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Elevated prevalence of Helicobacter 
species and virulence factors in 
opisthorchiasis and associated 
hepatobiliary disease
Raksawan Deenonpoe1,2,†, Eimorn Mairiang3, Pisaln Mairiang4, Chawalit Pairojkul2, 
Yaovalux Chamgramol2, Gabriel Rinaldi5,‡, Alex Loukas6, Paul J. Brindley5 & Banchob Sripa1,2

Recent reports suggest that Opisthorchis viverrini serves as a reservoir of Helicobacter and implicate 
Helicobacter in pathogenesis of opisthorchiasis-associated cholangiocarcinoma (CCA). Here, 553 age-
sex matched cases and controls, 293 and 260 positive and negative for liver fluke O. viverrini eggs, of 
residents in Northeastern Thailand were investigated for associations among infection with liver fluke, 
Helicobacter and hepatobiliary fibrosis. The prevalence of H. pylori infection was higher in O. viverrini-
infected than uninfected participants. H. pylori bacterial load correlated positively with intensity of  
O. viverrini infection, and participants with opisthorchiasis exhibited higher frequency of virulent  
cagA-positive H. pylori than those free of fluke infection. Genotyping of cagA from feces of both infected 
and uninfected participants revealed that the AB genotype accounted for 78% and Western type 22%. 
Participants infected with O. viverrini exhibited higher prevalence of typical Western type (EPIYA 
ABC) and variant AB’C type (EPIYT B) CagA. Multivariate analyses among H. pylori virulence genes and 
severity of hepatobiliary disease revealed positive correlations between biliary periductal fibrosis during 
opisthorchiasis and CagA and CagA with CagA multimerization (CM) sequence-positive H. pylori. These 
findings support the hypothesis that H. pylori contributes to the pathogenesis of chronic opisthorchiasis 
and specifically to opisthorchiasis-associated CCA.

Infection with the fish-borne liver fluke Opisthorchis viverrini is endemic in Southeast Asia including regions of 
the Lao People’s Democratic Republic, Thailand, Cambodia and Vietnam1–3. Opisthorchiasis is associated with 
hepatobiliary morbidity including chronic cholangitis, cholelithiasis, periductal fibrosis and bile duct cancer, or 
cholangiocarcinoma (CCA)4–7. Khon Kaen province in Northeast Thailand has reported the highest incidence of 
CCA in the world, greater than 100 cases per 100,000 residents8. Chronic inflammation in response to metabolites 
and growth factors released by this parasitic worm and related phenomena are implicated in the pathogenesis of 
liver fluke infection-associated hepatobiliary diseases7,9–12. However, the biliary morbidity in the setting of opist-
horchiasis may not be solely linked with liver fluke infection; other factors including carriage of Helicobacter and 
other microbiome changes within the biliary tract might participate13.

More than 30 species of Helicobacter have been described14 and H. pylori was the first bacterial pathogen 
confirmed to cause gastric disease including peptic ulcer, gastric lymphoma and gastric adenocarcinoma15–19. On 
the other hand, carriage of H. pylori occurs in at least half the human population with transmission from mother 
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to child and other routes. Indeed the human-H. pylori association likely is at least 100,000 years old20, an asso-
ciation that appears to be beneficial in early life, including contributions to a healthy microbiome and reduced 
early-onset asthma21,22. Infection with species of Helicobacter has been implicated in other malignant and benign 
diseases of the biliary tract23–28. Virulence factors of H. pylori including cytotoxin-associated gene A (cagA), cagE 
and vacuolating cytotoxin A (vacA) participate in the pathogenesis of these conditions29. The related species  
H. hepaticus and H. bilis also associate with hepatobiliary diseases30–32.

Opisthorchiasis may enhance colonization of the biliary tree by species of Helicobacter in like fashion to other 
changes in the biliary microbiome33. The influence of opisthorchiasis on cholestasis as a consequence of the liver 
fluke migration and establishment within the bile ducts provide explanations for bacterial colonization leading 
to bacterial cholangitis34. In addition, the migration of the flukes themselves from the external environmental 
through the alimentary tract and into the biliary tract might convey bacterial passengers, both on the external 
surface of the trematode and within the gut of the parasite35–38.

We recently reported, in a hamster model of liver fluke infection-induced biliary disease, higher prevalence 
and intensity of co-infection with H. pylori and H. bilis in O. viverrini-infected compared to uninfected hamsters, 
suggesting that this liver fluke serves as a reservoir for H. pylori37. Here we undertook a human study with more 
than 500 residents in villages of four provinces of northeastern Thailand endemic for opisthorchiasis3. Liver fluke 
infection was associated with a higher frequency of cagA-positive H. pylori. Moreover, the presence of H. pylori 
cagA gene as well as its alleles was associated with increased morbidity, specifically periductal fibrosis of the 
biliary tree. These findings support the hypothesis that H. pylori contributes to the pathogenesis of chronic opist-
horchiasis and specifically to opisthorchiasis-associated cholangiocarcinoma.

Results
Liver fluke burden positively correlated with Helicobacter infection. The distribution of infection 
with Helicobacter spp. in regions endemic for opisthorchiasis was established according to age, gender, burden of 
liver fluke, as diagnosed fecal EPG and ultrasonography score for hepatobiliary disease including fibrosis. A total 
of 553 residents from four provinces of Thailand participated in the study; samples of feces from 260 participants 
were egg negative whereas 293 were positive for eggs of O. viverrini (Table 1).

In addition to infection with O. viverrini, analysis of feces by PCR was used to investigate the presence of 
Helicobacter spp. A total of 267 participants of four Isaan provinces of Thailand were positive for H. pylori, 99 for  
H. bilis and 18 for H. hepaticus. Gender did not correlate with presence of species of Helicobacter, P > 0·05 
(Table 1).

The prevalence of infection with H. pylori assigned as ureA gene-positive by stool PCR was 64·6% vs. 29·6% in 
O. viverrini-infected and uninfected participants, respectively; P <  0·01. The prevalence of infection with H. bilis, 
but not H. hepaticus, was also significantly higher in O. viverrini-infected vs. uninfected individuals, 29·3 vs 5·4%, 
P <  0·01. In addition, mixed H. pylori/H. bilis infection was significantly higher during infection with O. viverrini: 
26·9% compared to participants who were stool-negative for O. viverrini, 4·2%, P <  0·01 (Fig. 1).

Characteristic
Negative for  
O. viverrini

Positive for  
O. viverrini

H. pylori + ve 
(n = 267)

H. bilis + ve 
(n = 99)

H. hepaticus + ve 
(n = 18)

Age in years 
(mean ±  SD) 49 ±  9·6 49·6 ±  9·4 48·7 ±  10·4 49 ±  10·3 53 ±  10

Gender

Female 135/260 (51·9%) 153/293 (52·2%) 129 (48·3%) 48 (48%) 10/18 (55·6%)

Male 125/260 (48·1%) 140/293 (47·8%) 138 (51·7%) 52 (52%) 8/18 (44·5%)

P 0·38 0·28 0·44 0·57 0·51

Table 1.  Gender and age of participants and status of infection with Opisthorchis viverrini and species of 
Helicobacter.

Figure 1. Prevalence of Helicobacter species, H. pylori, H. bilis, H. hepaticus and mixed H. pylori and  
H. bilis in participants who were either uninfected or infected with Opisthorchis viverrini. 
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Increased prevalence and load of H. pylori and H. bilis during opisthorchiasis. The mass of H. 
pylori in one-gram of feces correlated positively with the intensity of liver fluke infection (one-way ANOVA, 
P <  0·001) (Supplementary Figure S1). In general, participants with higher intensity infection (> 1,000 EPG) had 
~15 times the total cell counts of H. pylori compared those who were negative for infection with O. viverrini 
(EPG =  0). Load of H. pylori increased according to intensity of liver fluke infection; P <  0·001 for each sequential 
comparison (Supplementary Figure S1).

