Analysis of HIV-1 quasispecies sequences generated by High-throughput Sequencing (HTS) using HIVE Naila Gulzar¹, Bhavna Hora², Konstantinos Karagiannis¹, Krista Smith¹, Feng Gao², Raja Mazumder¹

ABSTRACT

The high level of genetic variability of Human Immunodeficiency Virus type 1 (HIV-1) is caused by the low fidelity of its replication machinery. This leads to evolution of swarm-like viral populations often described as quasispecies. High-throughput sequencing (HTS) technology provides higher resolution over Sanger sequencing, enabling detection of low frequency variant genomes. However, quasispecies analysis is still a challenge due to the systematic noise, introduced by HTS technology. This leads to the increase in type I errors (also known as false positives) and the underlying genetic diversity, which can lead to mathematically insolvable type II errors (also known as false negatives). We have developed a pipeline using the tools in the High-performance Integrated Virtual Environment (HIVE), an HTS platform designed for big data analysis and management, to analyze viral populations within each sample and identify their subtype classification and recombination patterns of recombinants. RNA was extracted from 70 plasma samples of chronic HIV-1 infected patients. The 3' half genomes of HIV-1 were amplified using RT-PCR and PCR products were sequenced using Illumina MiSeq. The paired end reads for each sample were assembled using Geneious software and analyzed for presence of HIV-1 quasispecies using HIVE tools. Subtype analysis of 70 samples using Geneious software identified 17 A1s, 4 Bs, 30 Cs, 1 D, 6 CRF02_AG, and 12 unique recombinant forms (URFs). Additionally, we found up to 178 ambiguous bases in the consensus sequences from 41 viral samples (58.6%), suggesting the presence of viral subpopulations. However, Geneious could not determine the major quasispecies populations in each sample. We analyzed the same HTS reads using the HIV-1 quasispecies analysis pipeline and found one predominant population in 11 samples (15.7 %), two to ten distinct populations in 45 samples (64.3%), 11-20 in 13 samples (18.16%), and 26 in one sample (1.4%). Interestingly, two equally major viral populations that were not detected by Geneious were identified in five samples (7.1%) by HIVE. The HIV-1 quasispecies analysis pipeline is reliable and more sensitive in its ability to identify distinct viral populations and the recombination patterns not identified by the Geneious software.

BACKGROUND

High-throughput sequencing (HTS) technology has the ability to characterize HIV-1 genome sequences with higher resolution over Sanger sequencing. However, quasispecies analysis of half or whole genome sequence is still a challenge due to the systematic noise introduced by the HTS technology. We have developed a pipeline to identify the distinct viral populations, subtypes and recombination breakpoints in each sample using the High-performance Integrated Virtual Environment (HIVE).

AIM

The aim of this study is to design a workflow which is reliable and more sensitive in identifying the major and minor viral quasispecies in the HIV-1 infected samples using the HTS data.

METHOD

RNA was extracted from 70 plasma samples of chronic HIV-1 infected patients. The 3' half genomes of HIV-1 were amplified using RT-PCR and PCR products were sequenced using Illumina MiSeq. The paired end reads for each sample were assembled using Geneious software and analyzed for presence of HIV-1 quasispecies using HIVE tools. The quality control analysis of the raw reads was done in HIVE and then the reads were mapped to the 20 reference set using HIVE-hexagon. The nearest neighbors were selected from the alignment results and then raw reads were mapped to the nearest neighbors. Clonal discovery tool, Hexahedron was run on the alignment using mutual frame of the nearest neighbors for co-ordinate system.

