(detected by more than 10% of the arrays) were selected for statistical analysis. We 

identified 32,766 probe sets met this filtering criterion. In GeneSpring, paired t-test was 

performed and probe sets showing significant (p<0.05) expression changes were retained for 

pathway analysis.

To investigate molecular networks and pathways associated with gene lists in this study, 

Ingenuity Pathway Analysis (IPA) (Ingenuity Systems) was used to identify gene 

interactions and to prioritize molecular pathways differentially affected in different groups. 

The significance of the association between the genes in each dataset and the canonical 

pathway was determined by Fischer’s exact test. The p-values were calculated to determine 

the probability of the association between the genes and the pathways. All profiles are made 

publicly accessible via NCBI GEO (http://www.ncbi.nlm.nih.gov/geo/) #GSE45462. 

Hierarchical clustering was performed using GeneSpring software to visualize transcripts 

showing coordinated regulation as a function of time.

Results

Impact of immobilization and rehabilitation on maximum muscle CSA

Overall, CSAmax of the medial gastrocnemius in the injured legs at pre-rehab was 9.6 

± 2.9% smaller compared to that of the un-injured legs. At mid-rehab the CSAmax had 

increased in size to being 6.3 ± 2.5% less than the un-injured legs (p<0.05). By the post-

rehab time point (6 weeks), the CSAmax had returned to a level comparable to that of the 

un-injured leg (n=24, p>0.05, Figure 1A). We then further examined subjects that were 

included in the expression profiling study (n=16) and stratified them into high responders 

and low responders based on the extent of muscle atrophy during immobilization as well as 

the extent of muscle recovery during and after rehabilitation. High responders were defined 

as subjects who demonstrated more than 6% change in muscle size. Figures 1B and 1C 

illustrate the morphological changes for both groups separately, with low responders (n=4) 

showing relatively little atrophy (0.1 ± 0.0%) after the immobilization and high responders 

(n=8) showing a 14.9 ± 3.6% decrease in muscle size (Figure 1B, p<0.05). Conversely, in 

response to the rehabilitation intervention high responders showed a 20.5 ± 3.2% increase 

(n=9) in muscle size, while low responders showed little recovery (2.5 ± 0.9% increase, n=7) 

(Figure 1C, p<0.05). It is worth pointing out that, in general, low responders for changes in 
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muscle size with immobilization were also low responders for rehabilitation, and high 

responders for immobilization were also high responders for rehabilitation. Figure 2 

contains MRIs of the lower leg of one subject who responded to the immobilization and 

rehabilitation training, which demonstrate the change in muscle size over the four different 

time points.

Global gene expression changes during immobilization and rehabilitation

To identify genes differentially expressed during immobilization (pre-rehab) and 

rehabilitation (mid- and post-rehab), we performed expression profiling using Affymetrix 

Human Genome U133 Plus 2.0 microarrays containing approximately 47,000 transcripts.

Filtered by Affymetrix “present calls”, transcripts corresponding to 32,766 probe sets were 

defined as detected by the arrays and retained for further analysis. Genes differentially 

regulated at each time point compared to the control time point of the same subjects were 

identified using paired t-tests. Note the control biopsy of each individual was collected 6 

months after the completion of the rehabilitation to assess the baseline gene expression. In 

the high response group, 3313 probe sets were differentially expressed between the pre-

rehab and the control time points, while changes of only 1710 probe sets were detected in 

the low response group (Figure 3). At the mid-rehab time point, 4124 and 3138 probe sets 

showed significant changes in the high and low response groups, respectively. At the post-

rehab time point, 2627 and 1693 probe sets showed significant changes in the high and low 

response groups, respectively. The data showed an overall higher numbers of genes 

differentially expressed in the responders compared to non-responders at both the 

immobilization and the rehabilitation stages. Interestingly more expression changes were 

identified at the mid-rehab time points in both groups in comparison to the pre- and post-

rehab time points.

Distinct molecular signatures during immobilization and rehabilitation between the high 
and low response groups

To identify major molecular pathways affected in the two groups during the immobilization 

and rehabilitation, the probe sets showed significant changes were further analyzed using 

Ingenuity Pathway Analysis (IPA) and hierarchical clustering analysis.