The positive relationship between Helicobacter and O. viverrini infection was substantiated by positive corre-
lations between 16 S rRNA and intensity of liver fluke infection (χ2 =  0·06), ureA (H. pylori) and intensity of liver 
fluke infection (χ2 trend <  0·001), cagA and intensity of liver fluke infection (χ2 trend <  0·001), cagE and intensity 
of liver fluke infection (χ2 trend <  0·001), and H. bilis and intensity of liver fluke infection (χ2 trend <  0·001); 
but not for H. hepaticus. Generally, the presence of H. pylori and H. bilis was far higher during elevated levels of 
infection with O. viverrini than during low intensity infections or in the uninfected participants. Table 2 details 
the findings.

Helicobacter spp. associated with grade of biliary peridcutal fibrosis. The presence of cagA was 
associated with an elevated risk of both grade 2 and grade 3 biliary periductal fibrosis. The relative risk ratio 
(RRR) for grade 2 versus grade 1 or 0 hepatobiliary disease was 3·38 (95% C1·51–7·58, P =  0·003) comparing 
individuals with and without cagA, in the model adjusted for age and sex (Table 3). The analogous RRR was 9·15 
for grade 3 vs. grade 1 or 0 hepatobiliary disease (95% CI 1·74–47·97, P =  0·009) (Table 3). After confirming the 
proportional odds assumption, we determined and overall odds ratio of 4·24 for each subsequent grade of hepa-
tobiliary disease comparing individuals with and without cagA, controlling for age and sex; P <  0·001.

EPG O. viverrini 0 1–100 101–500 501–1,000 >1,000

P for trendLevel of infection intensity (n = 260) (193) (73) (12) (15)

16 S rRNA 125 (48·1%) 135 (69·6%) 62 (84·9%) 11 (91·7%) 15 (100%)

OR 1 2·51 6·09 11·88 NA

95% CI — 1·69–3·72 3·06–12·09 1·51–93·36 NA 0·06

P — < 0·001 < 0·001 0·003 < 0·001

ureA H. pylori† 77 (29·6%) 110 (57%) 57 (78·1%) 10 (83·3%) 13 (86·7%) < 0·001

OR 1 3·14 8·47 11·88 15·45

95% CI — 2·13–4·65 4·58–15·66 2·54–55·51 3·40–70·09

P — < 0·001 < 0·001 < 0·001 < 0·001

H. bilis† 14 (5·4%) 45 (23·3%) 23 (31·5%) 7 (58·3%) 10 (66·7%) < 0·001

OR 1 5·34 2·36 24·6 35·14

95% CI — 2·84–10·07 1·18–4·72 6·92–87·39 10·57–116·80

P 1 < 0·001 0·02 < 0·001 < 0·001

H. hepaticus 5 (1·9%) 3 (1·6%) 5 (6·8%) 2 (16·7%) 3 (20%) P =  0·08

OR 1 0·81 3·75 10·2 12·75

95% CI — 0·19–3·41 1·06–13·33 1·76–59·13 2·72–59·71

P — 0·53 0.04 0·03 0·006

H. pylori +  H. bilis† 11 (4·2%) 40 (20·7%) 23 (31·5%) 6 (50%) 10 (66·7%) < 0·001

OR 1 5·92 10·41 22·63 45·27

95% CI — 2·95–11·88 4·77–22·71 6·27–81·63 13·21–155·16

P — < 0·001 < 0·001 < 0·001 < 0·001

cagA† 13 (5·0%) 21 (10·9%) 26 (35·6%) 6 (50%) 9 (60%) < 0·001

OR 1 2·32 10·51 19·0 28·5

95% CI — 1·13–4·76 5·04–21·92 15·38–67·09 8·81–92·19

P — 0·02 < 0·001 < 0·001 < 0·001

cagE† 7 (2·7%) 13 (6·7%) 16 (21·9%) 3 (25%) 5 (33%) < 0·001

OR 1 2·61 10·15 12·05 18·07

95% CI — 1·02–6·67 3·99–25·80 2·67–54·38 4·87–66·9

P — 0·04 < 0·001 0·007 < 0·001

cagA +  cagE† 1 (0·4%) 9 (4·7%) 12 (16·4%) 3 (25%) 5 (33%) < 0·001

OR 1 12·7 50·95 86·33 129·5

95% CI — 1·59–100·86 6·5–399·37 8·16–913·23 13·81–1214·18

P — 0·003 < 0·001 < 0·001 < 0·001

Table 2.  Prevalence of Helicobacter spp. and virulence factors in study participants, presented for 
each of five levels of intensity of infection with Opisthorchis viverrini. P = P-value, OR =  Odds Ratio, 
CI =  Confidence Interval. The reference group for the analysis and to estimate P-values and RRR is the 
uninfected i.e. group, EPG O. viverrini =  0, where the OR is 1.
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Also, a strong, positive association was evident between the presence of mixed cagA and cagE and marked 
hepatobiliary disease; RRR =  4·96 for grade 3 vs. grade 1 or 0, 95% CI =  1·50–16·34, P =  0·009. Association was 
not evident between positivity for mixed cagA and cagE and grade 2-biliary periductal fibrosis. Associations 
between the presence of H. pylori, H. bilis, H. hepaticus alone or in combination with hepatobiliary disease were 
not significant

cagA genotypes associated with biliary periductal fibrosis. In order to categorize the cagA geno-
types, sequence analysis was undertaken on cagA-positive samples. Seventy-seven cagA strains were Western 
CagA type and unclassified type, AB type. The predominant CagA types were EPIYA-AB type, EPIYA-ABC type 
and EPIYA-AB’C type (B’ =  EPIYT)39. Participants who were not infected with O. viverrini showed higher fre-
quency of EPIYA-AB type than did the infected participants, 86·7% vs. 75·8%, respectively (Table 4). On the other 
hand, O. viverrini-infected participants carried a marginally higher frequency of EPYA-ABC type (8·1 vs. 6·7%) 
and twice as high frequency of EPIYA-AB’C (16·1 vs. 6·7%) (Table 4). In overview, the Western type CagA with 
EPIYA-AB’C showed higher frequency in the liver fluke-infected cases.

In addition, some cagA genotypes included the CagA multimerization (CM) motif. CM is comprised of 16 
amino acids, FPLKRYDKFDDLSKVG or FPLKRHDKFDDLSKVG and is highly conserved for Western and 
Eastern CagA40,41. Whereas the prevalence of CagA with CM in EPIYA-AB type was 30·8–36·2% in liver fluke 
infection-negative and -positive participants, respectively, CM was present in all (100%) of the EPIYA-ABC and 
EPIYA-AB’C (EPIYT) genotypes detected (Table 5).

Concerning associations between CagA types and grade of biliary periductal fibrosis, significant associations 
between AB’C type versus AB type and both grade 2 (RRR =  23·12, 95% CI =  2·31–23·50, P =  0·007, and grade 

Helicobacter Grade 0 + 1 (n = 241) Grade + 2 (n = 36) Grade + 3 (n = 16)

16 S rRNA Helicobacter 
species 179 (74·3%) 30 (83·3%) 13 (81·3%)

RRR 1 1·62 1·63

95% CI — 0·64–4·11 0·43–6·24

P — 0·307 0·476

ureA H. pylori 153 (90%) 28 (90·32%) 8 (100%)

RRR 1 1·03 NA

95% CI — 0·28–3·75 NA

P — 0·969 0·991

cagA 39 (25·32%) 16 (53·33%) 6 (75%)

RRR 1 3·38 9·15

95% CI — 1·51–7·58 1·75–47·97

P — 0·003 0·009

cagE 26 (61·9%) 7 (43·75%) 5 (83·33%)

RRR 1 0·44 3·30

95% CI — 0·13–1·52 0·33–32·89

P — 0·195 0·311

cagA +  cagE 21 (8·71%) 5 (13·89%) 5 (31·25%)

