
Himmelfarb Health Sciences Library, The George Washington University
Health Sciences Research Commons

Pharmacology and Physiology Faculty Publications Pharmacology and Physiology

4-12-2017

Constitutive Activation of Kappa Opioid
Receptors at Ventral Tegmental Area Inhibitory
Synapses Following Acute Stress.
Abigail M Polter
George Washington University

Kelsey Barcomb

Rudy W Chen

Paige M Dingess

Nicholas M Graziane

See next page for additional authors

Follow this and additional works at: http://hsrc.himmelfarb.gwu.edu/smhs_pharm_facpubs

Part of the Medical Pharmacology Commons, Medical Physiology Commons, Pharmacology
Commons, and the Physiology Commons

This Journal Article is brought to you for free and open access by the Pharmacology and Physiology at Health Sciences Research Commons. It has been
accepted for inclusion in Pharmacology and Physiology Faculty Publications by an authorized administrator of Health Sciences Research Commons.
For more information, please contact hsrc@gwu.edu.

APA Citation
Polter, A., Barcomb, K., Chen, R., Dingess, P., Graziane, N., Brown, T., & Kauer, J. (2017). Constitutive Activation of Kappa Opioid
Receptors at Ventral Tegmental Area Inhibitory Synapses Following Acute Stress.. Elife, 6 (). http://dx.doi.org/10.7554/eLife.23785

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by George Washington University: Health Sciences Research Commons (HSRC)

https://core.ac.uk/display/230819516?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://hsrc.himmelfarb.gwu.edu?utm_source=hsrc.himmelfarb.gwu.edu%2Fsmhs_pharm_facpubs%2F169&utm_medium=PDF&utm_campaign=PDFCoverPages
http://hsrc.himmelfarb.gwu.edu/smhs_pharm_facpubs?utm_source=hsrc.himmelfarb.gwu.edu%2Fsmhs_pharm_facpubs%2F169&utm_medium=PDF&utm_campaign=PDFCoverPages
http://hsrc.himmelfarb.gwu.edu/smhs_pharm?utm_source=hsrc.himmelfarb.gwu.edu%2Fsmhs_pharm_facpubs%2F169&utm_medium=PDF&utm_campaign=PDFCoverPages
http://hsrc.himmelfarb.gwu.edu/smhs_pharm_facpubs?utm_source=hsrc.himmelfarb.gwu.edu%2Fsmhs_pharm_facpubs%2F169&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/960?utm_source=hsrc.himmelfarb.gwu.edu%2Fsmhs_pharm_facpubs%2F169&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/677?utm_source=hsrc.himmelfarb.gwu.edu%2Fsmhs_pharm_facpubs%2F169&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/66?utm_source=hsrc.himmelfarb.gwu.edu%2Fsmhs_pharm_facpubs%2F169&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/66?utm_source=hsrc.himmelfarb.gwu.edu%2Fsmhs_pharm_facpubs%2F169&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/69?utm_source=hsrc.himmelfarb.gwu.edu%2Fsmhs_pharm_facpubs%2F169&utm_medium=PDF&utm_campaign=PDFCoverPages
http://dx.doi.org/10.7554/eLife.23785
mailto:hsrc@gwu.edu


Authors
Abigail M Polter, Kelsey Barcomb, Rudy W Chen, Paige M Dingess, Nicholas M Graziane, Travis E Brown,
and Julie A Kauer

This journal article is available at Health Sciences Research Commons: http://hsrc.himmelfarb.gwu.edu/smhs_pharm_facpubs/169

http://hsrc.himmelfarb.gwu.edu/smhs_pharm_facpubs/169?utm_source=hsrc.himmelfarb.gwu.edu%2Fsmhs_pharm_facpubs%2F169&utm_medium=PDF&utm_campaign=PDFCoverPages


*For correspondence:

Julie_Kauer@Brown.edu

Present address: †Department

of Pharmacology and Physiology,

The George Washington

University School of Medicine

and Health Science, Washington,

United States; ‡Department of

Neuroscience, University of

Pittsburgh, Pittsburgh, United

States

Competing interests: The

authors declare that no

competing interests exist.

Funding: See page 17

Received: 30 November 2016

Accepted: 13 March 2017

Published: 12 April 2017

Reviewing editor: Lisa M

Monteggia, University of Texas

Southwestern Medical Center,

United States

Copyright Polter et al. This

article is distributed under the

terms of the Creative Commons

Attribution License, which

permits unrestricted use and

redistribution provided that the

original author and source are

credited.

Constitutive activation of kappa opioid
receptors at ventral tegmental area
inhibitory synapses following acute stress
Abigail M Polter1†, Kelsey Barcomb1, Rudy W Chen1, Paige M Dingess2,3,
Nicholas M Graziane1‡, Travis E Brown2,3, Julie A Kauer1*

1Department of Molecular Pharmacology, Physiology and Biotechnology, Brown
University, Providence, United States; 2Neuroscience Program, University of
Wyoming, Laramie, United States; 3University of Wyoming, School of Pharmacy,
Laramie, United States

Abstract Stressful experiences potently activate kappa opioid receptors (kORs). kORs in the

ventral tegmental area regulate multiple aspects of dopaminergic and non-dopaminergic cell

function. Here we show that at GABAergic synapses on rat VTA dopamine neurons, a single

exposure to a brief cold-water swim stress induces prolonged activation of kORs. This is mediated

by activation of the receptor during the stressor followed by a persistent, ligand-independent

constitutive activation of the kOR itself. This lasting change in function is not seen at kORs at

neighboring excitatory synapses, suggesting distinct time courses and mechanisms of regulation of

different subsets of kORs. We also provide evidence that constitutive activity of kORs governs the

prolonged reinstatement to cocaine-seeking observed after cold water swim stress. Together, our

studies indicate that stress-induced constitutive activation is a novel mechanism of kOR regulation

that plays a critical role in reinstatement of drug seeking.

