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Summary
Background Statin treatment and variants in the gene encoding HMG-CoA reductase are associated with reductions 
in both the concentration of LDL cholesterol and the risk of coronary heart disease, but also with modest 
hyperglycaemia, increased bodyweight, and modestly increased risk of type 2 diabetes, which in no way off sets their 
substantial benefi ts. We sought to investigate the associations of LDL cholesterol-lowering PCSK9 variants with type 2 
diabetes and related biomarkers to gauge the likely eff ects of PCSK9 inhibitors on diabetes risk.

Methods In this mendelian randomisation study, we used data from cohort studies, randomised controlled trials, 
case control studies, and genetic consortia to estimate associations of PCSK9 genetic variants with LDL cholesterol, 
fasting blood glucose, HbA1c, fasting insulin, bodyweight, waist-to-hip ratio, BMI, and risk of type 2 diabetes, using 
a standardised analysis plan, meta-analyses, and weighted gene-centric scores.

Findings Data were available for more than 550 000 individuals and 51 623 cases of type 2 diabetes. Combined analyses 
of four independent PCSK9 variants (rs11583680, rs11591147, rs2479409, and rs11206510) scaled to 1 mmol/L lower 
LDL cholesterol showed associations with increased fasting glucose (0·09 mmol/L, 95% CI 0·02 to 0·15), bodyweight 
(1·03 kg, 0·24 to 1·82), waist-to-hip ratio (0·006, 0·003 to 0·010), and an odds ratio for type diabetes of 1·29 (1·11 to 1·50). 
Based on the collected data, we did not identify associations with HbA1c (0·03%, –0·01 to 0·08), fasting insulin (0·00%, 
–0·06 to 0·07), and BMI (0·11 kg/m², –0·09 to 0·30).

Interpretation PCSK9 variants associated with lower LDL cholesterol were also associated with circulating higher 
fasting glucose concentration, bodyweight, and waist-to-hip ratio, and an increased risk of type 2 diabetes. In trials of 
PCSK9 inhibitor drugs, investigators should carefully assess these safety outcomes and quantify the risks and benefi ts 
of PCSK9 inhibitor treatment, as was previously done for statins.

Funding British Heart Foundation, and University College London Hospitals NHS Foundation Trust (UCLH) National 
Institute for Health Research (NIHR) Biomedical Research Centre.

Copyright © The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY license.

Introduction
The benefi t of statins in reducing LDL cholesterol and 
coronary heart disease (CHD) risk is well established. 
More recently, and only after completion of numerous 
randomised controlled trials, was it discovered that 
statins increase risk of type 2 diabetes,1,2 although this 

eff ect is modest and greatly outweighed by the benefi ts of 
this drug class. Genetic studies based on common 
variants in the gene encoding the target of statins, 
HMG-CoA reductase (HMGCR), suggest the eff ect 
is mechanism-based (ie, on-target).3 Genetic studies 
assessing the eff ects of variants in a broader range of 

http://crossmark.crossref.org/dialog/?doi=10.1016/S2213-8587(16)30396-5&domain=pdf
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Clinical Epidemiology,

genes suggest a more general link between lower LDL 
cholesterol and higher risk of type 2 diabetes.4,5 Consistent 
with this fi nding, patients with autosomal dominant 
familial hypercholesterolaemia caused by mutations in 
the LDL receptor and apolipoprotein B genes are 50% less 
likely to be diagnosed with type 2 diabetes compared 
with their unaff ected relatives.6

Gain-of-function mutations in PCSK9, the gene 
encoding proprotein convertase subtilisin/kexin type 9, 
also cause familial hypercholesterolaemia,7 whereas loss-
of-function mutations in the same gene lower LDL 
cholesterol and protect against CHD.8 Consequently, 
monoclonal antibodies inhibiting PCSK9 have been 
developed9 and are eff ective in lowering LDL cholesterol 
by 50–70%,10 with preliminary evidence suggesting that 
this eff ect might be associated with reduced risk of 
myocardial infarction and all-cause mortality.9 Although 
large phase 3 trials to assess the eff ects of PCSK9 
monoclonal antibodies on cardiovascular events are 
underway, conclusive evidence for the specifi c eff ect of 
PCSK9 inhibition on risk of type 2 diabetes from 
individual randomised controlled trials or meta-analyses 
might not emerge for some time.