Table 2 shows the top 5 ranked canonical pathways identified by IPA. Please note that while 

the names of the pathways often directly indicate their biological functions, tissue-specific 

roles of the changes were not taken into consideration when the pathways were constructed 

by the IPA, therefore a cancer related pathway may indicate a pathway involved in 

regulating cell growth and survival in skeletal muscles instead of cancer.

Subjects who responded to immobilization by reducing muscle mass significantly showed 

changes in pathways involving in mitochondrial function, protein turnover and BMP 

signaling (Table 2). Individual genes in each of the pathways are listed in supplemental table 

1 (pre-rehab vs. control). The top ranked pathways in subjects who showed low 

responsiveness to the immobilization and rehabilitation were different from those of the high 

responders. The top 5 pathways include genes involving GM-CSF Signaling, Protein 

ubiquitination pathway, glioma signaling, FAK Signaling and CXCR4 Signaling (Table 2). 
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Individual genes in each of the pathways are listed in supplemental table 2 (pre-rehab vs. 

control). While the only shared pathway between the two groups of subjects is the protein 

ubiquitination pathway, only a small number of genes in the pathway (8 transcripts) were 

shared between the two groups while others are different members involved in the pathway. 

In addition, while the ubiquitination pathway was highly ranked in the high response group 

during both mid- and post-rehabilitation, it was only highly ranked in the low response 

group following immobilization.

To visualize the expression pattern of the genes involved in ubiquitination pathway, we 

selected all the genes that were differentially expressed in either group at any of the 3 time 

points, followed by hierarchical clustering analysis. The analysis clustered genes with 

similar expression patterns at all time points therefore genes clustered together shared 

similar expression changes in each group. In contrast to the mitochondrial genes, figure 4A 

showed that many genes in the ubiquitination pathway were differentially expressed between 

the high and low responder groups. A cluster of genes that showed obvious opposite changes 

were circled (Figure 4A) and listed in supplemental table 3. One third (15/44) of the 

transcripts in the cluster belonged to heat shock protein family and one third (16/44) 

functioned in the ubiquitin proteasome pathways. The data showed a generally lower 

expression of these genes in the high responder group during the rehabilitation period 

although only the changes at the mid- rehab time point were significant (Table S3).

Among the pathways that are highly ranked during both mid- and post- rehabilitation, genes 

involved in integrin signaling were differentially expressed in both high and low response 

groups. While there are more genes in this category differentially expressed in the high 

responding group, there is no obvious difference in terms of expression pattern when 

visualized by hierarchical cluster analysis. The data suggested a stronger activation of the 

integrin signaling in the high responders while the pathway was activated in both group. 

This is supported by that the activation of the ILK signaling and the higher fold changes 

only in the high response group (Table S1 and S2).

Although many of the pathways were shared between the groups with either obvious or 

subtle differences, some pathways showed specific activation in one of the groups only. 

Pathways involved in antigen presentation pathway and Fcγ receptor-mediated phagocytosis 

in macrophages and monocytes were highly ranked at the acute stage of the rehabilitation in 

the high response group only, while actin cytoskeleton signaling pathway was activated in 

the low response group during the same stage of the rehabilitation (Table 1).

Mitochondrial genes are highly regulated during immobilization and rehabilitation in 
muscles of the high responders

During immobilization the 3 top ranked pathways of the responders contain genes involved 

in mitochondrial functions. The majority of the genes in the pathways were down-regulated 

in muscles during immobilization. These genes include those involved in oxidative 

phosphorylation, ubiquinone biosynthesis and mitochondrial membrane proteins (Table 2 

and Table S1). To visualize the expression patterns of these genes in the high and low 

responder groups, we performed hierarchical clustering analysis of the genes that were 

differentially expressed at any one of the 3 time points of both groups. Figure 4B showed 
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that most of the genes were down-regulated in both groups during immobilization, however 

the changes in the low response groups was milder. In addition, the expression changes of 

the genes returned toward baseline faster in the low responders during the early 

rehabilitation stage (Figure 4B).