HIV-1 ANALYISIS PIPELINE

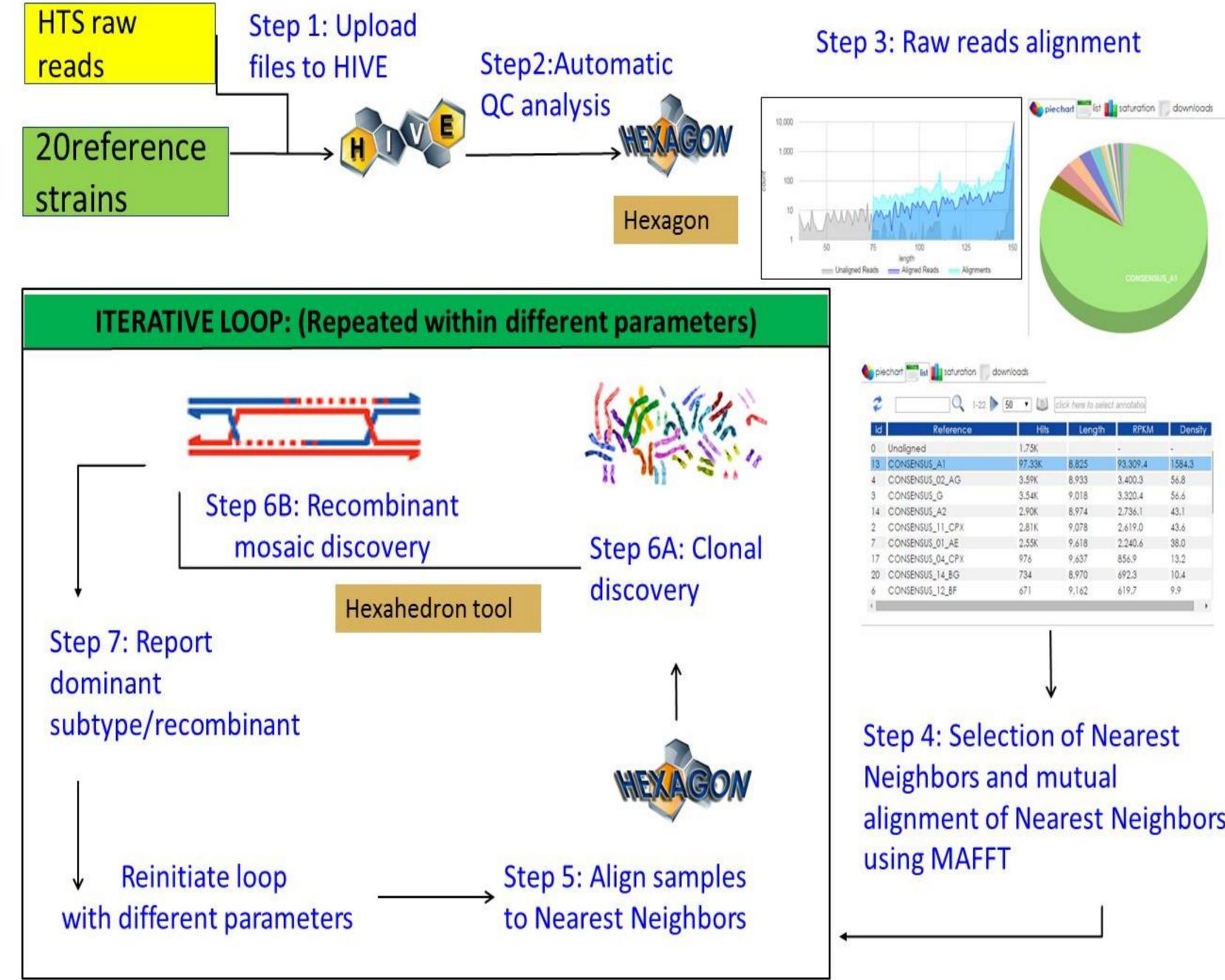
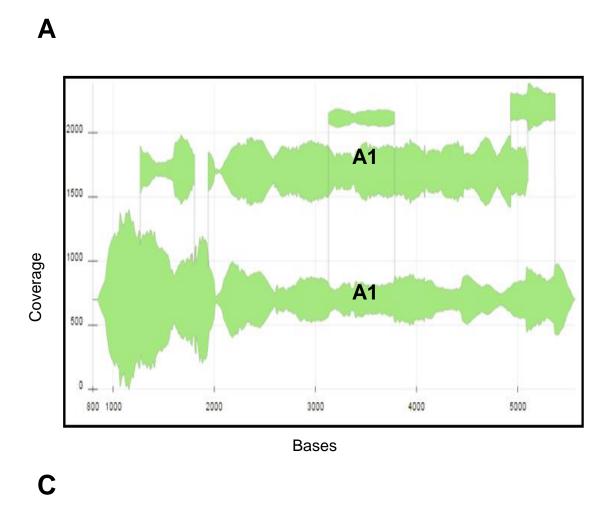