We used the principle of mendelian randomisation as a 
tool for drug target validation, whereby common variants 
in a gene that encodes a drug target, through eff ects on 
expression or activity, are used to predict the on-target 
eff ect of pharmacological modifi cation of the same 
target.3,11,12 We investigated associations of common 
genetic variants in PCSK9 with markers of glycaemia, 
bodyweight, and risk of type 2 diabetes to assess the 

potential on-target eff ects of PCSK9 inhibition on these 
traits. Although results of a recent study provided 
evidence of an association of a single nucleotide 
polymorphism (SNP) in PCSK9 with type 2 diabetes 
risk,13 our aim was to confi rm the type 2 diabetes risk-
increasing eff ect of PCSK9 variation and explore potential 
biological mechanisms that might explain this eff ect. To 
do this we used four SNPs in the PCSK9 locus collected 
in 50 studies supplemented with data from large genetic 
consortia.

Methods
Genetic variant selection
We selected four SNPs in or near PCSK9 on the basis of 
a strong association with LDL cholesterol, as reported by 
the Global Lipids Genetics Consortium (GLGC);14 low 
pairwise linkage disequilibrium (r²≤0·30) with SNPs 
within the same and adjacent genes (1000 Genomes CEU 
data); high prior probability of being a functional variant 
based on the combined annotation dependent depletion 
(CADD) score, or the SNP being non-synonymous, or 
both;15 or previous reported associations with CHD.16 On 
the basis of these criteria, we selected the SNPs 
rs11583680 (minor allele frequency 0·14), rs11591147 
(0·01), rs2479409 (0·36), and rs11206510 (0·17; appendix).

Individual participant-level and summary-level data 
Data were analysed from two sources. Participating 
studies executed a common analysis script on their own 
data, submitting summary estimates to a central analysis 
centre at University College London, London, UK. Main 

Research in context

Evidence before this study
We searched PubMed for “pcsk9[All Fields] AND (“antagonists 
and inhibitors”[Subheading] OR (“antagonists”[All Fields] AND 
“inhibitors”[All Fields]) OR “antagonists and inhibitors”[All Fields] 
OR “inhibitors”[All Fields]) AND (“diabetes mellitus”[MeSH 
Terms] OR (“diabetes”[All Fields] AND “mellitus”[All Fields]) OR 
“diabetes mellitus”[All Fields])” for articles published up to 
Oct 8, 2016, to identify studies that assessed treatment with 
PCSK9 inhibitors or carriage of genetic variants in PCSK9 in 
relation to diabetes. This search identifi ed 17 studies, two of 
which presented novel, yet contrasting fi ndings in relation to 
genetic variants in PCSK9 and glycaemic status.

Randomised trials of treatment with statins and carriage of 
corresponding genetic variants in HMGCR that lower LDL 
cholesterol both show and increase in the risk of type 2 diabetes. 
More recently, genetic predisposition to lower LDL cholesterol 
concentrations has been linked to an increased risk of diabetes, 
suggesting that dysglycaemia might be a consequence of 
lowering LDL cholesterol in general. Whether lowering of LDL 
cholesterol by PCSK9 inhibitors results in increased risk of 
diabetes is currently unknown. Clinical trials of PCSK9 inhibitors 

to assess their eff ect on cardiovascular outcomes are ongoing, 
but reliable evidence for a possible association between PCSK9 
inhibition and risk of diabetes could take longer to accrue.