DOI: 10.7554/eLife.23785.001

Introduction
Stress has long been known to be a precipitating factor for the abuse of addictive drugs. Animal

models have shown that acute and repeated stressors can escalate intake of addictive substances

(Piazza et al., 1990; Ramsey and Van Ree, 1993; Goeders and Guerin, 1994; Shaham and Stew-

art, 1994; Haney et al., 1995), and that acute stress can reinstate drug seeking in animals that have

undergone extinction training (Shaham et al., 1994, 1995; Conrad et al., 2010; Mantsch et al.,

2016). In recent years, dopaminergic neurons of the VTA have emerged as a significant locus for the

overlapping effects of drugs of abuse and stress (Polter and Kauer, 2014). Synaptic inputs, by shap-

ing the activity of these neurons, are poised to play an important role in drug seeking. Both acute

stress and exposure to drugs of abuse induce a concomitant potentiation of excitatory synapses and

loss of long term potentiation of inhibitory synapses (Ungless et al., 2001; Saal et al., 2003;

Kauer and Malenka, 2007; Nugent et al., 2007; Chen et al., 2008; Niehaus et al., 2010;

Polter and Kauer, 2014). Understanding how these synapses are altered by stress will provide key

insights into stress-induced drug seeking and provide targets for treating substance use disorders.

A major mediator of stress-induced changes in inhibitory VTA synapses is the dynorphin/kappa

opioid receptor (kOR) system. kORs, and their endogenous ligand, dynorphin, are found throughout

the brain and have been highly associated with stressful, aversive, and dysphoric experiences

(Bruchas et al., 2010; Wee and Koob, 2010; Van’t Veer and Carlezon, 2013; Crowley and Kash,

2015). Within the VTA, kORs have a range of physiological effects. kORs decrease the firing rate of

dopamine neurons through activation of GIRK channels (Margolis et al., 2003, 2006), inhibit
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excitatory synaptic transmission onto both dopaminergic and non-dopaminergic VTA neurons

(Margolis et al., 2005), reduce inhibitory synaptic transmission in a subset of dopamine neurons

(Ford et al., 2006) and inhibit somatodendritic dopaminergic IPSCs (Ford et al., 2007). VTA kORs

also can control the interactions between stress and reward. Our previous work identified a form of

stress-sensitive synaptic plasticity at inhibitory synapses on VTA dopamine neurons (LTPGABA;

Nugent et al., 2007, 2009; Niehaus et al., 2010). LTPGABA is induced via activation of nitric oxide

synthase in the dopamine neuron, leading to nitric oxide (NO) release, and enhancement of GABA

release through cGMP signaling (Nugent et al., 2007, 2009).

More recently, we showed that acute stress blocks LTPGABA through activation of kORs, and that

preventing this activation via intra-VTA administration of the kOR antagonist, nor-binaltorphimine

(norBNI), prevents stress-induced reinstatement of cocaine-seeking (Graziane et al., 2013). Remark-

ably, a single exposure to stress leads to a loss of LTPGABA that lasts for at least five days and is

mediated by persistent activation of VTA kORs (Polter et al., 2014). We have also shown that treat-

ment with the kOR antagonist after stress can rescue stress-induced reinstatement. These studies

highlight the importance of kOR-mediated regulation of LTP at GABAergic synapses in stress-

induced drug seeking and underscore the need to better understand the mechanism of this unique

and persistent regulation.

In the present study, we have now identified the mechanism by which activation of kORs and sup-

pression of LTPGABA in the VTA is maintained for multiple days after an acute, severe stressor. We

present evidence that stress blocks LTPGABA by inducing constitutive activation of kORs at VTA

inhibitory synapses rather than through persistent increases in dynorphin release. This constitutive

activity is likely to be triggered initially by signaling through the endogenous ligand dynorphin, but

then is persistently maintained independently of dynorphin release. In parallel, we find that the per-

sistent drug-seeking induced by a single exposure to acute stress is also dependent on constitutive

activity of kORs. Our results reveal a novel mechanism of experience-dependent regulation of kOR

eLife digest People who are recovering from drug addiction are more vulnerable to cravings

and relapse when under stress. This ability of stress to boost drug relapse can also be shown in

animals previously exposed to addictive drugs. Rats can learn to press a lever to administer

themselves a dose of cocaine and, during withdrawal, rats previously exposed to the drug will press

the lever more often if they are stressed. Indeed, just a few minutes of stress is enough to increase

lever pressing for several days.

Stress and addictive drugs both act on a region of the brain called the ventral tegmental area, or

VTA, which is part of the brain’s reward system. Stress indirectly increases the activity of the VTA. It

does so by activating a protein on the surface of VTA neurons called the kappa opioid receptor

(kOR for short). Previous studies revealed that five minutes of stress increases the activity of kORs in

the VTA of rats for five days. Conversely, blocking kORs stopped stressed rats from pressing the

lever more often for cocaine. Together, these findings suggested that activating kORs in the VTA

contributes to stress-induced drug relapse.

Polter et al. have now discovered how stress activates kORs. It turns out that stressful or

unpleasant experiences cause the brain to produce a protein called dynorphin, which binds to and

activates the kORs. After a stressful event, the receptors are said to have become constitutively

active, and blocking this constitutive activity prevents stress from inducing drug-seeking behavior.

Polter et al. show that binding of dynorphin is needed to change the shape of the receptors so that

they remain active even after dynorphin has detached, but it is likely that other molecules are also

involved.

This is the first study to show a link between stress, constitutive activation of kORs, and drug

relapse. The next step is to work out why this process occurs on only some and not all occasions

when the brain releases dynorphin, and why only certain kORs in the VTA respond in this way.

Whether constitutive kOR activity drives stress-related craving in people with a history of drug abuse

and how to halt these cravings also remain to be determined.

DOI: 10.7554/eLife.23785.002
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function, and emphasize the essential role of kORs in mediating stress-induced changes in synaptic

plasticity and drug-seeking behavior.