In the low responder group, genes involved in mitochondrial function were not highly 

ranked at the pre-rehab time point but some of the mitochondrial pathways moved up to the 

top ranked functional groups during the mid- and post-rehab time points. The data indicated 

that genes involved in mitochondrial functions were significantly down-regulated in the high 

responders while the mitochondrial changes were delayed in the low responder group and to 

a less extent in general. Instead, genes involved in AKT signaling pathways were activated 

in the muscles of low responders (Table S2).

Discussion

Expression profiling has been used to examine transcriptomic changes in response to muscle 

immobilization and exercise training [22,24,25,39,47–50]. While individual studies of 

transcriptomic responses to conditions leading to muscle remodeling have been conducted, 

to our knowledge this is the first longitudinal study investigating both immobilization and 

rehabilitation stages in a patient population. Our data showed an overall higher numbers of 

genes differentially expressed in the responders compared to non-responders at both the 

immobilization and the rehabilitation stages, likely to directly reflect the activities of muscle 

remodeling. Interestingly more expression changes at the acute stage of rehabilitation in 

both groups were identified in comparison to those at the immobilization and chronic stages. 

When the differentially expressed genes were analyzed using IPA, distinct pathways were 

activated at each stage without major overlap between the responder and non-responder 

groups. The findings suggest that the remodeling is most active at the beginning of the 

rehabilitation. Instead of simply reversing the molecular changes due to muscle 

immobilization, additional pathways were activated to actively regain the lost muscles. In 

addition, the pathways involved in the whole process from the immobilization to 

rehabilitation are quite different between the high responder group and the low responder 

group, suggesting different molecular pathways were involved in the two groups of patients.

Based on genome-wide mRNA expression data, specific molecular signatures associated 

with high responsiveness and low responsiveness to immobilization and rehabilitation were 

identified. Not surprisingly, the expression of more transcripts was changed in the high 

responders, indicating that the responsiveness involved transcriptional regulation. Pathways 

analyses showed that distinct molecular pathways were affected in the two groups. During 

immobilization, the top-ranked molecular pathways affected in the high responders are 

involved in mitochondrial functions, protein turnover and BMP signaling. The down-

regulation of mitochondrial genes has been reported previously to be a major change in 

muscle atrophy caused by different conditions including immobilization, unloading, space 

flight and cancer cachexia [5,23,31–35]. Genes regulating protein turnover including heat 

shock proteins and genes involved in protein degradation have also been reported as one of 

the major pathways involved in muscle atrophy [22–25]. Our findings suggest that the 

pathways and genes involved in mitochondrial function and protein degradation are critical 
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responses involved in muscle atrophy. The BMP signaling pathway identified by IAP was 

not reported as a major molecular signature of responses to immobilization previously, 

although it is involved in limb development and muscle regeneration [51]. In this study, the 

two most up-regulated genes were follistatin (2.5 fold) and noggin (2.1 fold). Follistatin is a 

known positive regulator of muscle mass. It can inhibit myostatin activity by protein-protein 

interaction and promote muscle growth in vivo [52]. Noggin is an inhibitor of BMP 

signaling which has been shown critical to suppress premature differentiation of satellite 

cells [53]. Up-regulation of the noggin can potentially suppress the BMP signaling and 

promote regeneration. The findings suggest that these changes are likely to be compensatory 

responses as part of the effort to maintain the muscle mass, which might be critical for rapid 

recovery in the high responders when the rehabilitation starts.

The only shared pathway in both high and low responder groups was the protein 

ubiquitination pathway. Interestingly, while the pathway was affected significantly in both 

groups, only 8 genes were actually shared between the groups. When all the genes that were 

differentially expressed in either group were grouped together and analyzed by hierarchical 

clustering analysis, we showed that a subgroup of the genes consisted of heat shock proteins 

and genes involved in protein degradations was differentially regulated. These genes were 

down-regulated in the high responders but not changed in the low responders. Both the heat 

shock proteins and the genes involved in protein degradation have been shown critical to 

muscle regeneration and remodeling. Several heat shock proteins including HSP70 and 