Added value of this study
Mendelian randomisation is an established approach that uses 
randomly allocated variants in the encoding gene to infer 
mechanism-based effi  cacy and safety outcomes from 
pharmacological perturbation of a drug target. We used four 
genetic variants in PCSK9 in more than 550 000 individuals 
(including about 50 000 diabetes cases) and showed that PCSK9 
genetic variants associated with lower LDL cholesterol 
concentrations were associated with increased concentration of 
fasting glucose, bodyweight, and risk of diabetes. This fi nding 
adds robust new evidence to previous research that identifi ed 
weak associations of PCSK9 with risk of diabetes.

Implications of all the available evidence
Similar to statin therapy, treatment with PCSK9 inhibitors is 
likely to increase the risk of diabetes. Patients treated with 
PCSK9 inhibitors should be carefully monitored for 
dysglycaemia, including within ongoing and future clinical trials. 
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eff ect estimates from the participating studies were then 
meta-analysed with pooled summary estimates from the 
public domain data repositories of relevant genetic 
(genome-wide association study [GWAS]) consortia, but 
only if the study-level estimates had not previously 
contributed to consortia results, to prevent double 
counting. All studies contributing data to these analyses 
were approved by their local ethics committees.

Data were collected for LDL cholesterol, insulin (fasting 
and non-fasting), glucose (fasting and non-fasting), 
HbA1c, insulin resistance and secretion via basal 
homeostatic model assessments (HOMA-IR and 
HOMA-B), bodyweight, height, BMI, waist-to-hip ratio, 
and history or incidence of type 2 diabetes.

Publicly available summary-level data were available on 
blood lipids from the GLGC;14 type 2 diabetes-related 
biomarkers (plasma insulin, glucose, HbA1c, HOMA-IR, 
and HOMA-B) from the Meta-Analyses of Glucose and 
Insulin-related traits Consortium (MAGIC);17–19 body-
weight, height, BMI, and waist-to-hip ratio from the 
Genetic Investigation of Anthropometric Traits consortium 
(GIANT);20,21 and type 2 diabetes from the Diabetes 
Genetics Replication and Meta-analysis consortium 
(DIAGRAM)22 and Exome chip 80K.23 Additionally, cross-
sectional data were obtained for adiposity traits and the 
prevalence of type 2 diabetes from UK Biobank.24

Statistical analyses
In all analyses we assumed an additive allele eff ect with 
genotypes coded as 0, 1, and 2, representing the number 
of minor alleles. We analysed continuous biomarkers 
using linear regression models; the composite endpoint 
of prevalent or incident type 2 diabetes was analysed with 
logistic regression. Study-specifi c associations were 
pooled for each SNP by use of the inverse-variance 
weighted method for fi xed-eff ect and random-eff ects 
meta-analysis. We assessed between-study heterogeneity 
using the Q-test and the I² statistic25 with a one-sided 
upper 97·5% CI. Study-specifi c associations were 
excluded if the SNP was not in Hardy-Weinberg 
equilibrium (appendix).

Our approach to SNP selection was designed to prune 
the number of SNPs at PCSK9 used in the analysis, 
without loss of information. We decided a priori to 
combine the four approximately independent SNPs in a 
weighted gene-centric score (GS) using the inverse-
variance weighted method for fi xed and random eff ects.26 
The GS provides a more precise estimate of the 
downstream eff ects of variation at PCSK9 by incorporating 
maximum biological variation. Furthermore, if the four 
SNP eff ects are homogeneous (assessed by the 
heterogeneity measures Q-test and I²), the GS estimates 
will be more powerful and precise compared with 
individual SNPs in isolation. If, however, the SNP eff ects 
are heterogeneous (meaning that the PCSK9 eff ects are 
diff erent according to which part of the gene is assessed), 
the GS method will be less powerful than the individual 

SNP tests (depending on the degree of heterogeneity). 
Our aim was to estimate the eff ect of the PCSK9 locus as 
a whole, but SNP-specifi c estimates are also reported. 
Other important assumptions of the GS approach are 
(approximate) independence of the included SNPs 
(assessed by pairwise linkage disequilibrium (r²) and use 
of multivariable regression models) and the additivity of 
allele eff ects. We also investigated whether the association 
of individual SNPs with diabetes risk was in proportion to 
the association with LDL cholesterol lowering.