Figure 1. The workflow for the identification of quasispecies, subtypes and recombination breakpoints in HIV-1 infected patient samples in HIVE

•1Department of Biochemistry and Molecular Medicine, The George Washington University, Washington, DC, 20037 •²Duke Human Vaccine Human Institute and Departments of Medicine, Duke University Medical Center, Durham, NC 27710, USA

alignment of Nearest Neighbors

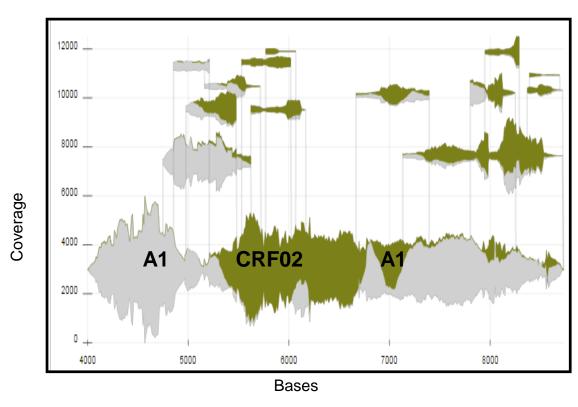
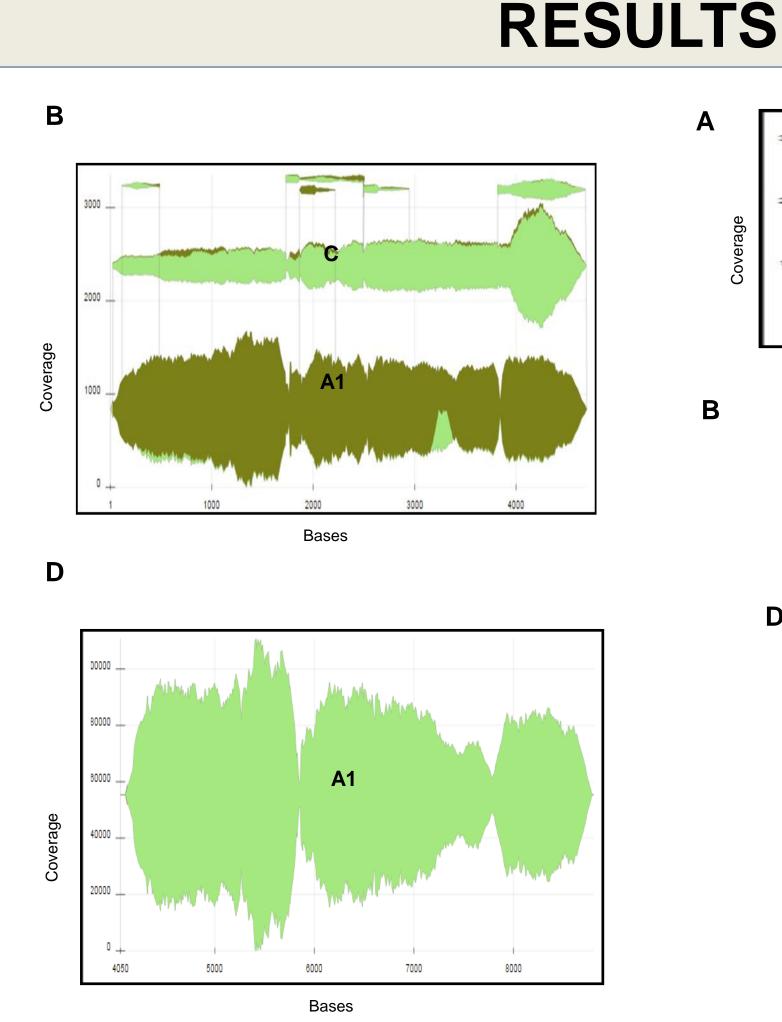



Figure 2. Sankey plots generated in HIVE using hexahedron tool depicting subtype, quasispecies and recombination pattern. Sankey plot (A) depicts sample PK040 having two predominant populations of subtype A1, (B) two subtypes, A1 and C observed in sample 707010038, (C) recombination between A1 and CRF02 seen in sample PK006 and (D) single predominant A1 population in sample PK016. Width of the sankey plot is a reference to the coverage by reads in the area. For each sample different colors represent different subtypes.