HSP90 has been shown to be up-regulated in muscles in response to exercise and can 

improve muscle repair [54–59]. One of the HSP40 proteins, DNAJB6, was discovered as the 

causative gene of the limb-girdle muscular dystrophy type 1E [60]. While the role of HSP40 

and HSP105 in muscle atrophy is not clear, several studies showed that these heat shock 

proteins can suppress the aggregation of truncated proteins with expanded CAG repeats and 

cell toxicity in neurodegenerative diseases likely by increasing in target protein degradation 

via the ubiquitin-proteasome system [61–63]. While the cause of the lower expression level 

of the heat shock proteins in the high responder group is not clear, this is an interesting 

molecular signature for the high responders and likely contributes to their susceptibility to 

more severe muscle atrophy during immobilization.

In the low response group, the 4 activated pathways that were not shared with the high 

response group were all centered at AKT/PI3K signaling which plays critical role in 

regulating cell proliferation, survival and metabolism. The PI3K/AKT/mTOR signaling 

pathway is critically involved in muscle survival and remodeling. Its role in muscle atrophy 

and hypertrophy in response to various stimuli has been extensively studied.

The activation of AKT signaling and its downstream targets glycogen synthase kinase- 3beta 

(GSK3beta), mTOR and Foxo1 have been shown to promote muscle hypertrophy and 

attenuate muscle atrophy [25,28,64,65]. While the AKT1 is the most studied form, the role 

of AKT2 and 3 in the muscles is less known. The biological significance of these signatures 

in the low responders needs to be further investigated.

Our study showed that the high responders and low responders have distinct molecular 

signatures during the rehabilitation process. During the acute phase of the rehabilitation the 
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most highly ranked pathways in the high responders are pathways known to be involved in 

muscle responses to resistance training, including genes in the integrin and ILK signaling 

pathways as well as inflammation. Integrin and ILK signaling pathways have been shown to 

play critical roles in both cardiac and skeletal muscle hypertrophy [22,37,38,40,41,43]. In 

our study, 6 integrins were up-regulated in the high responder group with most of them 

previously reported to be involved in angiogenesis or muscle differentiation [66–72]. One of 

the integrins, integrin alpha 4 (2.3 fold), was reported to mediate BMP activated ILK 

signaling. Integrin-linked kinase (ILK) is a serine/threonine kinase and scaffolding protein 

[73]. ILK has been implicated in cancer cell growth and survival by modulating AKT 

signaling.

Skeletal muscle expresses high levels of ILK at myotendinous junctions and costameres, 

which stabilizes myotendinous junctions and protects muscle from stress-induced damage 

[74]. Previous studies also showed that ILK functions as a molecular adaptor protein linking 

integrins to the actin cytoskeleton and regulating actin polymerization [75–77]. Mice lacking 

ILK develop phenotypes resembling those seen in humans and mice lacking the alpha 7-

integrin subunit, which lead to muscular dystrophy [78]. In addition to the roles of integrin 

and ILK signaling in skeletal muscle cells, some of the integrins identified are known to play 

a critical role in angiogenesis, which is a major process affecting skeletal muscle remodeling 

during muscle repair and hypertrophy [76,79,80]. In addition, these pathways and the protein 

ubiquitination pathways have been shown to be up-regulated in muscles in response to 

exercise. Our findings showed that the activation of integrin and ILK pathways, indicative of 

active muscle remodeling and angiogenesis, is a molecular signature in the high responder 

group only. An attenuated response was observed in the low responder group, suggesting a 

weaker muscle remodeling response.

Inflammation including cellular infiltration and specific cytokine productions has been 

shown to play key roles in muscle hypertrophy in response to acute exercise [39,81–83]. In 

addition, it is known that inflammation plays a critical role in muscle regeneration [84,85]. 

In our study, we identified genes and pathways involved in inflammation in the high 

responder group only at the mid-rehab stage. The inflammatory responses were not detected 

during the later phase of rehabilitation as expected. Therefore, the activation of 

inflammatory pathways at the beginning of rehabilitation appeared to be unique molecular 

signature of the high responder group.