Results

JNK-dependent rescue of LTPGABA by acute norBNI
As previously shown, bath application of the nitric oxide donor SNAP potentiates GABAergic synap-

ses on dopamine neurons in the VTA, similarly to high-frequency stimulation of VTA afferents; this

potentiation is blocked by single exposure to multiple drugs of abuse or acute cold-water swim

stress (LTPGABA; Nugent et al., 2007; Niehaus et al., 2010; Graziane et al., 2013; Polter et al.,

2014; Figure 1A–B). Our recent studies indicate that blocking kORs with norNBI prevents and

reverses the effects of acute stress on LTPGABA, even when administered several days after stress

(Graziane et al., 2013; Polter et al., 2014). We therefore investigated whether stress-induced, per-

sistent activation of kORs could be detected ex vivo in the midbrain slice. We subjected rats to

acute cold water forced swim stress and prepared midbrain slices 24 hr later. If after stress, kORs in

the VTA are persistently signaling in vitro, we reasoned that bath-applied norBNI could be used to

rescue SNAP-induced LTPGABA. Bath application of norBNI (100 nM) indeed allowed us to elicit NO-

dependent LTPGABA in slices from stressed animals (Figure 1E), indicating that stress-induced activ-

ity of kORs in the VTA persists through brain slice preparation and recovery. It seemed unlikely that

sufficient endogenous dynorphin could be released tonically from the denervated brain slices to

maintain a block of LTPGABA in vitro. We therefore next sought to establish the mechanism by which

norBNI rescued this plasticity. In addition to competing with agonists at the kOR agonist binding

site, norBNI acts as an inverse or collateral agonist, and its interactions with the kOR can non-com-

petitively inhibit further activity of kORs via activation of the JNK signaling cascade (Bruchas et al.,

2007; Melief et al., 2010, 2011). We hypothesized that the rescue of LTPGABA by norBNI might also

occur non-competitively via JNK signaling (Figure 1C). Slices were treated with the JNK inhibitor

SP600125 (20 mM) for 10 min prior to bath application of norBNI (Figure 1D). In contrast to the

robust SNAP-induced potentiation observed in slices treated with norBNI alone, we found that

LTPGABA remained blocked in slices pretreated with SP600125 (Figure 1F–H). Importantly, bath

application of SP600125 did not interfere with expression of LTPGABA in slices from naı̈ve animals or

the loss of LTPGABA in slices from stressed animals (Figure 1—figure supplement 1A–B). Therefore,

JNK activity has no role in LTPGABA induction or in the block of this plasticity by kORs, but is

required for norBNI to rescue LTPGABA following stress.

LTPGABA is not rescued by a neutral antagonist
Our data indicate that following stress, kOR activation persists even in the brain slice, and is rescued

in a JNK-dependent manner. This suggests that non-competitive actions of norBNI, rather than its

block of dynorphin binding, are relevant to the loss of LTPGABA. To test this hypothesis further, we

again utilized pharmacological tools in slices from stressed animals. We treated such slices with

either norBNI or 6b-naltrexol, a neutral antagonist that only inhibits agonist-stimulated kOR activity

(Figure 2A–B; Wang et al., 2007). If norBNI rescues LTPGABA only because it can activate JNK sig-

naling, we would predict that a neutral antagonist that only inhibits kOR agonist binding would be

ineffective (Figure 2A, Wang et al., 2007). While norBNI treatment rescued LTPGABA, bath applica-

tion of the neutral antagonist did not reverse the stress-induced block of LTPGABA (Figure 2C–F).

Bath application of 6b-naltrexol was sufficient to prevent depression of EPSCs onto VTA dopamine

neurons induced by the kOR agonist U50488 (Figure 2—figure supplement 1B, Margolis et al.,

2005), indicating that this concentration of the drug is sufficient to block kORs in the VTA slice. 6b-

naltrexol did not have any effects on basal inhibitory transmission in slices from stressed or naı̈ve rats

(Figure 2—figure supplement 1A). These results show that a kOR competitive antagonist cannot

effectively rescue LTPGABA following stress, and suggest that the persistent block of LTPGABA is main-

tained by constitutive activation of kORs in the VTA rather than a prolonged increase in dynorphin

release.
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Figure 1. norBNI rescues LTPGABA through activation of JNK. (A) Summary data showing the blockade of LTPGABA after stress. (B) Comparison of the

magnitude of LTPGABA10–15 min after SNAP application. (IPSC amplitudes, control: 140 ± 5% of baseline values, n = 13; stress: 94 ± 11% of baseline

values, n = 6; unpaired t-test, *p=0.0005. (C) Schematic of norBNI’s competitive and non-competitive inhibition of kOR signaling. (D) Experimental

design. (E) Representative single experiment showing that bath application of norBNI (100 nM) rescues LTPGABA in a slice prepared 24 hr after stress. (F)

Representative single experiment from a slice prepared 24 hr after stress showing that norBNI does not rescue LTPGABA in the presence of the JNK

inhibitor SP600125 (20 mM). (G) Summary data from both groups. (H) Comparison of the magnitude of LTPGABA10–15 min after SNAP application. (IPSC

amplitudes, norBNI only: 139 ± 7% of baseline values, n = 6; norBNI+SP600125: 106 ± 9% of baseline values, n = 11; unpaired t-test, *p=0.029.) Insets

for this and all figures: IPSCs before (black trace, control) and 15 min after drug application (red trace, SNAP, 400 mM). Scale bars: 20 ms, 100 pA. Insets

are averages of 12 IPSCs.

DOI: 10.7554/eLife.23785.003

The following figure supplement is available for figure 1:

Figure supplement 1. Inhibition of JNK does not affect LTPGABA or its block by stress in the absence of norBNI.

DOI: 10.7554/eLife.23785.004
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Transient kOR activation leads to persistent kOR activity
How might acute stress cause constitutive activation of kORs? While the results of our slice experi-

ments rule out a requirement for elevated dynorphin in maintaining persistent activity of VTA kORs

following stress, dynorphin release during or immediately following stress may be needed to trigger

a change in the receptor leading to prolonged constitutive activation. If this model is correct, pre-

venting binding of dynorphin to the kOR during stress would prevent the loss of LTPGABA. However

after stress, when the block of LTPGABA is no longer dynorphin-dependent, preventing dynorphin

binding would not rescue LTPGABA. To test this idea, we treated animals with the competitive antag-

onist 6b–naltrexol either 30 min before or one day after FSS (Figure 3A). Consistent with our

hypothesis, cells from animals treated with 6b-naltrexol before stress exhibited LTPGABA, while those

ba
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Figure 2. The neutral antagonist 6b-naltrexol fails to rescue LTPGABA in slices from stressed animals. (A) Schematic of norBNI and 6b-naltrexol

inhibition of kOR signaling. (B) Experimental design. (C) Representative experiment showing that bath application of norBNI (100 nM) rescues LTPGABA

in a slice prepared 24 hr after stress. (D) Representative experiment from a cell 24 hr after stress showing that 6b-naltrexol (10 mM) fails to rescue

LTPGABA. (E) Summary data from both groups. (F) Comparison of the magnitude of LTPGABA10–15 min after SNAP application. (IPSC amplitudes,

norBNI: 141 ± 20% of baseline values, n = 10; 6b-naltrexol: 100 ± 8% of baseline values, n = 10; unpaired t-test, *p=0.048).