RRR 1 1·69 4·96

95% CI — 0·59–4·83 1·50–16·35

P — 0·331 0·009

H. bilis 64 (35·75%) 14 (45·16%) 7 (53·85%)

RRR 1 1·48 2·15

95% CI — 0·68–3·21 0·68–6·75

P — 0·319 0·191

H. hepaticus 12 (7·23%) 2 (7·41%) 1 (9·09%)

RRR 1 1·20 1·09

95% CI — 0·25–5·82 0·12–9·70

P — 0·823 0·937

H. pylori +  H. bilis 59 (24·38%) 14 (38·89%) 6 (37·50%)

RRR 1 1·95 1·96

95% CI — 0·93–4·06 0·66–5·79

P — 0·076 0·223

Table 3.  Prevalence of Helicobacter species and virulence genes during infection with Opisthorchis 
viverrini, and relationships with status (grade) of hepatobiliary disease as established by abdominal 
ultrasonography for degree of periportal echoes. Bold type letters denote significant differences. NA =  not 
applicable, RRR =  relative risk ratio, P =  P-value, CI =  Confidence Interval. The reference group for RRR is 
Grade 0 +  1 as grade 0 is baseline negative periductal fibrosis. Some participants were grade 1.
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3 (RRR =  24·36, 95% CI =  1·71–347·09, P =  0·018) were apparent (Table 6). There was no association between 
ABC type versus AB type and hepatobiliary disease. In addition, regarding CagA types with or without the CM 
sequence, significant association between CagA with CM sequence and grade 2 was evident (RRR =  30·74, 95% 
CI =  5·25–180·08, P <  0·001). After confirming the proportional odds assumption, we determined an overall odds 
ratio of 30·8 for each subsequent grade of biliary periductal fibrosis comparing individuals carrying CagA with 
and without the CM sequence, and controlling for age and sex (P <  0·001). Similarly, after grouping the degree 
of hepatobiliary disease as either negative (grades 0 +  1) or positive (grades 2 +  3), as described42,43, a signifi-
cant association was apparent between positive for hepatobiliary disease and CagA with CM sequence with an 
odds ratio of 38·21 (95% CI =  6·85–213·03, P <  0·001). On the other hand, the wide range for CI in this analysis 
reflected the limited number of cases in the dataset due to this uncommon genotype and, in turn, the limited 
power of this analysis.

Phylogram analysis of CagA EPIYA motifs revealed novel genotypes during liver fluke infection.  
The phylogenetic relationships of CagA genotypes among 75 samples from this cohort of participants from north-
eastern Thailand, specifically 13 negative and 62 positive for infection with O. viverrini, were compared with two 
Western cagA and two Eastern cagA reference strains detected in gastro-duodenal disease in Thailand, and three 
CagA sequences isolated from bile from Thai cholangiocarcinoma (CCA) cases, as reported33,44. The relation-
ships were determined using maximum parsimony. Representative cagA-encoded sequences of our Thai cohort 
mainly grouped into main clusters: (1) Unclassified type, EPIYA AB without CM sequence, e.g. samples FPNS105, 
FNK3; (2) Unclassified type, EPIYA AB with CM sequence, e.g. FNK9, FNK10; (3) ‘Western-like’ type EPIYA 
ABC, e.g. FPK3, FPNS5; and (4) ‘Western-like’ type EPIYA AB’C, e.g. FPK4, FPNS8. By contrast, the sequences 

Genotype
Negative for 

 O. viverrini (%)
Positive for  

O. viverrini (%)

EPIYA-AB TYPE* 13/15 (86·7) 47/62 (75·8)

EPIYA-ABC TYPE 1/15 (6·7) 5/62 (8·1)

EPIYA-AB’C TYPE 
(B’ =  EPIYT) 1/15 (6·7) 10/62 (16·1)

Total 15 62

Table 4.  Associations among genotypes of CagA of Helicobacter pylori and infection status with 
Opisthorchis viverrini.

Genotype
Negative for  

O. viverrini (%)
Positive for  

O. viverrini (%) Total (%)

EPIYA-AB TYPE 4/13 (30·8) 17/47 (36·2) 21/60 (35)

EPIYA-ABC 1/1 (100) 5/5 (100) 6/6 (100)

EPIYA-AB’C TYPE 
(B’ =  EPIYT)† 1/1 (100) 10/10 (100) 11/11 (100)

Table 5.  Associations among cagA genotypes bearing the CagA multimerization motif (CM) and infection 
with Opisthorchis viverrini.

Helicobacter
Grade 0 + 1 

n = 242
Grade + 2 

n = 36
Grade + 3 

n = 16

cagA genotype 40 (16·6%) 12 (40%) 3 (23·1%)

RRR 1 1·27* 2·31*

23·12** 24·36**

95% CI — 0·21–7·61 0

2·32–230·5 1·71–347·09

P — 0·794* 0·994*

0·007** 0·018**

cagA CM 
sequence 11 (26·8%) 16 (88·9%) 6 (100%)

RRR 1 30·74 1·41

95% CI — 5·25–180·08 0

P — < 0·001 0·99

Table 6.  CagA genotypes in participants positive for liver fluke infection, and relationships with status 
(grade) of biliary periductal fibrosis as established by abdominal ultrasonography. *ABC type; **AB’C type; 
RRR, relative risk ratio; P =  P-value; CI, confidence interval. Boldface type highlights significant differences.
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of Western, Eastern and CCA cases grouped together, generally divergent from sequences in the present cohort 
(Fig. 2). The association between the ‘Western like’ genotypes, including EPIYA AB’C, and the hepatobiliary 
pathology is evident for the sequences analyzed in the phylogenetic tree shown in Fig. 2A. Figure 2B depicts 
representative sequences that belong to the main clusters of CagA described above, indicating the EPIYA motives 
and CM sequences. Whereas the prevalence of cagA-encoding the CM sequence in EPIYA-AB type was 35%, CM 
was present in all (100%) of the EPIYA-ABC and EPIYA-AB’C (EPIYT) genotypes characterized here (Table 5).

Discussion
County-wide sampling indicates a prevalence of carriage of H. pylori by asymptomatic Thais of ~44%, based on 
fecal examination41, with marginally higher sero-prevalence45. This report describes an association between infec-
tion with the fish-borne liver fluke O. viverrini and carriage of species of Helicobacter in opisthorchiasis-endemic 
northeastern Thailand. H. pylori represented the major species of Helicobacter but, in addition, H. bilis and mixed 
H. pylori/H. bilis infection occurred more often during active opisthorchiasis than in uninfected or lightly infected 
persons, in turn confirming earlier reports46,47. Mixed infection with H. pylori and H. bilis may be associated with 
more severe hepatobiliary disease. Prevalence of H. pylori and H. bilis also was elevated in participants who were 
heavily infected with O. viverrini. Opisthorchiasis appeared to exacerbate severity of H. pylori/H. bilis-associated 
disease in like fashion to infections in hamsters35,37, confirming an association between intensity of H. pylori/H. 
bilis infection and presence of the liver fluke.