While genes involved in integrin signaling were also ranked in the top 5 of the low 

responders during rehabilitation, the other four pathways created a distinct signature of the 

molecular responses of the low responders during the acute phase of training. Instead of 

inflammatory and extracellular matrix remodeling, the signature indicated a continuation of 

mitochondrial dysfunction in these subjects. This mitochondrial defect remained at the top 

of all pathways affected even at the later stage of rehabilitation suggesting the defect in 

mitochondrial function and energy production may play a major role in the low 

responsiveness in these subjects. In addition, the results of the study showed that changes of 

these molecular pathways can potentially be used as molecular markers to determine the 

effects of rehabilitation and evaluate the patients’ responsiveness to the training.
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Longitudinal studies of muscle dysfunction with disuse in healthy subjects indicate the 

extent of muscle atrophy is muscle specific. In the present study, 4 weeks of cast 

immobilization induced a decrease in plantarflexor muscle size, which is consistent with the 

literature [2,86]. Interestingly, the adults in this study showed a range of variability in their 

responsiveness to immobilization and training. Factors not under investigation in the present 

study have been demonstrated to affect the degree of muscle adaptations, such as age, sex, 

diet, activities of daily living, motivation, and previous training status [87,88]. Even when 

the above factors are controlled, the results of clinical studies still demonstrated considerable 

variation in the extent of muscle adaptations [89,90]. In addition, the compliance of the 

subjects with the rehabilitation program may also be a factor in how skeletal muscle tissue 

responds [91]. It may be useful to record the factors determining the adherence to the 

rehabilitation programs to assess or explain the differential responses/outcomes. Therefore, 

more information is needed to help define what factors substantially influence the inter-

subject variation in muscular adaption.

Conclusion

Expression analysis based on the patients’ responsiveness to immobilization and 

rehabilitation yielded two major findings. First, training outcomes were positively correlated 

with the extent of transcriptomic changes. Individuals showed less adaptation to exercise 

also showed less gene expression changes in the muscle biopsies. Second, the molecular 

signatures of individuals who showed different responsiveness to immobilization and 

rehabilitation were distinct such as pathways involved in mitochondrial functions, protein 

turn over and muscle remodeling. These results suggest that these transcriptomic signatures 

of muscle gene expression may have predictive value in training outcomes in adults 

receiving rehabilitation following atrophy of skeletal muscle from disuse.
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Figure 1. 
Percentage changes of maximal CSA (CSAmax) for the medial gastrocnemius from A) all 

the subjects at the first three time points; *Significantly different compared with control 

average CSA from the contralateral (uninvolved) legs. B) subjects included in the expression 

profiling study at pre-rehab in comparison with control average CSA from the contralateral 

(uninvolved) legs; # Significantly different compared with low responders (P<0.05). C) 

subjects included in the expression profiling study after 6-week rehabilitation program (post-

rehab) in comparison with pre-rehab from the same (involved) sides. # Significantly 

different compared with low responders (P<0.05). Dataare presented as mean±SEM.
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Figure 2. 
Representative transaxial proton T1-weighted MRIs of the lower leg from different time 

points of one patient in the high response group. (A) pre-rehab, (B) mid-rehab, (C) post-

rehab and (D) control.
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Figure 3. 
Patients in the high response group showed greater number of gene expression changes 

during immobilization (pre-rehab), early rehabilitation (3 weeks, mid-rehab) and late 

rehabilitation (6 weeks, post-rehab) stages. More expression changes during the acute stage 

of rehabilitation in both groups were identified in comparison to the other stages.
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Figure 4. 
Distinct molecular signatures during immobilization and rehabilitation between subjects in 

the high and low response groups were identified by hierarchical clustering analysis During 

immobilization and rehabilitation periods, genes involved inmitochondrial functions were 

affected more in muscles of the high responders compared to those of low responders. B. A 

subset of stress response proteins was down-regulated in muscles of the high responders. 

Color code: yellow: baseline; red: up-regulated; blue: down-regulated. H:high responder; 

L:low responder; CON: control time point; IMM: pre- rehab/immobilization; AR, 3w: mid-

rehab/3 weeks acute phase of rehabilitation; CR, 6w: post-rehab/6 weeks chronic phase of 

rehabilitation.