DOI: 10.7554/eLife.23785.005

The following figure supplement is available for figure 2:

Figure supplement 1. 6b-naltrexol does not affect basal inhibitory synaptic transmission but does block kORs.

DOI: 10.7554/eLife.23785.006
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treated one day after stress did not, similarly to the vehicle-treated animals (Figure 3B-F). In con-

trast, our previous studies have shown that treating rats with norBNI at the same time point after

stress (one day) rescues LTPGABA (Polter et al., 2014). These data strongly support the idea that the

persistent block of LTPGABA following acute swim stress is mediated by dynorphin-dependent
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DOI: 10.7554/eLife.23785.007
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activation of the kOR followed by a transition to dynorphin-independent constitutive activity of the

receptor.

To investigate whether a brief activation of kORs is sufficient to produce persistently activated

kORs, we treated rats with a single dose of the kOR agonist, U50488, and measured LTPGABA at var-

ious time points after injection (Figure 4A). Upon injection, U50488 rapidly enters the CNS and is

metabolized and undetectable in the brain by 24 hr after administration (Russell et al., 2014), and
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we therefore expect that within our experimental time frame, U50488 was no longer occupying the

kOR. In neurons from saline-treated animals, bath application of SNAP robustly potentiated IPSCs

(Figure 4B). In contrast, SNAP was unable to elicit LTPGABA in neurons from rats either one or five

days after U50488 administration (Figure 4C–F). Notably, this time course closely mirrors that of the

in vivo block of LTPGABA following acute stress (Polter et al., 2014).

Specificity to inhibitory VTA synapses
We next addressed the question of whether kORs at other brain synapses are also persistently acti-

vated after acute stress. Bath application of the kOR agonist U69593 has been reported to depress

the amplitude of glutamatergic EPSCs in both VTA Ih positive (presumptive dopamine neurons) and

Ih negative (presumptive non-dopamine neurons), and norBNI reverses this depression

(Margolis et al., 2005). Therefore if kORs at excitatory synapses become constitutively activated

after swim stress, reducing their activity with norBNI should be detectable as potentiation of excit-

atory VTA synapses. To test this, we prepared VTA slices 24 hr after FSS. We recorded EPSCs from

Ih positive and Ih negative neurons from both stressed and unstressed animals and bath-applied

norBNI. NorBNI had no effect on EPSC amplitude in Ih-positive neurons in slices from either naı̈ve or

stressed animals (Figure 5A–C), and norBNI did not increase EPSC amplitudes in VTA Ih-negative

neurons in slices from either naı̈ve or stressed animals (Figure 5D–F). Therefore, the persistent con-

stitutive kOR activation we observe at GABAergic synapses after acute stress does not occur at all

kORs, even within the VTA.

Constitutive activity of kORs is required for prolonged stress-induced
cocaine seeking
Numerous studies from our lab and others have shown a close association between kOR activation

and stress-induced drug-seeking behavior (McLaughlin et al., 2003; Redila and Chavkin, 2008;

Land et al., 2009; Wee and Koob, 2010; Graziane et al., 2013; Zhou et al., 2013; Polter et al.,

2014). We recently reported that blocking kORs with norBNI reverses the modest but prolonged

reinstatement of cocaine-seeking induced by swim stress (Conrad et al., 2010; Graziane et al.,

2013). This rescue is seen even when norBNI is administered two hours after stress (Polter et al.,

2014). These findings are consistent with the hypothesis that reinstatement of cocaine-seeking after

swim stress requires activation of VTA kORs and suppression of LTPGABA. Having now shown that

the blockade of LTPGABA by swim stress is dependent on constitutive activity of kORs, we next

tested whether reinstatement of cocaine seeking is similarly dependent on constitutively active

kORs.

Rats were trained to self-administer cocaine for a minimum of 10 days. Animals then underwent

extinction training, and after the final extinction session, they were subjected to forced swim stress,

and then returned to their home cages. Twenty-four hours after stress, one group of animals was

treated with norBNI and a second group with saline. A third group was treated with 6b–naltrexol 2

days after stress and 60 min prior to reinstatement testing (Figure 6A). Due to the differing pharma-

cokinetic profiles of norBNI and 6b–naltrexol, time of administration was varied to optimize block of

the kOR during the reinstatement test and to ensure that all animals were tested for reinstatement

at the same time point (Endoh et al., 1992; Raehal et al., 2005); thus, all animals were tested for

reinstatement 48 hr after stress.

As previously shown, after acute stress, vehicle-treated animals showed a significant elevation of

lever pressing compared to the final extinction session (Figure 6B). Although the reinstatement was

modest, this was measured two full days after the stress, demonstrating the prolonged increase in

cocaine-seeking (Conrad et al., 2010). In contrast, animals given norBNI 24 hr post-stress did not

increase their lever pressing two days after stress (Figure 6B). Moreover, the neutral antagonist 6b-

naltrexol did not prevent reinstatement, as 6b–naltrexol treated animals significantly increased lever

pressing compared to the final extinction session (Figure 6B). These data suggest that while persis-

tent activation of kORs underlies the prolonged reinstatement induced by swim stress, this is medi-

ated by constitutively active receptors rather than by long-term increases in the level of the

endogenous ligand dynorphin.

Polter et al. eLife 2017;6:e23785. DOI: 10.7554/eLife.23785 8 of 21

Research article Neuroscience

http://dx.doi.org/10.7554/eLife.23785


Discussion
Acute stress causes a loss of plasticity at VTA GABAA synapses that lasts for days and is caused by

persistent activation of kORs (Graziane et al., 2013; Polter et al., 2014). This activation could be

caused either by a prolonged increase in dynorphin or by an increase in constitutive activity of kORs.

In this study, our data support the latter mechanism: a single exposure to an acute stressor causes a

lasting constitutive activation of VTA kORs that suppresses plasticity at inhibitory synapses corre-

lated with stress-induced drug-seeking (Figure 7). While previous studies have demonstrated consti-

tutive activity of kORs in cultured cells and in the rat brain (Wang et al., 2007; Sirohi and Walker,

2015), ours is the first demonstration of experience-induced changes in constitutive activity of these

receptors. This represents a novel mechanism of regulation by acute stress of the dynorphin-kOR

system, and sheds new light on signaling pathways involved in reinstatement of drug seeking.