Prevalence of both cagA-and cagE-positive H. pylori positively correlated with increasing levels of liver fluke 
infection, and prevalence of cagA-positive strains of H. pylori correlated positively with increased biliary periductal 
fibrosis as diagnosed by abdominal ultrasound. The presence of cagA- and cagE-positive H. pylori strains associ-
ated with severe fibrosis, findings that suggested that H. pylori, and in particular cagA-positive strains, reached the 
biliary tract, and induced hepatic inflammation that exacerbated periductal fibrosis. Discrete genotypes of cagA 
associate with severity of gastrointestinal diseases48. Unclassified type (AB type) represented the major cagA gen-
otype in this study, in contrast with earlier reports indicating that AB represents only a minority genotype carried 
by otherwise healthy Thais41,49. Here, 22% of the cagA-encoded sequences were Western type (ABC type) with 

Figure 2. Phylogenetic relationship among partial CagA sequences amplified from representative 
samples. Panel A. Bootstrap consensus phylogenetic tree inferred from 500 replicates revealing four major 
clusters; EPIYA AB type without CagA multimerization domain (CM) (blue); EPIYA AB type containing CM 
domain (red); EPIYA ABC type ‘Western-like’ (green), and EPIYA AB’C type ‘Western-like’ (purple). Two 
Western CagA (W) and two Eastern CagA (E) reference strains detected in gastro-duodenal disease in the 
Thailand cohorts, and three CagA sequences isolated from bile from Thai cholangiocarcinoma (CCA) cases42 
were included (black). Branches corresponding to partitions reproduced in less than 50% bootstrap replicates 
were collapsed; bootstrap numbers higher than 60% are shown. Hepatobiliary disease status and O. viverrini 
infection status are shown for each sample following the indicated color code, *for egg-negative O. viverrini 
samples no ultrasound study was performed, EPG: eggs per gram of feces. Panel B. Multiple sequence alignment 
of representative partial CagA sequences belonging to four major clusters comprising the phylogram. Two 
representative sequences of each cluster are color-squared following the same color code as in Panel A. EPIYA 
domains are indicated as A, B and C, and CagA multimerization domains (CM) are highlighted (yellow).
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no East Asian type (ABD type), lower than reported for liver fluke infection-induced CCA44. A meta-analysis 
of cagA status in Southeast Asia has revealed 51% vs. 49% of Western type and East Asian type, respec-
tively48. There was a higher prevalence of typical Western type (EPIYA ABC) and variant AB’C type (EPIYT B)  
cagA genotypes in O. viverrini-infected compared to uninfected participants.

The present findings also demonstrated that polymorphisms in cagA of H. pylori circulate among Thais with 
opisthorchiasis. For the ABC and AB’C type CagA, there was a higher frequency of the deduced 16-amino-acid 
CagA multimerization (CM) types during liver fluke infection. CM is conserved between Western CagA and East 
Asian CagA50, although Western type CagA invariably exhibits the CM sequence39. The CM sequence represents 
a membrane-targeting signal50, which interacts with PAR1b, thus inducing junctional and polarity defects29,50,51. 
Notably, the PCR primers employed here spanned the entire 3′ -region of cagA encoding the multimers of the 
tyrosine phosphorylation motifs52,53. Structural polymorphism in the CM reflects the degree of virulence of 
CagA54. Here infection with any CagA type H. pylori bearing CM sequences was associated with severe hepa-
tobiliary disease, with an odds ratio up as high as 38. This characterization of sequences with both EPIYA-C/D 
motif and CM sequence suggested increased phosphorylation motifs capable of provoking pronounced disease54. 
Phylogenetic analysis revealed four discrete clades, and all four differed from the from typical Western and East 
Asian CagA types including those associating with Western CCA sequences44. Although the Thai CagA sequences 
were separated from the pathogenic reference sequences, opisthorchiasis might be involved in the various novel 
types of CagA (with CM sequence), which associates with severe disease. Accordingly, we hypothesize that not 
only is the liver fluke O. viverrini a reservoir of Helicobacter but also a selector for pathogenic strains of this 
ɛ -proteobacterium. Given the elevated presence of H. pylori, and CagA including its polymorphisms with increas-
ing intensity of liver fluke infection and biliary tract fibrosis, these new variants may, at least partly, underlie 
progression of hepatobiliary disease in opisthorchiasis-endemic regions.

The International Agency for Research on Cancer of the World Health Organization classifies infection with 
the liver flukes O. viverrini and Clonorchis sinensis and with H. pylori as Group 1 carcinogens4. In northern and 
northeastern Thailand and Laos, infection with O. viverrini is the major risk for CCA4,8,55,56. Following initiation, 
oncogenesis appears to be promoted by cholestasis and chronic inflammation. Increased mutation rates of the 
tumor suppressor genes p53 and CDKN2A, and of genes encoding protein tyrosine phosphatases, SMAD4 and 
others sustain cholangio-carcinogenesis, with differences between CCA induced by opisthorchiasis compared 
to other risks factors57,58. As reviewed59, the release and interaction of interleukin-6, transforming growth factor 
beta, tumor necrosis factor alpha, and platelet-derived growth factor are pivotal to the proliferation of cholangio-
cytes, while evasion of apoptosis, autonomous proliferation, and angiogenesis sustain incipient neoplasia. In par-
allel, infection with cagA-positive H. pylori is the major risk for gastric adenocarcinoma and mucosa associated 
lymphoid tissue (MALT) lymphoma. Cellular changes following the injection of the CagA oncoprotein include 
epithelial to mesenchymal transition and the hummingbird phenotype60,61, along with genetic mutations in 
E-cadherin and epigenetic changes. Genome sequencing has identified driver mutations TP53, ARID1A, CDH1, 
MUC6, CTNNA2, GLI3, RNF43 and others in gastric cancer62. Loss of epithelial cadherin expression from CDH1 
alterations is a primary carcinogenetic incident. Cytogenetic abnormalities including the t(11; 18) (q21; q21) 
translocation are frequently acquired during H. pylori-associated gastric MALT lymphoma63.

The association between opisthorchiasis and the presence of H. pylori in feces was statistically significant. 
Nonetheless, direct evidence of a causal relationship where H. pylori and liver fluke infection jointly prime the 
pathogenesis of hepatobiliary disease including CCA has not been obtained. It is relevant to note the outcome of 
a recent study using a rodent model of human opisthorchiasis, which provides support for the association among 
O. viverrini, H. pylori and biliary periductal fibrosis37,64. Liver fluke-infected hamsters were treated with antibi-
otics and the anthelmintic, praziquantel. Quantitative PRC analysis of tissue and organs from the hamsters indi-
cated that the majority of the H. pylori emanated from the same sites as the liver flukes in the biliary tract given 
that antibiotics failed to reduce the load of H. pylori to the baseline achieved with dual treatment with antibiotics 
and praziquantel. H. pylori load in the stomach was unaffected. In addition, immunohistochemical approaches 
detected H. pylori within the gut of liver flukes recovered from the hamsters.

Hepatobiliary disorders caused by Helicobacter33,44,65 can resemble opisthorchiasis42,66. Chronic lesions 
ascribed to liver fluke infection, including cholangitis, biliary hyperplasia and metaplasia, periductal fibrosis and 
CCA, may be due in part to Helicobacter-associated hepatobiliary disease. H. pylori DNA has been isolated from 
tissues from CCA and from cholecystitis/cholelithiasis in regions endemic for opisthorchiasis33,44. Moreover, sero-
logical findings indicate infection with H. pylori in Thais at high risk for CCA65. An explanation for why infection 
with the liver fluke induces bile duct cancer10 might now be clearer – involvement by H. pylori and its virulence 
factors. The spiral bacilli of H. pylori attach to biliary cells, which internalize in similar fashion to their behavior 
on gastric epithelium29,67. Helicobacter likely passes from the stomach to the duodenum and enters the biliary 
tree through the duodenal papilla and ampulla of Vater40,67. How the microbe tolerates the neutral to alkaline pH 
of the small intestine and biliary tree remains unclear17. However, an association with the migrating liver flukes 
offers a plausible explanation: given that Helicobacter-like curved rods occur in the gut of O. viverrini37, and given 
that the micro-environment of the O. viverrini gut is acidic, the microbe might hitchhike within the migrating 
juvenile trematode. Intriguingly, glycoprotein gylcans expressed on the gut epithelium of O. viverrini68 resemble 
receptors of gastric epithelial cells to which H. pylori binds69. Helicobacter may have evolved a commensalism with 
O. viverrini, with conveyance into the biliary tract during the migration of the parasite following ingestion of the 
metacercaria with undercooked freshwater fish35,37.