Estimates are presented as mean diff erences or odds 
ratios (ORs) with 95% CIs, presented either per LDL 
cholesterol-decreasing allele or, in the case of GS, per 
1 mmol/L (38·67 mg/dL) lower LDL cholesterol. The per 
1 mmol/L GS eff ect estimates were derived by multiplying 
point estimates and their variances by the multiplicative 
inverse of the estimated SNP-LDL cholesterol eff ects. 
Similar to most genetic studies, missing data were 
excluded in an available case manner, assuming a 
missing-completely-at-random mechanism.27,28 To avoid 
potential bias due to population stratifi cation and non-
modelled ancestry interactions, analyses excluded 
individuals of non-European ancestry. Diff erences in 
ancestry can be a potential source of confounding bias 
(ie, population stratifi cation bias) when environment 
is related to both the genes and the outcome of 
interest. Analyses were done with the statistical 
programme R (version 3.3.0). 

Sensitivity analyses
We assumed that the allele eff ects were additive, which 
we assessed in available individual participant data by 
comparing an additive model to a non-additive model 
(allowing for dominance or recessiveness) using a 
likelihood ratio test (meta-analysed by Fisher’s method).29 
Because measurement error might be larger in prevalent 
cases (ascertained, for example, from hospital records) 
we did a further sensitivity analysis in which we 
separately analysed incident and prevalent type 2 
diabetes. This sensitivity analysis was done not because 
we expect the true associations of PCSK9 to be diff erent 
with respect to prevalent and incident case status, but 
merely refl ected a quality-control check. Although SNPs 
were selected to be independent, there was some degree 
of residual dependency (appendix; maximum r² 0·26). To 
explore the eff ect of this residual correlation between the 
four study SNPs (appendix), we compared results from a 
multivariable analysis (including the four SNPs in the 
same model) in studies with individual participant data 
(correcting for this correlation) to pairwise results 
(ignoring any between-SNP correlation) based on the 
same data.

Role of the funding source
The funder of the study had no role in study design, data 
collection, data analysis, data interpretation, or writing of 
the report. The corresponding author (AFS) had full access 
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Results
50 studies shared participant-level data from up to 
245 942 individuals, which was supplemented by 
summary eff ect estimates from data repositories, 
resulting in a maximum available sample size of 
568 448 indi viduals, including 51 623 cases of incident or 
prevalent type 2 diabetes. Individual studies were similar 
with respect to the distribution of biochemical measures 
(assessed by the median of study-specifi c means): LDL 
cholesterol 3·41 mmol/L (IQR 0·39), fasting glucose 
5·38 mmol/L (0·58), and HbA1c 5·50% (appendix). 
Pooled pairwise linkage disequilibrium estimates for the 
four PCSK9 SNPs all had r² values less than 0·30 
(appendix), confi rming that the selected SNPs were in 
low correlation in the collected data.

The four PCSK9 SNPs were associated with reductions 
in LDL cholesterol ranging from –0·02 mmol/L (95% CI 
–0·03 to –0·02) for rs11583680 to –0·34 mmol/L 
(–0·36 to –0·32) for rs11591147 per LDL cholesterol-
decreasing allele (fi gure 1).

Figure 2 depicts the associations of the four PCSK9 
SNPs after scaling the SNP eff ect to 1 mmol/L lower LDL 
cholesterol. Results of the PCSK9 GS analysis show that 
a 1 mmol/L lower LDL cholesterol was associated with an 
increase in bodyweight of 1·03 kg (95% CI 0·24 to 1·82; 
and an increase of 0·006 (0·003 to 0·010) in waist-to-hip 
ratio, but we observed a potentially neutral association 
with BMI (0·11 kg/m², –0·09 to 0·30). Associations of 
the PCSK9 GS with glycaemia measures were 
0·09 mmol/L (0·02 to 0·15) higher fasting plasma 
glucose, HbA1c of 0·03% (–0·01 to 0·08; and for fasting 
insulin 0·00%, –0·06 to 0·07). SNP-specifi c forest plots 
are presented in the appendix. The estimates were 
similar when corrected for linkage disequilibrium 
(appendix), and no systematic deviations from an additive 
model were identifi ed (appendix). Finally, we noted an 
unanticipated eff ect on height (mean diff erence 0·008 m, 
0·0008 to 0·015; appendix).