Constitutive activation of VTA kORs
It is widely accepted that GPCRs can adopt agonist-independent conformations that are constitu-

tively active (Seifert and Wenzel-Seifert, 2002; Sadée et al., 2005;Young et al., 2013 Meye et al.,
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2014). In addition to kORs, the other members of the opioid receptor subfamily, mOR and dOR,

have both been shown to exhibit constitutive activity (Wang et al., 1994, 2004; Chiu et al., 1996;

Wang et al., 1999; Liu and Prather, 2001; Wang et al., 2007; Corder et al., 2013). kORs them-

selves have been shown to exhibit constitutive activity, both in heterologous expression systems

(Becker et al., 1999; Wang et al., 2007) and in the rat PFC (Sirohi and Walker, 2015). A decrease
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Figure 7. Constitutive activation of kORs by stress. (A) During stress, dynorphin binding to the kOR triggers a shift

to a constitutively active state. By blocking dynorphin binding, both norBNI and 6b-naltrexol prevent the loss of

LTPGABA during this time. (B) After stress, the block of LTPGABA is maintained by constitutive activity of kORs and is

no longer dependent on dynorphin binding. (C) norBNI reverses the stress-induced block of LTPGABA by activating

the JNK signaling pathway which non-competitively reduces kOR activity.
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in fear and anxiety behaviors in rats after acute footshock has also been reported that is reduced by

post-shock norBNI, suggesting the possibility of constitutive kOR activation, although a high dose

was required and the effect of norBNI was not compared to a neutral antagonist (Rogala et al.,

2012). Very little is known, however, about the processes that regulate transitions between constitu-

tively active and inactive states, presumably representing distinct receptor conformations

(Seifert and Wenzel-Seifert, 2002; Sadée et al., 2005).

We present two critical pieces of data indicating that stress induces constitutive activity of kORs.

First, brief application (~15 min) of a kOR inverse agonist to VTA slices from stressed rats rescues

LTPGABA in a JNK-dependent fashion. Second, the neutral antagonist does not rescue LTPGABA. Sig-

naling through the JNK pathway is thought to be responsible for the long-lasting non-competitive

inhibition of the kOR (Bruchas et al., 2007; Melief et al., 2010, 2011). In our experiments, the

requirement of JNK for norBNI to rescue LTPGABA is evidence that norBNI acts through non-compet-

itive means, and suggests that the persistent activation of the kOR following stress does not require

continuous receptor binding by ligand. Importantly, inhibition of JNK signaling alone did not prevent

LTPGABA induction in slices from naı̈ve animals, nor did it restore LTPGABA in slices from stressed ani-

mals, indicating that the role of JNK is limited to inhibition of the receptor by norBNI. The failure of

the JNK inhibitor to rescue LTPGABA indicates that inhibition of LTPGABA by kORs is not mediated by

the JNK pathway, but instead most likely through one of the other pathways downstream of kORs,

such as the p38 or ERK MAPK pathways, or through activation of Gai (Bruchas and Chavkin, 2010;

Iñiguez et al., 2010; Ehrich et al., 2015).

The inability of the neutral antagonist, 6b–naltrexol, to rescue LTPGABA is consistent with stress

promoting constitutive kOR activity at inhibitory VTA synapses. NorBNI, through activation of JNK,

reduces the signaling capacity of the kOR regardless of whether this occurs through constitutive

activity or increased dynorphin binding. In contrast, a neutral antagonist like 6b-naltrexol could only

reverse the loss of LTPGABA by preventing agonist binding to the receptor. In contrast to the rapid

restoration of LTPGABA by bath application of norBNI, bath application of 6b–naltrexol did not res-

cue LTPGABA. This discrepancy cannot be explained by insufficient concentration or time of applica-

tion of 6b–naltrexol, as a similar bath perfusion of 6b–naltrexol was sufficient to block the

depression of EPSCs onto VTA dopamine neurons induced by bath application of the kOR agonist,

U50488. The simplest explanation of our data is that acute stress induces constitutive activity of the

kOR. Alternatively, norBNI may promote JNK signaling via an unknown mechanism independent of

kOR receptors.

Experience-induced constitutive activity
Acute stress appears to trigger a shift towards constitutively active kORs through a transient release

of the endogenous kOR ligand, dynorphin (Figure 7). Our strongest evidence for this model is the

ability of the neutral antagonist 6b–naltrexol to prevent the loss of LTPGABA when administered

before, but not after stress. Although 6b–naltrexol has equivalent affinity for m and k ORs,

(Wang et al., 2007) our previous work has shown that the block of LTPGABA by stress is unaffected

by pre-stress administration of the mOR antagonist cyprodime (Graziane et al., 2013). Therefore,

the ability of 6b–naltrexol to prevent the stress-induced loss of LTPGABA is unlikely to involve mOR

signaling and instead occurs by blocking dynorphin binding to the kOR. A single in vivo systemic

administration of the kOR agonist U50488 also blocks LTPGABA for at least five days, supporting the

idea that brief agonist exposure alone is sufficient to trigger lasting constitutive kOR activity.

How might activation of kORs by its endogenous ligand shift the receptor towards constitutive

activity? In a heterologous cell-culture system, previous exposure to a kOR agonist

alone significantly increased constitutive activity of the receptor (Wang et al., 2007). More is known

regarding regulation of constitutive activity of mORs. In either cultured cells heterologously express-

ing mORs (Wang et al., 1994, 2000; Liu and Prather, 2001) or in intact animals (Wang et al., 2004;

Shoblock and Maidment, 2006; Meye et al., 2012), exposure to the mOR agonist morphine trig-

gers an increase in constitutive activity of mORs. Morphine-induced constitutive activity of mORs is

regulated by calmodulin and protein kinases. Under basal conditions, calmodulin binding to the

mORs prevents constitutive association with G-proteins. Following morphine exposure, calmodulin

dissociates from the mOR, allowing constitutive activation (Wang et al., 1999, 2000). Although it is

unknown whether calmodulin regulates the activity of kORs, an intricate scaffolding complex regu-

lates kOR signaling (Bruchas and Chavkin, 2010), and future studies investigating the role of these
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signaling complexes in kOR activity in response to stress will be important and intriguing. Most of

the work investigating constitutive activation of GPCRs has focused on enhancement of constitutive

activity by administration of exogenous ligands (Meye et al., 2014), while considerably less is known

about induction of constitutively active states of GPCRs by endogenous signaling. However, it was

recently reported that inflammatory pain increases constitutively active mORs in the mouse spinal

cord, leading to hyperalgesia and cellular dependence (Corder et al., 2013).