Given the elevated prevalence of CCA in regions where infection with liver fluke prevails, and given the 
increasing evidence of linkage between carriage of Helicobacter during opisthorchiasis, these two biological car-
cinogens together may orchestrate the pathogenesis of opisthorchiasis and bile duct cancer. The association of 
Helicobacter and its virulence factors, together with chronic opisthorchiasis, may underlie biliary tract disease 
including CCA in liver fluke-endemic regions70. Whereas additional studies are needed to clarify this association, 
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at present detection of H. pylori in feces provides a non-invasive approach to investigate its association with bil-
iary tract disease during opisthorchiasis.

Materials and Methods
Ethics statement. The Institutional Human Ethics Committee of Khon Kaen University approved the study, 
approval number HE 551332. All methods were performed in accordance with the relevant guidelines and reg-
ulations of the committee. The participants provided written informed consent following discussion with the 
researchers that included information on fecal samples for laboratory analyses. All participants were adults; chil-
dren were not enrolled (Table 1).

Study participants. Participants were asked to refrain for up to 10 days from consumption of fatty foods,  
antacid medication, antibiotics, anti-parasitic agents, barium, mineral oil, bismuth, or non-absorbable 
anti-diarrheal agents. Patients with history of digestive-tract diseases (gastritis, gastric ulcer, cholecystitis, chol-
angitis, cholecystectomy, others) were excluded from the study. A total of 553 participants provided stool samples; 
260 were parasitologically negative for fecal eggs of O. viverrini and 293 were egg-positive for O. viverrini from 
age-sex matched residents of villages in four provinces of the opisthorchiasis-endemic Isaan region of northeast-
ern Thailand1,8,42,71. In particular, those enrolled included 273, 107, 93 and 80 people from the provinces of Khon 
Kaen, Roi-et, Mahasarakham and Kalasin, respectively (Supplementary Figure S2). The participants included 288 
females and 265 males, aged 30 to 70 years (Table 1).

Parasitological diagnosis of infection with the liver fluke Opisthorchis viverrini. Parasitological 
diagnosis of opisthorchiasis was accomplished using formalin-ethyl acetate concentration of one gram of feces, 
followed by light microscopy examination of the concentrate72. The method is suitable for diagnosis of O. viverrini 
eggs and widely employed for diagnosis of opisthorchiasis72. Thereafter, participants were grouped according to 
fecal egg count, i.e. intensity of infection into five categories: 1) EPG (eggs per gram of feces) =  0 [i.e. uninfected]; 
2) 1–100 EPG; 3) 101–500 EPG; 4) 501–1,000 EPG; and 5) > 1,000 EPG. There were 260, 193, 73, 12 and 15 par-
ticipants in these five categories, respectively (Table 2).

Detection by PCR of Helicobacter species and virulence genes. DNA was isolated from about one 
gram of feces, stored in 70% ethanol, using a QIAamp DNA Stool Mini Kit (Qiagen, Germany) with concen-
trations ranging from 50 to 500 ng/μ l, and total yields of 2 to 15 μ g. Subsequently, 50 ng DNA from the samples 
served as the template for PCR performed in a GeneAmp PCR system 9700, Applied Biosystems thermal cycler; 
the reaction mixture included 1x Gotaq Colorless Master Mix (Promega) containing 0·2 mM dNTP, 1·5 mM 
MgCl2, 1·25 U Tag DNA polymerase, with primers at 0·2 mM each. Supplementary Table S1 provides the gene 
specific primers for Helicobacter species, specifically for 16 S rRNA, ureA, cagA, cagE of H. pylori, and for H. bilis 
and H. hepaticus. Amplicons were sized by electrophoresis through 1·0% agarose, stained with ethidium bromide 
and visualized under UV light. The expected sizes of amplicons for the 16 S rRNA, ureA (H. pylori), H. bilis,  
H. hepaticus, cagA sequencing and cagE were 480, 350, 418, 405, 550–800, and 508 bp, respectively (Supplementary 
Figure S3).

Abdominal ultrasonography to visualize hepatobiliary fibrosis. Abdominal scans were performed 
using a mobile high-resolution ultrasound-imaging appliance (GE model LOGIQ Book XP), as described43,73. 
Hepatobiliary abnormalities including periductal fibrosis in liver parenchyma, gallbladder wall, gallbladder 
size, sludge, and suspected CCA (dilated intra or extrahepatic bile duct and/or liver mass) were graded and 
recorded34,42. Based on the ultrasonography, grading of periductal biliary fibrosis was assigned as follows: grade 
0 =  absence of periportal echo(s) from all segments of liver; grade 1 =  presence of periportal echo(s) in one seg-
ment of liver; grade 2 =  periportal echo(s) in two to three segments; grade 3 =  periportal echo(s) in more than 
three segments. Status of infection with liver fluke or presence of species of Helicobacter was not known by the 
radiologist during the abdominal ultrasonography.

Quantitative real-time PCR. Fecal samples from the H. pylori infected (conventional PCR ureA-positive)  
participants (n =  267) used in this study were assigned to one of five groups based on fecal EPG for O. viverrini  
(above): O. viverrini EPG =  0 (n =  77), EPG =  1–100 (n =  110), EPG =  101–500 (n =  57), EPG =  501–1,000 (n =  10)  
and EPG >  1,000 (n =  13). In addition, feces free of H. pylori were included as a negative control37. Presence of H. 
pylori was established and quantified by real time PCR using primers HpyF1: GGGTATTGAAGCGATGTTTCCT 
and HpyR1: GCTTTTTTGC-CTTCGTTGATAGT44. The quantitative real-time analysis targeted the 
species-specific gene ureA of H. pylori74. DNA samples were diluted to employ equivalent template concentra-
tions in the qPCR reactions that included 10 μ l SYBR master mix (Thermo Fisher), 1 μ l template-DNA, 0·5 μ l of 
each primer (625 nM), and 9 μ l nuclease-free water. PCR was performed in triplicate (technical triplicates) in a 
thermal cycler (Light Cycler 1·5, Roche), using initial denaturation at 95 °C for 9 min, followed by 40 cycles of 
95 °C, 15 s, 60 °C, 60 s for the annealing and elongation steps, respectively. A 10-fold serial dilution of H. pylori 
DNA was included to establish a standard curve, from 108 cells/ml to 101 cells/ml; bacterial cells were counted in 
a Thoma-counting-chamber, plated and incubated for subsequent extraction of DNA. E. coli DNA served as the 
negative control74.

Phylogenetic analysis of cagA gene partial sequences. To establish phylogenetic relationships among 
the H. pylori genotypes, 62 participants infected and 13 uninfected with O. viverrini were investigated. Partial 
sequences of cagA genes amplified by PCR were sequenced by the Sanger approach (First BASE Laboratories, 
Malaysia). In addition, sequences of Western-like CagA from four references were analyzed: Thailand (GenBank 
accession BAB8742775) Western, Thailand (BAB87428) Western, Thailand (BAB87429) eastern, and Thailand 
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(BAB87430) eastern. Partial, deduced amino acid sequences of CagA were searched for EPIYA motifs39,44 using 
the ExPASy-Translate software followed by multiple sequence alignment using ClustalW (Bioedit)76 with further 
editing using GeneDoc (http://www.nrbsc.org/gfx/genedoc/ebinet.htm). Evolutionary history was inferred using 
Neighbor-Joining77. A bootstrapped consensus tree inferred from 500 replicates was taken to represent the evolu-
tionary history of the taxa analyzed. Branches corresponding to partitions reproduced in less than 50% bootstrap 
replicates were collapsed. Evolutionary distances were computed using the JTT matrix-based method78 and the 
units represent the number of amino acid substitutions per site. The analysis of cagA included 82 deduced amino 
acid residues; positions containing gaps or missing data were eliminated, leaving 61 positions in the final dataset. 
Phylogenetic analyses were conducted with MEGA579.