Figure 3 shows the associations of individual PCSK9 
variants and the GS with risk of type 2 diabetes. Using 
the PCSK9 GS, 1 mmol/L lower LDL cholesterol was 
associated with an increased risk of type 2 diabetes 
(OR 1·29, 95% CI 1·11 to 1·50). Exploring the PCSK9 
associations with incident (appendix) or prevalent 
(appendix) type 2 diabetes separately showed directional 
concordance of this eff ect (incident type 2 diabetes OR 
1·15, 0·76 to 1·72; prevalent type 2 diabetes OR 1·26, 
0·88 to 1·80). Associations of individual SNPs with LDL 
cholesterol and risk of type 2 diabetes showed a dose-
response relation (fi gure 4).

Discussion
In this mendelian randomisation study, genetic variants 
in PCSK9, used as a proxy for pharmacological inhibition 
of PCSK9, were associated with lower LDL cholesterol 
concentration and increased risk of type 2 diabetes. The 
same variants were also associated with higher fasting 
glucose, bodyweight, and waist-to-hip ratio, and with 
directionally concordant but non-signifi cant associations 
for BMI and HbA1c and a seemingly neutral association 
for fasting insulin. These results are in agreement with 
previous fi ndings for variants in the HMGCR gene 
encoding the target of statin drugs, with statins modestly 
increasing bodyweight and the risk of type 2 diabetes.3

When scaled to 1 mmol/L lower LDL cholesterol, the 
risk for type 2 diabetes based on HMGCR variants13 was 
an OR of 1·39 (95% CI 1·12 to 1·73), similar to the 
corresponding scaled estimate for this PCSK9 GS (1·29, 
1·11 to 1·50), and similar to an estimate based on SNPs 
aff ecting LDL cholesterol selected from throughout the 
genome (1·27, 1·14 to 1·41).5 However, eff ect estimates 
obtained from mendelian randomisation studies proxy 
lifetime exposure to natural genetic variation, and might 
therefore not directly translate to the size of eff ect of any 
corresponding pharmacological treatment introduced 
much later in life and thus for a shorter duration of 
time.30 For example, in a meta-analysis of randomised 
controlled trials of statin treatment,31 the OR for type 2 
diabetes was 1·12 (95% CI 1·06 to 1·18).

In the case of statins, the treatment benefi t in terms of 
CHD risk reduction greatly outweighs any potential 
adverse eff ect on risk of type 2 diabetes, partly because 
the size of the risk reduction in CHD is greater than the 
risk increase in type 2 diabetes, and partly because the 
absolute risk of CHD in primary prevention populations 
eligible for statin treatment is greater than the absolute 
risk of type 2 diabetes.32 A similarly precise risk 
assessment for PCSK9 inhibitors awaits results from 
larger and longer-term randomised trials. In a recent 
pooled analysis,33 researchers reported that treatment 
with alirocumab was associated with an OR for type 2 
diabetes of 0·89 (95% CI 0·62 to 1·28) compared with 
placebo, based on 133 type 2 diabetes events.