Sample	VL	Subtype	HIVE		Geneious				HIVE		Geneious
			Predominant populations	No. of clonal populations	Ambiguous bases	Sample	VL	Subtype	Predominant populations	No. of clonal populations	Ambiguous bases
703010957	95,554	С	1	1	0	705010661	31,081	С	1	6	0
704010566	26,700	С	1	1	0	705010801	4,704	С	1	6	0
707010225	2,417	D	1	1	1	706010375	119,000	С	1	6	1
PK005	610	CRF02	1	1	2	PK007	106,000	A1	1	6	2
PK009	173,000	С	1	1	0	PK038	456,000	CRF02	1	6	5
PK011	8,750	URF	1	1	2	700010501	31,875	В	1	7	0
PK016	13,000	A1	1	1	0	704010715	319,000	С	1	7	0
PK026	5,350	A1	1	1	26	PK015	300,000	URF	1	7	6
PK032	6,400	CRF02	1	1	44	707010038	17,213	A1 and C	2	7	30
PK034	4,665	A1	1	1	28	702010322	57,901	С	1	8	4
PK036	96,500	A1	1	1	20	706010413	78,000	С	1	8	0
706010391	271,000	С	1	2	0	PK023	65,500	URF	1	8	28
PK021	93,500	A1	1	2	42	PK003	13,600	URF	2	8	101
PK025	26,900	URF	1	2	17	702010350	85,381	С	1	9	0
703010234	183,452	С	1	3	0	704010486	253,000	С	1	9	1
703010619	29,059	С	1	3	0	PK017	119,000	A1	1	9	178
703010835	32,974	С	1	3	3	PK027	111,500	A1	1	9	46
703011871	150,182	С	1	3	0	703010632	43,600	С	1	10	0
705010614	98,700	С	1	3	0	705010699	46,057	С	1	10	4
707010277	97,122	URF	1	3	0	PK008	625,000	URF	1	10	129
PK004	464,000	A1	1	3	4	PK033	425,500	URF	1	10	34
PK040	111,000	A1	2	3	43	700010329	11,014	В	1	11	0
702010675	146,346	С	1	4	5	707010134	15,208	URF	2	11	0
703010523	88,878	С	1	4	0	PK018	88,500	A1	1	11	79
705010474	40,497	С	1	4	0	707010585	79,367	URF	2	14	60
707010169	28,598	A1	1	4	0	PK006	710,000	URF	1	14	9
707010789	22,880	A1	1	4	5	PK019	760,000	CRF02	1	15	134
PK039	60,000	CRF02	1	4	11	PK002	488,000	A1	1	16	4
700010516	10,310	В	1	5	0	700010260	74,588	В	1	18	0
705010366	15,329	С	1	5	0	PK013	193,000	A1	1	18	24
PK031	225,500	A1	1	5	0	705010645	425,760	С	1	19	1
PK035	461,500	CRF02	1	5	3	PK020	208,000	A1	1	19	131
702010118	32,081	С	1	6	2	702010133	591,344	С	1	20	2
705010303	26,833	С	1	6	0	703010539	97,857	С	1	20	0
705010381	21,352	C	1	6	0	PK010	1,250	С	1	26	NA