Our data indicate that treatment with the kOR agonist U50488 alone is sufficient to produce con-

stitutively active kORs on inhibitory VTA synapses. A remaining puzzle is why kOR activation by

endogenous ligand can produce constitutively active receptors at some synapses but not at their

neighbors, and in response to certain environmental cues (acute stress) but not to others during

which dynorphin may also be released. One possibility is that receptors in different cell types may

couple to different signaling cascades or scaffolding molecules. Another possibility is that coordi-

nated signaling between kORs and another neurotransmitter system may be required. Our prior

work indicates that activation of glucocorticoid receptors is required for the block of LTPGABA by

stress (Niehaus et al., 2010; Polter et al., 2014). Although persistent activation of these receptors

is not seen after stress, it is possible that coincident activation of glucocorticoid and kappa opioid

receptors leads to constitutive activation of the latter. Additionally, it has been reported that the

orexin-1 receptor attenuates kOR inhibition of cAMP production, but enhances recruitment of b-

arrestin and p38 MAPK activation, and both effects are prevented by the JNK inhibitor SP600125

used in our study (Robinson and McDonald, 2015). Both orexin and dynorphin are co-released from

hypothalamic projections to the VTA (Chou et al., 2001; Muschamp et al., 2014; Baimel et al.,

2015). This arrangement raises the possibility that release of both peptides together, or perhaps

simultaneous release of dynorphin and an unknown neurotransmitter acting similarly to orexin, may

initiate signaling events not triggered by dynorphin alone. The putative dual receptor signaling

might be one way to induce synapse- or experience- selective constitutive kOR activity.

Regulation of LTPGABA by kORs
One unanswered question is how kORs suppress the expression of LTPGABA. Our previous studies

have shown that LTPGABA is triggered by nitric oxide-mediated activation of cGMP-protein kinase G

(PKG) signaling (Nugent et al., 2007, 2009; Niehaus et al., 2010). Because an exogenous source of

nitric oxide (SNAP) does not rescue potentiation following stress, the blockade is likely to occur in

the presynaptic terminal between activation of guanylate cyclase and enhancement of GABAergic

release. While it is possible that kOR activation generally depresses GABA release, our previous

work (Graziane et al., 2013) found no change in mIPSC frequency following cold water swim stress.

These data suggest that kORs do not alter basal GABA release. Moreover, LTPGABA is also lost 24 hr

after a single morphine exposure, and in this situation a cGMP analog or strong activation of sGC

potentiates GABA release (Nugent et al., 2007; Niehaus et al., 2010). We therefore favor a mecha-

nism by which after acute stress, constitutively-active kORs similarly act on a substrate that limits

induction of plasticity without affecting basal release mechanisms, perhaps through downregulation

of soluble guanylyl cyclase, or scaffolding changes that sequester PKG from its substrates.

Although it remains unknown under what conditions LTPGABA is activated in an intact animal, our

prior studies shed some light on its potential roles. LTPGABA is a heterosynaptic form of plasticity

that can be triggered by a high-frequency tetanus that activates NMDAR-dependent activation of

calcium-sensitive nitric oxide synthase (Nugent et al., 2007). We therefore expect that LTPGABA

would be induced when there is robust activation of excitatory inputs onto dopamine neurons.

LTPGABA may play a homeostatic role to enhance inhibition of dopamine neurons after strong

NMDAR-activating excitation. Loss of LTPGABA, therefore, would result in an imbalance between

inhibitory and excitatory input onto the dopamine neuron. As GABAergic synapses on dopamine

neurons strongly control their spontaneous firing (van Zessen et al., 2012), the loss of LTPGABA is

likely to prolong or enhance firing in response to salient stimuli.

Constitutive activity of kORs in the VTA and drug-seeking behavior
The critical role of the VTA in reinstatement of drug seeking has been repeatedly underscored

(McFarland et al., 2004; Briand et al., 2010; Graziane et al., 2013; Mantsch et al., 2016), and

Polter et al. eLife 2017;6:e23785. DOI: 10.7554/eLife.23785 13 of 21

Research article Neuroscience

http://dx.doi.org/10.7554/eLife.23785


within the VTA, GABAergic synapses on VTA dopamine neurons powerfully regulate DA cell firing

(Tan et al., 2012; van Zessen et al., 2012; Polter and Kauer, 2014).

Our work shows that stress produces long-lasting kOR constitutive activity that is restricted to

inhibitory synapses on dopamine cells, thereby affecting information stored or processed here for

far longer than at excitatory synapses. We might therefore predict two phases of stress-induced

kOR activation. We hypothesize that dynorphin is released during and/or immediately after stress,

depressing EPSCs onto dopaminergic neurons and hyperpolarizing dopaminergic neurons, on bal-

ance decreasing dopaminergic neuron excitability (Margolis et al., 2003, 2005; Ford et al., 2006).

However, as dynorphin is degraded, we would expect that the strength of excitatory synapses would

return to normal levels while LTPGABA would become blocked by constitutive activity of kORs, a

state lasting at least five days after swim stress. This would instead increase the firing rate of dopa-

minergic neurons, particularly in response to excitatory stimuli. This increased excitability could con-

tribute to the increased drive towards drug-seeking behavior upon exposure to spatial cues

associated with past drug experience (i.e., return to the operant chamber), and could create a state

of vulnerability to further stressors. Indeed, in rats subjected to the same cold water stress used in

this study, the firing rate of dopaminergic neurons remains elevated for several days afterwards

(Marinelli, 2007). Interestingly, a single dose of the kOR agonist, salvinorin A, has biphasic effects

on reward function: immediately after administration, rats exhibit an anhedonic increase in reward

thresholds to intracranial self-stimulation. However, 24 hr after salvinorin A administration, rats

exhibit decreased reward thresholds, indicating an increase in reward sensitivity (Potter et al.,

2011). This biphasic effect is consistent with a split between short- and long-term effects of kOR

activation, perhaps due to differential mechanisms of regulation and constitutive activation of sub-

sets of receptors.