Statistical analysis. Both univariate and multivariate analyses were employed. Participants were catego-
rized according to the intensity of infection with O. viverrini, i.e. EPG =  0, 1 to 100, 101 to 500, 501 to 1,000, and  
> 1,000. The findings are presented in a box and whisker plot, and means of total bacterial cell counts per gram 
of feces according to intensity of infection with O. viverrini were compared using a one-way analysis of variance 
(ANOVA) (post hoc test.
χ2 tests were performed to determine the relationship between intensity of infection with O. viverrini and 

prevalence of Helicobacter. Measures of Helicobacter infection included PCR-positivity for the presence of the 
16 S rRNA gene, ureA, cagA, cagA genotype, cagE, mixed cagA and cagE, H. bilis, H. hepaticus, and H. pylori +  H. 
hepaticus. χ2 tests for trend were used to investigate the effect of increasing level of liver fluke infection and each 
parameter of infection with species of Helicobacter.

Age and sex adjusted relative risk ratios (RRR) and 95% confidence intervals (CIs) for presence or absence of 
Helicobacter infection, and association with hepatobiliary disease were determined using age and sex adjusted 
multinomial logistic regression analyses. Ordinal logistic regression was performed to determine overall odds 
ratios for each model; these were only presented if the proportional odds assumption was met for a given mode. 
Statistical tests were two-sided, and were performed using IBM SPSS Statistics, IBM Corp., NY, 2 ×  2 Contingency 
Table online calculator, VassarStats, and STATA version 10, College Station, TX. P ≤  0·05 was considered statis-
tically significant.

References
1. Petney, T. N., Andrews, R. H., Saijuntha, W., Wenz-Mucke, A. & Sithithaworn, P. The zoonotic, fish-borne liver flukes Clonorchis 

sinensis, Opisthorchis felineus and Opisthorchis viverrini. Int J Parasitol 43, 1031–1046, doi: 10.1016/j.ijpara.2013.07.007 (2013).
2. Sripa, B., Kaewkes, S., Intapan, P. M., Maleewong, W. & Brindley, P. J. Food-borne trematodiases in Southeast Asia epidemiology, 

pathology, clinical manifestation and control. Adv Parasitol 72, 305–350, doi: 10.1016/S0065-308X(10)72011-X (2010).
3. Sithithaworn, P. et al. The current status of opisthorchiasis and clonorchiasis in the Mekong Basin. Parasitol Int 61, 10–16, doi: 

10.1016/j.parint.2011.08.014 (2012).
4. Humans, I. W. G. o. t. E. o. C. R. t. Biological agents. Volume 100 B. A review of human carcinogens. IARC Monogr Eval Carcinog 

Risks Hum 100, 1–441 (2012).
5. Sripa, B. et al. Liver fluke induces cholangiocarcinoma. PLoS Med 4, e201, doi: 10.1371/journal.pmed.0040201 (2007).
6. Bouvard, V. et al. A review of human carcinogens–Part B: biological agents. Lancet Oncol 10, 321–322 (2009).
7. Sripa, B. et al. The tumorigenic liver fluke Opisthorchis viverrini–multiple pathways to cancer. Trends Parasitol 28, 395–407, doi: 

10.1016/j.pt.2012.07.006 (2012).
8. Khuntikeo, N., Loilome, W., Thinkhamrop, B., Chamadol, N. & Yongvanit, P. A Comprehensive Public Health Conceptual 

Framework and Strategy to Effectively Combat Cholangiocarcinoma in Thailand. PLoS Negl Trop Dis 10, e0004293, doi: 10.1371/
journal.pntd.0004293 (2016).

9. Sripa, B. Pathobiology of opisthorchiasis: an update. Acta Trop 88, 209–220 (2003).
10. Jurberg, A. D. & Brindley, P. J. Gene function in schistosomes: recent advances toward a cure. Front Genet 6, 144, doi: 10.3389/

fgene.2015.00144 (2015).
11. Jusakul, A., Yongvanit, P., Loilome, W., Namwat, N. & Kuver, R. Mechanisms of oxysterol-induced carcinogenesis. Lipids Health Dis 

10, 44, doi: 10.1186/1476-511X-10-44 (2011).
12. Correia da Costa, J. M. et al. Schistosome and liver fluke derived catechol-estrogens and helminth associated cancers. Front Genet 5, 

444, doi: 10.3389/fgene.2014.00444 (2014).
13. Abu Al-Soud, W. et al. DNA of Helicobacter spp. and common gut bacteria in primary liver carcinoma. Dig Liver Dis 40, 126–131, 

doi: 10.1016/j.dld.2007.09.011 (2008).
14. Flahou, B., Rimbara, E., Mori, S., Haesebrouck, F. & Shibayama, K. The Other Helicobacters. Helicobacter 20 Suppl 1, 62–67, doi: 

10.1111/hel.12259 (2015).
15. Cover, T. L. Helicobacter pylori Diversity and Gastric Cancer Risk. MBio 7, e01869–01815, doi: 10.1128/mBio.01869-15 (2016).
16. Marshall, B. J. The pathogenesis of non-ulcer dyspepsia. Med J Aust 143, 319 (1985).
17. Gaynor, E. C. & Szymanski, C. M. The 30th anniversary of Campylobacter, Helicobacter, and Related Organisms workshops-what 

have we learned in three decades? Front Cell Infect Microbiol 2, 20, doi: 10.3389/fcimb.2012.00020 (2012).
18. Sheh, A. & Fox, J. G. The role of the gastrointestinal microbiome in Helicobacter pylori pathogenesis. Gut Microbes 4, 505–531, doi: 

10.4161/gmic.26205 (2013).
19. Marshall, B. J. & Warren, J. R. Unidentified curved bacilli in the stomach of patients with gastritis and peptic ulceration. Lancet 1, 

1311–1315 (1984).
20. Moodley, Y. et al. Age of the association between Helicobacter pylori and man. PLoS Pathog 8, e1002693, doi: 10.1371/journal.

ppat.1002693 (2012).
21. Kienesberger, S. et al. Gastric Helicobacter pylori Infection Affects Local and Distant Microbial Populations and Host Responses. 

Cell Rep 14, 1395–1407, doi: 10.1016/j.celrep.2016.01.017 (2016).
22. Cover, T. L. & Blaser, M. J. Helicobacter pylori in health and disease. Gastroenterology 136, 1863–1873, doi: 10.1053/j.

gastro.2009.01.073 (2009).
23. de Martel, C., Plummer, M., Parsonnet, J., van Doorn, L. J. & Franceschi, S. Helicobacter species in cancers of the gallbladder and 

extrahepatic biliary tract. Br J Cancer 100, 194–199, doi: 10.1038/sj.bjc.6604780 (2009).
24. Fallone, C. A. et al. Helicobacter DNA in bile: correlation with hepato-biliary diseases. Aliment Pharmacol Ther 17, 453–458 (2003).
25. Apostolov, E. et al. Helicobacter pylori and other Helicobacter species in gallbladder and liver of patients with chronic cholecystitis 

detected by immunological and molecular methods. Scand J Gastroenterol 40, 96–102 (2005).

http://www.nrbsc.org/gfx/genedoc/ebinet.htm


www.nature.com/scientificreports/

1 0Scientific RepoRts | 7:42744 | DOI: 10.1038/srep42744

26. Kobayashi, T., Harada, K., Miwa, K. & Nakanuma, Y. Helicobacter genus DNA fragments are commonly detectable in bile from 
patients with extrahepatic biliary diseases and associated with their pathogenesis. Dig Dis Sci 50, 862–867 (2005).

27. Kosaka, T. et al. Helicobacter bilis colonization of the biliary system in patients with pancreaticobiliary maljunction. Br J Surg 97, 
544–549, doi: 10.1002/bjs.6907 (2010).

28. Aviles-Jimenez, F. et al. Microbiota studies in the bile duct strongly suggest a role for Helicobacter pylori in extrahepatic 
cholangiocarcinoma. Clin Microbiol Infect 22(178), e111–122, doi: 10.1016/j.cmi.2015.10.008 (2016).