Michael Busch, Thomas N. Denny

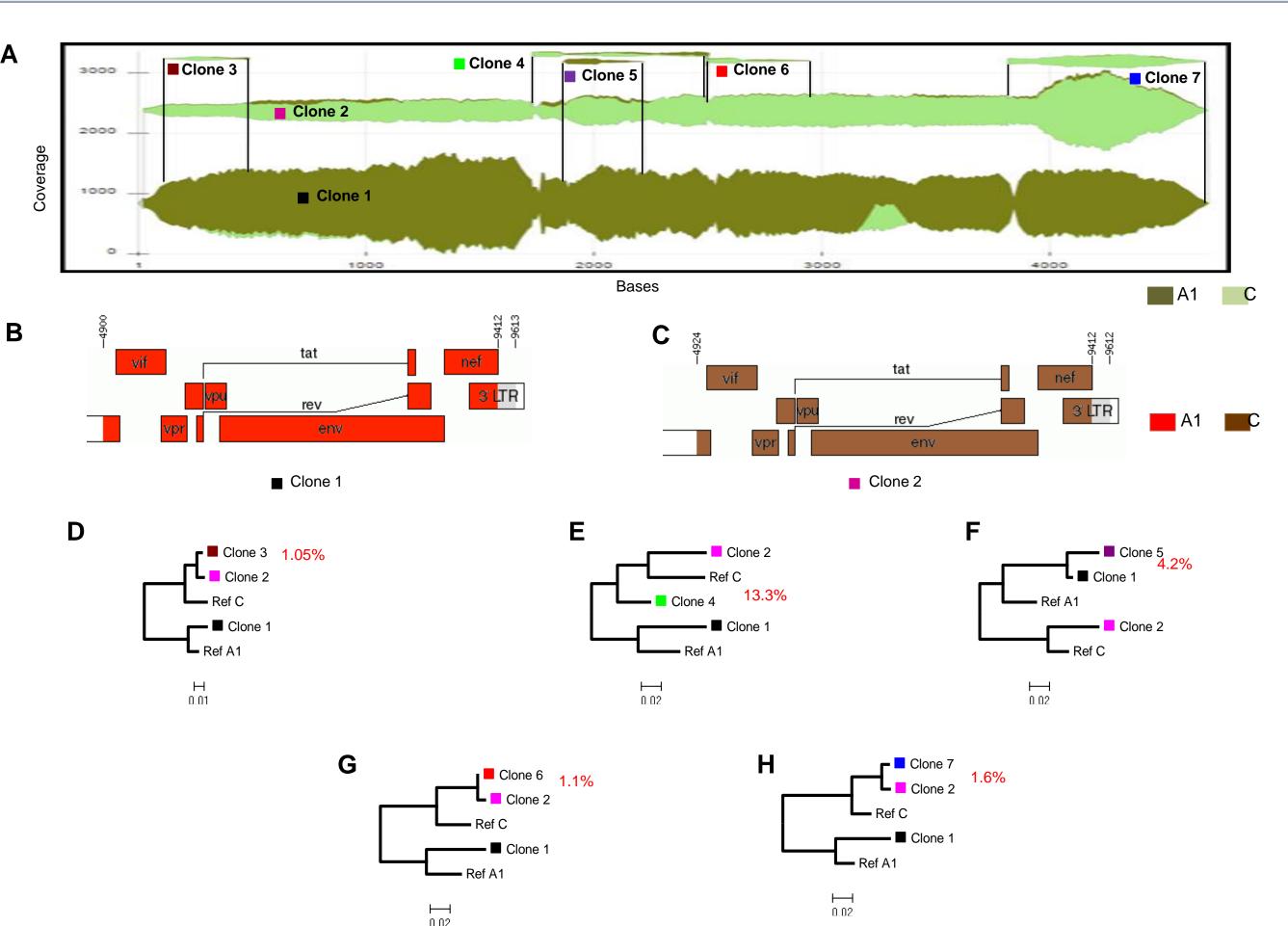
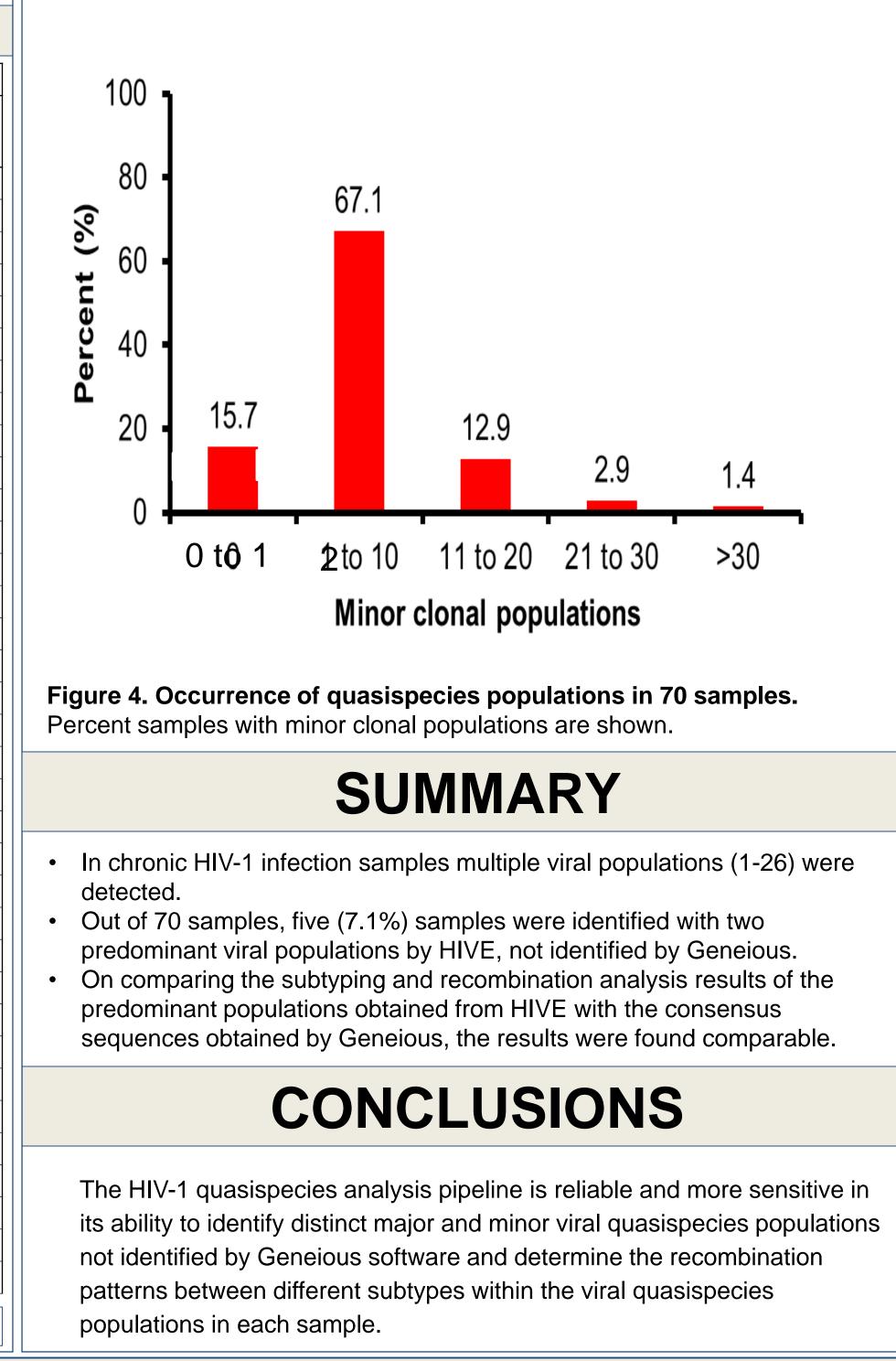


Figure 3. Identification of two major and five minor quasispecies populations, recombination patterns and genetic distances between the clones. Two predominant clones: clone 1 and 2 were verified as representative of subtype A1 and C using REGA subtyping tool. Phylogenetic trees were constructed for each minor clone with the overlapping clones in the region using MEGA software (D-H) to estimate the genetic distances between major and minor clones.


ACKNOWLEDGEMENT

Vahan Simonyan, Yue Chen, Fangping Cai, Chang Su, Sharaf Ali Shah, Manzoor Ahmed, Ana M. Sanchez, Mars Stone, Myron S. Cohen, Barton F. Haynes,

Duke Human Vaccine Institute