The circuitry of the VTA is highly complex, and dopamine neurons within the VTA exhibit physio-

logical and functional heterogeneity that correlates with projection target. While disagreement

remains about the most appropriate pharmacological, physiological, and anatomical markers of dif-

ferent subclasses of dopamine neurons (Ford et al., 2006; Margolis et al., 2006; Lammel et al.,

2008, 2011; Ungless and Grace, 2012; Baimel et al., 2017), the electrophysiological markers used

here and the lateral location of our recordings within the VTA suggest to us that our population of

cells may largely comprise dopamine neurons that project to the nucleus accumbens. This may be

significant for drug reward, as activation of these neurons has been shown to be rewarding in mice

(Lammel et al., 2012). Therefore, our study indicates that an acute stressor induces a long-lasting

loss of inhibitory plasticity in circuitry that may drive rewarding behavior.

GABAergic afferents on VTA dopamine neurons can release GABA onto either GABAA or GABAB

receptors. Previous studies including more recent optogenetic approaches have suggested that

GABAB receptor-targeting neurons arise from the nucleus accumbens and regulate drug-induced

behaviors (Sugita et al., 1992; Cameron and Williams, 1993; McCall et al., 2017; Edwards et al.,

2017). However, our earlier work found no LTPGABA at GABAB synapses on dopamine neurons

(Nugent et al., 2009), suggesting that the effects of persistently activated kORs are unlikely to

involve the nucleus accumbens-VTA GABAergic afferents.

Our data provide the first demonstration that constitutively active kORs in the VTA are required

for stress-induced reinstatement of cocaine-seeking. Post-stress (at least 24 hr) administration of

norBNI prevents reinstatement, while post-stress administration of the neutral antagonist 6b-nal-

trexol does not. The ability of norBNI to modify drug-seeking behavior even when given significantly

after the stressor is remarkable, and indicates the therapeutic potential of targeting kORs to reverse

stress-induced neuroadaptations. The failure of 6b–naltrexol to prevent reinstatement at time points

when norBNI is effective strongly suggests that the persistent increase in drug seeking induced by

swim stress is mediated by constitutive activity of kORs rather than a prolonged increase in dynor-

phin release. Furthermore, this result is consistent with an important role for GABAergic synapse

plasticity in stress-induced drug-seeking behavior. While considerable attention has been given to

the role of LTP at excitatory synapses in the VTA, the kOR block by norBNI does not prevent stress

from potentiating excitatory synapses on dopamine neurons (Graziane et al., 2013). Our current

work confirms that the loss of LTP at GABAergic synapses in the VTA is highly correlated with stress-

induced drug-seeking.
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kORs as targets for substance abuse
kORs have shown promise as a potential drug target for substance use and mood disorders

(Bruchas et al., 2010; Van’t Veer and Carlezon, 2013; Crowley and Kash, 2015) and our work

suggests a novel way in which kOR signaling may go awry. In preclinical models, kOR antagonists

have shown potential efficacy for depression and for compulsive and stress-induced drug use

(Bruchas et al., 2010; Wee and Koob, 2010). Numerous clinical trials are in progress using kOR

ligands to target substance use disorders and depression (Ehrich et al., 2015; Karp et al., 2014;

Chavkin and Koob, 2016; Ling et al., 2016; Nasser et al., 2016). However, many of these trials use

buprenorphine, a partial agonist at kORs, or novel compounds which may lack inverse agonist activ-

ity, neither of which would reduce activity of constitutive kORs (Karp et al., 2014; Rorick-

Kehn et al., 2014).

Our study suggests that future drug development should consider excess kOR activity through

receptor signaling as well as at the level of ligand binding. Similarly, disappointing results or minimal

effects in clinical trials may not represent failure of kORs as a pharmaceutical target, but a need to

consider drugs that target specific conformations of the kOR that promote constitutive signaling. An

alternative strategy would be to target JNK signaling in the VTA, as norBNI appears to rescue kOR

function by activating JNK. An intriguing implication of our studies comes from our data that consti-

tutive activity of kORs at inhibitory synapses in the VTA lasts only five to ten days following acute

stress (Polter et al., 2014), a considerably shorter time period than the 14–21 days typical for turn-

over of kORs (McLaughlin et al., 2004). This suggests that constitutive activity of the kORs may be

terminated by an unidentified active mechanism. Future studies investigating such a mechanism

could identify targets that could be recruited to promote resilience to stress. Our work demonstrates

a novel mechanism of experience-dependent regulation of kORs, and highlights the ability of modu-

lation of kORs to reverse stress-induced neuroadaptations and behavioral deficiencies well after the

stressor has occurred. Further study of the mechanisms of constitutive activation of kORs may yield

numerous potential targets for the treatment of substance use disorders and other stress-linked

illnesses.

Materials and methods

Animals
All procedures were carried out in accordance with the guidelines of the National Institutes of Health

for animal care and use, and were approved by the Brown University Institutional Animal Care and

Use Committee or by the University of Wyoming Institutional Animal Care and Use Committee. For

slice electrophysiology studies, male and female Sprague-Dawley rats (P16-25) were maintained on a

12 hr light / dark cycle and provided food and water ad libitum. For self-administration studies, male

Sprague-Dawley rats (350–450g) were bred in-house and individually housed in a temperature-con-

trolled room with a 12 hr reverse light/dark cycle. All animals were given ad libitum access to water

throughout experimentation, except during times in which they were in the operant chambers

(described below). Rats were 60–70 days old at the start of behavioral experiments.

Acute forced swim stress
Stress was administered by a modified Porsolt forced swim task (Niehaus et al., 2010). Rats were

placed for 5 min in cold water (4–6˚C), then dried and allowed to recover in a warmed cage for two

hours before returning to the home cage. U50488 (5 mg/kg) and 6b-naltrexol (10 mg/kg) were dis-

solved in saline or 10% DMSO in saline, respectively. Vehicle-injected animals were given an injection

of the equivalent volume. For some experiments, animals given vehicle injections at varying time

points were collapsed into a single group. Brain slices were prepared at several time points after

stress exposure, as described below.