Chen et al. Page 20

Biomed Genet Genom. Author manuscript; available in PMC 2017 August 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Chen et al. Page 21

Ta
b

le
 1

C
ha

ra
ct

er
is

tic
s 

of
 s

ub
je

ct
s 

in
cl

ud
ed

 in
 g

en
e 

an
al

ys
is

.

Su
bj

ec
t 

C
od

e
G

en
de

r
A

ge
 (

ye
ar

s)
H

ei
gh

t 
(c

m
)

W
ei

gh
t 

(k
g)

B
M

I
In

ju
ry

 T
yp

e

1
F

20
17

0.
2

86
.2

29
.8

fi
bu

la
r 

fr
ac

tu
re

2
M

23
17

5.
3

72
.6

23
.7

fi
bu

la
r 

fr
ac

tu
re

3
M

28
17

7.
8

93
.9

29
.8

m
et

at
ar

sa
l f

ra
ct

ur
e

4
M

25
17

2.
7

68
.0

22
.9

an
kl

e 
sp

ra
in

/a
vu

ls
io

n 
of

 A
T

F 
on

 ti
bi

a

5
M

34
18

2.
9

95
.3

28
.5

m
et

at
ar

sa
l f

ra
ct

ur
e

6
M

44
17

2.
7

10
4.

3
35

.0
fi

bu
la

r 
fr

ac
tu

re

7
M

40
18

2.
9

99
.8

29
.9

fi
bu

la
r 

fr
ac

tu
re

8
M

22
17

5.
3

65
.3

21
.3

m
et

at
ar

sa
l f

ra
ct

ur
e

9
M

24
18

0.
3

77
.1

23
.8

U
nk

no
w

n

10
M

29
18

0.
3

81
.6

25
.2

m
et

at
ar

sa
l f

ra
ct

ur
e

11
M

21
17

7.
8

68
.0

21
.6

fi
bu

la
r 

fr
ac

tu
re

12
M

46
19

0.
5

83
.9

23
.2

ca
lc

an
ea

l f
ra

ct
ur

e

13
F

25
15

7.
5

47
.6

19
.2

st
re

ss
 f

ra
ct

ur
e

14
F

40
16

7.
6

65
.8

23
.5

fi
bu

la
r 

fr
ac

tu
re

15
F

20
17

0.
2

68
.0

23
.5

di
st

al
 f

ib
ul

ar
 f

ra
ct

ur
e

16
F

22
15

7.
5

54
.4

22
.0

fi
bu

la
r 

fr
ac

tu
re

Biomed Genet Genom. Author manuscript; available in PMC 2017 August 23.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Chen et al. Page 22

Table 2

Top 5 canonical pathways affected in subjects during immobilization and rehabilitation. Number of significant 

probes in each pathway is included in the parentheses

Immobilization High Responders Low Responders

Oxidative Phosphorylation (66) GM-CSF Signaling (15)

Mitochondrial Dysfunction (55) Protein Ubiquitination Pathway (40)

Ubiquinone Biosynthesis (33) Glioma Signaling (18)

Protein Ubiquitination Pathway (64) FAK Signaling (17)

BMP signaling pathway (25) CXCR4 Signaling (24)

Rehabilitation High Responders Low Responders

Protein Ubiquitination Pathway (84) Mitochondrial Dysfunction (45)

Fcγ Receptor-mediated Phagocytosis in Macrophages and Monocytes (31) Oxidative Phosphorylation (44)

Acute phase

ILK Signaling (50) Actin Cytoskeleton Signaling (55)

Integrin Signaling (51) Integrin Signaling (49)

Antigen Presentation Pathway (15) Ubiquinone Biosynthesis (22)

Rehabilitation High Responders Low Responders

Chronic Phase Molecular Mechanisms of Cancer (58) Mitochondrial Dysfunction (23)

ILK Signaling (35) Integrin Signaling (30)

Clathrin-mediated Endocytosis Signaling (31) Ephrin Receptor Signaling (24)

Integrin Signaling (35) HMGB1 Signaling (16)

Protein Ubiquitination Pathway (43) Rac Signaling (17)
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