29. Hatakeyama, M. Helicobacter pylori CagA and gastric cancer: a paradigm for hit-and-run carcinogenesis. Cell Host Microbe 15, 
306–316, doi: 10.1016/j.chom.2014.02.008 (2014).

30. Mateos-Munoz, B. et al. Enterohepatic Helicobacter other than Helicobacter pylori. Rev Esp Enferm Dig 105, 477–484 (2013).
31. Zhou, D. et al. Infections of Helicobacter spp. in the biliary system are associated with biliary tract cancer: a meta-analysis. Eur J 

Gastroenterol Hepatol 25, 447–454, doi: 10.1097/MEG.0b013e32835c0362 (2013).
32. Murphy, G. et al. Association of seropositivity to Helicobacter species and biliary tract cancer in the ATBC study. Hepatology 60, 

1963–1971, doi: 10.1002/hep.27193 (2014).
33. Boonyanugomol, W. et al. Helicobacter pylori in Thai patients with cholangiocarcinoma and its association with biliary 

inflammation and proliferation. HPB (Oxford) 14, 177–184, doi: 10.1111/j.1477-2574.2011.00423.x (2012).
34. Carpenter, H. A. Bacterial and parasitic cholangitis. Mayo Clin Proc 73, 473–478, doi: 10.1016/S0025-6196(11)63734-8 (1998).
35. Plieskatt, J. L. et al. Infection with the carcinogenic liver fluke Opisthorchis viverrini modifies intestinal and biliary microbiome. 

FASEB J 27, 4572–4584, doi: 10.1096/fj.13-232751 (2013).
36. Greiman, S. E., Rikihisa, Y., Cain, J., Vaughan, J. A. & Tkach, V. V. Germs within Worms: Localization of Neorickettsia sp. within Life 

Cycle Stages of the Digenean Plagiorchis elegans. Appl Environ Microbiol 82, 2356–2362, doi: 10.1128/AEM.04098-15 (2016).
37. Deenonpoe, R. et al. The carcinogenic liver fluke Opisthorchis viverrini is a reservoir for species of Helicobacter. Asian Pac J Cancer 

Prev 16, 1751–1758 (2015).
38. Saltykova, I. V. et al. Biliary Microbiota, Gallstone Disease and Infection with Opisthorchis felineus. PLoS Negl Trop Dis 10, 

e0004809, doi: 10.1371/journal.pntd.0004809 (2016).
39. Xia, Y., Yamaoka, Y., Zhu, Q., Matha, I. & Gao, X. A comprehensive sequence and disease correlation analyses for the C-terminal 

region of CagA protein of Helicobacter pylori. PloS one 4, e7736, doi: 10.1371/journal.pone.0007736 (2009).
40. Pellicano, R., Menard, A., Rizzetto, M. & Megraud, F. Helicobacter species and liver diseases: association or causation? Lancet Infect 

Dis 8, 254–260, doi: 10.1016/S1473-3099(08)70066-5 (2008).
41. Hirai, I. et al. Infection of less virulent Helicobacter pylori strains in asymptomatic healthy individuals in Thailand as a potential 

contributing factor to the Asian enigma. Microbes Infect 12, 227–230, doi: 10.1016/j.micinf.2009.12.007 (2010).
42. Mairiang, E. et al. Ultrasonography assessment of hepatobiliary abnormalities in 3359 subjects with Opisthorchis viverrini infection 

in endemic areas of Thailand. Parasitol Int 61, 208–211, doi: 10.1016/j.parint.2011.07.009 (2012).
43. Sripa, B. et al. Advanced periductal fibrosis from infection with the carcinogenic human liver fluke Opisthorchis viverrini correlates 

with elevated levels of interleukin-6. Hepatology 50, 1273–1281, doi: 10.1002/hep.23134 (2009).
44. Boonyanugomol, W. et al. Molecular analysis of Helicobacter pylori virulent-associated genes in hepatobiliary patients. HPB 

(Oxford) 14, 754–763, doi: 10.1111/j.1477-2574.2012.00533.x (2012).
45. Fock, K. M. & Ang, T. L. Epidemiology of Helicobacter pylori infection and gastric cancer in Asia. J Gastroenterol Hepatol 25, 

479–486, doi: 10.1111/j.1440-1746.2009.06188.x (2010).
46. Bulajic, M. et al. Helicobacter pylori and the risk of benign and malignant biliary tract disease. Cancer 95, 1946–1953, doi: 10.1002/

cncr.10893 (2002).
47. Matsukura, N. et al. Association between Helicobacter bilis in bile and biliary tract malignancies: H. bilis in bile from Japanese and 

Thai patients with benign and malignant diseases in the biliary tract. Jpn J Cancer Res 93, 842–847 (2002).
48. Sahara, S. et al. Role of Helicobacter pylori cagA EPIYA motif and vacA genotypes for the development of gastrointestinal diseases 

in Southeast Asian countries: a meta-analysis. BMC Infect Dis 12, 223, doi: 10.1186/1471-2334-12-223 (2012).
49. Hirai, I., Yoshinaga, A., Kimoto, A., Sasaki, T. & Yamamoto, Y. Sequence analysis of East Asian cagA of Helicobacter pylori isolated 

from asymptomatic healthy Japanese and Thai individuals. Curr Microbiol 62, 855–860, doi: 10.1007/s00284-010-9797-9 (2011).
50. Murata-Kamiya, N. Pathophysiological functions of the CagA oncoprotein during infection by Helicobacter pylori. Microbes Infect 

13, 799–807, doi: 10.1016/j.micinf.2011.03.011 (2011).
51. Hashi, K. et al. Natural variant of the Helicobacter pylori CagA oncoprotein that lost the ability to interact with PAR1. Cancer Sci 

105, 245–251, doi: 10.1111/cas.12342 (2014).
52. Rudi, J. et al. Diversity of Helicobacter pylori vacA and cagA genes and relationship to VacA and CagA protein expression, cytotoxin 

production, and associated diseases. J Clin Microbiol 36, 944–948 (1998).
53. Argent, R. H., Zhang, Y. & Atherton, J. C. Simple method for determination of the number of Helicobacter pylori CagA variable-

region EPIYA tyrosine phosphorylation motifs by PCR. J Clin Microbiol 43, 791–795, doi: 10.1128/JCM.43.2.791-795.2005 (2005).
54. Lu, H. S. et al. Structural and functional diversity in the PAR1b/MARK2-binding region of Helicobacter pylori CagA. Cancer Sci 99, 

2004–2011, doi: 10.1111/j.1349-7006.2008.00950.x (2008).
55. Sungkasubun, P. et al. Ultrasound screening for cholangiocarcinoma could detect premalignant lesions and early-stage diseases with 

survival benefits: a population-based prospective study of 4,225 subjects in an endemic area. BMC Cancer 16, 346, doi: 10.1186/
s12885-016-2390-2 (2016).

56. Aye Soukhathammavong, P. et al. Subtle to severe hepatobiliary morbidity in Opisthorchis viverrini endemic settings in southern 
Laos. Acta Trop 141, 303–309, doi: 10.1016/j.actatropica.2014.09.014 (2015).

57. Chan-On, W. et al. Exome sequencing identifies distinct mutational patterns in liver fluke-related and non-infection-related bile 
duct cancers. Nat Genet 45, 1474–1478, doi: 10.1038/ng.2806 (2013).

58. Gao, Q. et al. Activating mutations in PTPN3 promote cholangiocarcinoma cell proliferation and migration and are associated with 
tumor recurrence in patients. Gastroenterology 146, 1397–1407, doi: 10.1053/j.gastro.2014.01.062 (2014).

59. Al-Bahrani, R., Abuetabh, Y., Zeitouni, N. & Sergi, C. Cholangiocarcinoma: risk factors, environmental influences and oncogenesis. 
Ann Clin Lab Sci 43, 195–210 (2013).