Preparation of brain slices
Horizontal midbrain slices (250 mm) were prepared as previously described from deeply anesthetized

Sprague-Dawley rats (Nugent et al., 2007; Niehaus et al., 2010; Polter et al., 2014). Slices were

stored for at least 1 hr at 34˚C in oxygenated HEPES holding solution (in mM): 86 NaCl, 2.5 KCl, 1.2

NaH2PO4, 35 NaHCO3, 20 HEPES, 25 glucose, 5 sodium ascorbate, 2 thiourea, 3 sodium pyruvate, 1
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MgSO4.7H2O, 2 CaCl2.2H2O (Ting et al., 2014). Slices were then transferred to a recording chamber

where they were submerged in ACSF containing (in mM): 126 NaCl, 21.4 NaHCO3, 2.5 KCl, 1.2

NaH2PO4, 2.4 CaCl2, 1.0 MgSO4, 11.1 glucose.

Electrophysiology
General methods were as previously reported (Niehaus et al., 2010; Polter et al., 2014). Midbrain

slices were continuously perfused at 1.5–2 mL / min. Patch pipettes were filled with (in mM): 125

KCl, 2.8 NaCl, 2 MgCl2, 2 ATP-Na+, 0.3 GTP-Na+, 0.6 EGTA, and 10 HEPES. To record IPSCs, the

extracellular solution was ACSF (28–32˚C) containing: 6,7-dinitroquinoxaline- 2,3-dione (DNQX; 10

mM) and strychnine (1 mM), to block AMPA and glycine receptors respectively. To record EPSCs, 100

mM picrotoxin was added to the ACSF. Dopaminergic neurons, which comprise about 70% of all

VTA neurons, were identified by the presence of a large Ih (>50 pA) during a voltage step from �50

mV to �100 mV. GABAA receptor-mediated IPSCs were stimulated using a bipolar stainless steel

stimulating electrode placed 100–300 mm rostral to the recording site in the VTA. Cells were volt-

age-clamped at �70 mV and input resistance and series resistance were monitored throughout the

experiment; cells were discarded if these values changed by more than 15% during the experiment.

NO-triggered LTP
3-isobutyl-1-methylxanthine (IBMX; 100 mM) was used to inhibit phosphodiesterase-mediated degra-

dation of cGMP and applied via perfused ACSF for at least 10 min prior to induction of LTPGABA by

application of the NO donor, SNAP (S-nitroso-N-acetylpenicillamine, 400 mM). Control animals (vehi-

cle-injected stressed or unstressed animals) were interleaved with experimental animals (drug-

injected stressed animals). Where indicated, NorBNI (100 nM), 6b-naltrexol (10 mM), and SP600135

(20 mM) were bath applied to slices at least 10 min prior to induction of LTPGABA.

Self-administration
Rats were anesthetized with ketamine HCl (87 mg/kg, i.m.) and xylazine (13 mg/kg, i.m.) and

implanted with intravenous jugular catheters. In order to protect against infection and maintain cath-

eter patency, catheters were flushed daily with 0.2 mL of a mixed cefazolin (0.1 gm/ml) and heparin

(100 IU) solution. Rats were allowed to recover for one week before behavioral testing. All self-

administration procedures were conducted in standard operant chambers (Med Associates, St.

Albans, VT; 30.5 cm x 24.1 cm x 21.0 cm). Each box contained a house light (illuminated throughout

behavioral testing) two retractable levers, a cue light, and tone generator. Prior to beginning cocaine

self-administration training, animals were food deprived for 24 hr and subsequently placed into the

operant chambers overnight for 14 hr. During this session, a response to the active lever (the left

lever) resulted in the delivery of a single 45 mg food pellet (#F0165, Bio-Serv, Flemington, NJ) and

the presentation of a compound cue (illumination of light above the active lever +5 s tone, 2900 Hz),

followed by a 25 s timeout period. Responses to the inactive lever (the right lever) had no pro-

grammed consequences but were recorded. Total rewards received were also recorded. On the

next day, cocaine self-administration training began. During this time, a response to the active lever

yielded a 0.05 ml infusion of 0.20 mg of cocaine (dissolved in 0.9% saline) as well as the presentation

of the compound cue (light + tone). Self-administration continued (2 hr/daily) until animals reliably

pressed the active lever (3d with minimum of 10 cocaine infusions received). Following the acquisi-

tion of cocaine self-administration, all animals underwent extinction training, during which responses

to the previously active lever yielded the compound cue but no longer produced drug infusion. Ani-

mals were food-restricted to 80% of their body weight during self-administration training. During

extinction, animals were given ad libitum access to food in the home cage. Extinction procedures

continued until animals reached extinction criteria (3d with less than 10 active lever presses).

Forced swim stress and reinstatement
The day following the last extinction session, rats were subjected to a 5 min forced swim stress in

cold water (4-6˚C, Saal et al., 2003; Niehaus et al., 2010). Rats were then split into three groups,

receiving (i.p.) injections of either saline (1 ml/kg), norBNI (10 mg/kg), or 6b-Naltrexol (10 mg/kg). 24

hr after swim stress, rats in the saline and norBNI groups were injected and left undisturbed in their

home cage for one day. Rats in the 6b-naltrexol group were injected one hour prior to reinstatement
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testing. At 48 hr after swim stress, all animals were subjected to reinstatement testing, which simi-

larly to extinction yielded the compound cue but no drug infusion.

Analysis
Magnitude of LTP was determined as mean IPSC amplitude for 5 min just before application of

SNAP compared with mean IPSC amplitude from 10–15 min after SNAP application, unless other-

wise noted. Data are presented as means ± SEM of the percent IPSC amplitude normalized to IPSCs

in the 10 min prior to SNAP application. Statistical methods were not used to determine sample

size. Sample size was based on our prior experience and previously published studies

(Graziane et al., 2013; Polter et al., 2014). All reported n’s are the number of animals (biological

replicates), unless otherwise noted. Significance was determined using a two-tailed Student’s t-test

or a one-way ANOVA with a significance level of p<0.05. All post-hoc comparisons were done using

Dunnett’s test unless otherwise noted. Self-administration data were analyzed using paired t-tests.

Materials
IBMX was obtained from Enzo Life Sciences. NorBNI, U50488, and SNAP were obtained from Tocris

Biosciences. DNQX, picrotoxin, strychnine, and 6b-naltrexol were obtained from Sigma-Aldrich.

SP600125 was obtained from Calbiochem.
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