Variants that aff ect circulating LDL cholesterol have 
been reported previously to aff ect the probability of being 

Figure 1: Association of genetic variants in PCSK9 with circulating LDL 
cholesterol concentration
Eff ect estimates are presented as mean diff erence in LDL cholesterol (mmol/L) 
per LDL cholesterol-lowering allele, with 95% CIs. Results are pooled by use of a 
fi xed-eff ect model. The size of the black dots representing the point estimates is 
proportional to the inverse of the variance. Note that results from individual 
participant data are supplemented by repository data from the Global Lipids 
Genetics Consortium.
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prescribed a lipid-lowering drug.34 We were unable to 
account for this eff ect in the analysis because prescription 
data for these treatments were often not available, and 
when they were recorded they were only available for a 
single follow-up point. For lipid-lowering treatments, 
one record of treatment does not properly refl ect the 
time-varying therapy received, and adjusting for only a 
single record when in fact treatment varies over follow-
up might increase bias.35 Typically, diabetes drug 
treatments are much less variable over time and 
correction for this treatment might seem advisable; 
however, because of the strong correlation between 
history of type 2 diabetes and use of type 2 diabetes-
related drugs, any correction for the latter would 
essentially correct for prevalent type 2 diabetes as well. 
Importantly, any eff ect of lipid-lowering drug therapy 
would attenuate rather than infl ate any associations.

We have previously reported examples of common 
variants in genes encoding a protein drug target 
mimicking the on-target eff ects of pharmacological 
interventions on biomarkers and disease outcomes in 

type, direction, and relative size.3,36,37 However, such 
analyses cannot predict off -target eff ects of treatments. 
We refer to on-target eff ects as those that are due to a 
drug eff ect on the intended target (in this case PCSK9) 
and off -target eff ects as those that might occur because of 
the drug also binding to an unintended target (in this 
case, any target other than PCSK9). Although monoclonal 
antibody therapeutics are often highly specifi c, perhaps 
more so than small molecule therapeutics, they retain 
the potential for off -target eff ects. Hence, in the presence 
of off -target eff ects, results from ongoing randomised 
controlled trials could diff er from the genetic associations 
reported here.

Our main fi ndings are based on four PCSK9 SNPs in 
combination and scaled to 1 mmol/L lower LDL 
cholesterol. This approach assumes additive eff ects across 
the SNPs, an assumption that held well in sensitivity 
analyses. A potentially unobserved non-additive eff ect 
might explain why we identifi ed a genetic association with 
fasting glucose and a concordant (although non-
signifi cant) association with HbA1c, whereas fasting 

Figure 2: Association of genetic variants in PCSK9 with glycaemic and anthropometric biomarkers
Eff ect estimates are presented as mean diff erence with 95% CIs. Associations were scaled to a 1 mmol/L reduction in LDL cholesterol. SNP-specifi c results are pooled by use of a fi xed-eff ect model; 
weighted gene-centric score (GS) models combining all four SNP-specifi c estimates are presented as fi xed-eff ect and random-eff ects estimates. The size of the black dots representing the point 
estimates is proportional to the inverse of the variance. Between-SNP heterogeneity was measured as a two-sided Q-test (χ²) and an I2 with one-sided 97·5% CI. Note that results from individual 
participant data are supplemented by repository data from the Global Lipids Genetics Consortium, the Meta-Analyses of Glucose and Insulin-related traits Consortium, and the Genetic Investigation of 
Anthropometric Traits consortium. 
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Figure 3: Association of genetic variants in PCSK9 with risk of type 2 diabetes, individually (A) and as weighted gene-centric score (B)
Eff ect estimates are presented as odds ratios (ORs) for the incidence or prevalence of type 2 diabetes, with 95% CIs. Associations were scaled to a 1 mmol/L reduction 
in LDL cholesterol. SNP-specifi c results are pooled by use of a fi xed-eff ect model; weighted gene-centric score (GS) models combining all four SNP-specifi c estimates 
are presented as fi xed-eff ect and random-eff ects estimates. The size of the black dots representing the point estimates is proportional to the inverse of the variance. 
Between-SNP heterogeneity was measured as a two-sided Q-test (χ²) and an I2 with one-sided 97·5% CI. Results from individual participant data are supplemented by 
repository data from the Diabetes Genetics Replication and Meta-analysis consortium.
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insulin seemed unaff ected. Confl icting evidence exists 
about a possible role of PCSK9 and PCSK9 monoclonal 
antibodies in disruption of pancreatic islet function.38,39 
Although concordant with fasting glucose, the HbA1c 
association was non-signifi cant in the collected data, 
which might be related to the large amount of hetero-
geneity between the four SNPs (upper-bound I² 72%). 
Interestingly, the association of the PCSK9 GS with BMI 
was smaller than that with bodyweight, which might be 
(partially) explained by a slightly greater average height 
among individuals with PCSK9 variants associated with 
lower LDL cholesterol concentrations. A further potential 
reason for the slight discrepancy between the BMI and 
bodyweight associations could be the greater hetero-
geneity in the associations of PCSK9 SNPs with BMI than 
with weight. Notably, the GS eff ect estimates were often 
driven by a large eff ect of SNP rs11591147; as our dose-
response analysis shows (fi gure 4), the larger infl uence of 
this SNP appropriately refl ects the proportionally larger 
LDL cholesterol eff ect of this SNP. Finally, we did not have 
access to measures of PCSK9 concentration in this 
analysis, but others40 have shown associations between 
common and rare PCSK9 alleles (including some of 
the same SNPs used here) and circulating PCSK9 
concentrations.

Setting aside associations with glycaemia and weight, 
risk of type 2 diabetes could also be increased because 
lifelong exposure to genetic variation in PCSK9 might 
reduce mortality, making it conceivable that individuals 
with these variants survive longer and hence have more 
time to develop type 2 diabetes. However, whether 
PCSK9 genotype reduces mortality has not be 
conclusively shown.8,41 Irrespective of the nature of the 
PCSK9 association with type 2 diabetes, large randomised 
trials should determine whether this relation also holds 
for PCSK9 monoclonal antibodies.

In a recent study,13 investigators used a single SNP in 
PCSK9 and also reported evidence of an association with 
type 2 diabetes (OR 1·19, 95% CI 1·02 to 1·38; per 
1 mmol/L reduction in LDL cholesterol). In the present 
study, we incorporated data from four SNPs, instead of a 
single SNP, in a PCSK9 gene score with participant data 
from 50 studies supplemented by large genetic consortia 
and are able to confi rm their results, and also show this 
increase in type 2 diabetes risk is likely to be related to 
PCSK9-related increases in bodyweight and glucose. 
Previous studies of LDL cholesterol lowering HMGCR3 
and NPC1L113 variants (encoding pharmacological targets 
of statins and ezetimibe, respectively) and more widely 
on LDL cholesterol-lowering variants from multiple 
GWAS-associated loci,5 as well as analyses of patients 
with monogenic hypercholesterolaemia,6 have provided 
evidence of a link between LDL cholesterol and type 2 
diabetes, compatible with the fi ndings from the present 
study. However, it is far from certain that all LDL 
cholesterol-lowering interventions will increase risk of 
type 2 diabetes, as not all share the same mechanism of 

action. The major site of both statins and PCSK9 
inhibitors is thought to be the liver, through increased 
cellular membrane expression of the LDL receptor. The 
liver is also the site of action of the investigational 
apolipoprotein B antisense oligonucleotide mipomersen, 
whereas ezetimibe, the other licensed LDL cholesterol 
lowering drug, acts in the intestine to limit LDL 
cholesterol absorption. A potential unifying mechanism 
might be pancreatic β cell LDL receptor upregulation, 
increased lipid accumulation, and β cell dysfunction,6 but 
this suggestion will need to be tested experimentally.

In conclusion, genetic variants in PCSK9 that associate 
with lower concentrations of LDL cholesterol are also 
associated with a modestly higher risk of type 2 diabetes 
and with associated diff erences in measures of glycaemia 
and bodyweight. Investigators of ongoing and future 
randomised controlled trials of PCSK9 inhibitors should 
carefully monitor changes in metabolic markers, 
including bodyweight and glycaemia, and the incidence 
of type 2 diabetes in study participants. Genetic studies 
of the type used here could be more widely used to 
interrogate the safety and effi  cacy of novel drug targets.
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