60. Segal, E. D., Cha, J., Lo, J., Falkow, S. & Tompkins, L. S. Altered states: involvement of phosphorylated CagA in the induction of host 
cellular growth changes by Helicobacter pylori. Proc Natl Acad Sci USA 96, 14559–14564 (1999).

61. Saadat, I. et al. Helicobacter pylori CagA targets PAR1/MARK kinase to disrupt epithelial cell polarity. Nature 447, 330–333, doi: 
10.1038/nature05765 (2007).

62. Wang, K. et al. Whole-genome sequencing and comprehensive molecular profiling identify new driver mutations in gastric cancer. 
Nat Genet 46, 573–582, doi: 10.1038/ng.2983 (2014).

63. Nie, Z. et al. Conversion of the LIMA1 tumour suppressor into an oncogenic LMO-like protein by API2-MALT1 in MALT 
lymphoma. Nat Commun 6, 5908, doi: 10.1038/ncomms6908 (2015).

64. Sripa, B., Deenonpoe, R. & Brindley, P. J. Co-infections with liver fluke and Helicobacter species: A paradigm change in pathogenesis 
of opisthorchiasis and cholangiocarcinoma? Parasitol Int, doi: 10.1016/j.parint.2016.11.016 (2016).

65. Pisani, P. et al. Cross-reactivity between immune responses to Helicobacter bilis and Helicobacter pylori in a population in Thailand 
at high risk of developing cholangiocarcinoma. Clin Vaccine Immunol 15, 1363–1368, doi: 10.1128/CVI.00132-08 (2008).

66. Lvova, M. N. et al. Comparative histopathology of Opisthorchis felineus and Opisthorchis viverrini in a hamster model: an 
implication of high pathogenicity of the European liver fluke. Parasitol Int 61, 167–172, doi: 10.1016/j.parint.2011.08.005 (2012).



www.nature.com/scientificreports/

1 1Scientific RepoRts | 7:42744 | DOI: 10.1038/srep42744

67. Boonyanugomol, W. et al. Helicobacter pylori cag pathogenicity island (cagPAI) involved in bacterial internalization and IL-8 
induced responses via NOD1- and MyD88-dependent mechanisms in human biliary epithelial cells. PLoS One 8, e77358, doi: 
10.1371/journal.pone.0077358 (2013).

68. Talabnin, K. et al. Stage-specific expression and antigenicity of glycoprotein glycans isolated from the human liver fluke, 
Opisthorchis viverrini. Int J Parasitol 43, 37–50, doi: 10.1016/j.ijpara.2012.10.013 (2013).

69. Hanisch, F. G., Bonar, D., Schloerer, N. & Schroten, H. Human trefoil factor 2 is a lectin that binds alpha-GlcNAc-capped mucin 
glycans with antibiotic activity against Helicobacter pylori. J Biol Chem 289, 27363–27375, doi: 10.1074/jbc.M114.597757 (2014).

70. Segura-Lopez, F. K., Guitron-Cantu, A. & Torres, J. Association between Helicobacter spp. infections and hepatobiliary 
malignancies: a review. World J Gastroenterol 21, 1414–1423, doi: 10.3748/wjg.v21.i5.1414 (2015).

71. Grundy-Warr, C. et al. Raw attitudes, wetland cultures, life-cycles: socio-cultural dynamics relating to Opisthorchis viverrini in the 
Mekong Basin. Parasitol Int 61, 65–70, doi: 10.1016/j.parint.2011.06.015 (2012).

72. Elkins, D. B., Haswell-Elkins, M. & Anderson, R. M. The epidemiology and control of intestinal helminths in the Pulicat Lake region 
of Southern India. I. Study design and pre- and post-treatment observations on Ascaris lumbricoides infection. Trans R Soc Trop 
Med Hyg 80, 774–792 (1986).

73. Sripa, B. et al. Elevated plasma IL-6 associates with increased risk of advanced fibrosis and cholangiocarcinoma in individuals 
infected by Opisthorchis viverrini. PLoS Negl Trop Dis 6, e1654, doi: 10.1371/journal.pntd.0001654 (2012).

74. Linke, S., Lenz, J., Gemein, S., Exner, M. & Gebel, J. Detection of Helicobacter pylori in biofilms by real-time PCR. Int J Hyg Environ 
Health 213, 176–182, doi: 10.1016/j.ijheh.2010.03.006 (2010).

75. Yamaoka, Y. et al. Helicobacter pylori in North and South America before Columbus. FEBS Lett 517, 180–184 (2002).
76. Thompson, J. D., Higgins, D. G. & Gibson, T. J. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment 

through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22, 4673–4680 (1994).
77. Saitou, N. & Nei, M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4, 406–425 

(1987).
78. Jones, D. T., Taylor, W. R. & Thornton, J. M. The rapid generation of mutation data matrices from protein sequences. Comput Appl 

Biosci 8, 275–282 (1992).
79. Tamura, K., Stecher, G., Peterson, D., Filipski, A. & Kumar, S. MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. Mol 

Biol Evol 30, 2725–2729, doi: 10.1093/molbev/mst197 (2013).

Acknowledgements
We thank Dr. Apiporn Thinkhamrop, Khon Kaen University for assistance in preparation of map of the study sites, 
and Dr. Makedonka Mitreva and laboratory colleagues for comments on the study findings. We acknowledge the 
advice of Dr. Supot Kamsa-ard, Khon Kaen University and Dr. Isha Agarwal, Harvard University for statistical 
analysis. R.D. acknowledges support as a PhD research scholar from the Commission on Higher Education, 
Thailand, under the program Strategic Scholarships for Frontier Research Network for the Joint PhD Program 
Thai Doctoral Degree; B.S. acknowledges support from Thailand Research Fund Senior Research Scholar; and 
A.L. acknowledges support from his NHMRC Principal Research Fellowship. This work was supported by the 
National Health Security Office, Thailand, the Higher Education Research Promotion and National Research 
University Project of Thailand, Office of the Higher Education Commission, through the Health Cluster (SHeP-
GMS), the Faculty of Medicine, Khon Kaen University, Thailand (award number I56110), and the Thailand 
Research Fund under the TRF Senior Research Scholar (RTA 5680006); the National Research Council of 
Thailand. The National Institute of Allergy and Infectious Diseases (NIAID), Tropical Medicine Research Center 
award number P50AI098639, The National Cancer Institute, award number R01CA164719, and the United States 
Army Medical Research and Materiel Command (USAMRMC), contract number W81XWH-12-C-0267 also 
provided support. The content is solely the responsibility of the authors and does not necessarily represent the 
official views of the funders including USAMRMC, NIAID, NCI or the NIH.

Author Contributions
B.S., C.C., R.D., C.P., Y.C., and P.J.B. conceived and designed the study. B.S., E.M., and P.M. collected stool samples, 
demographic and ultrasonographic data. R.D., B.S., and C.C. performed the experiments. G.R., P.J.B., R.D. and 
B.S. analyzed and interpreted the phylogenetic findings. B.S., R.D., C.C., A.L. and P.J.B. analyzed and interpreted 
overall data. B.S., R.D., G.R., C.C., A.L., and P.J.B. wrote the manuscript. All authors read and approved the final 
version of the paper.

Additional Information
Competing financial interests: The authors declare no competing financial interests.
How to cite this article: Deenonpoe, R. et al. Elevated prevalence of Helicobacter species and virulence factors 
in opisthorchiasis and associated hepatobiliary disease. Sci. Rep. 7, 42744; doi: 10.1038/srep42744 (2017).
Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

This work is licensed under a Creative Commons Attribution 4.0 International License. The images 
or other third party material in this article are included in the article’s Creative Commons license, 

unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, 
users will need to obtain permission from the license holder to reproduce the material. To view a copy of this 
license, visit http://creativecommons.org/licenses/by/4.0/
 
© The Author(s) 2017

http://creativecommons.org/licenses/by/4.0/

	Himmelfarb Health Sciences Library, The George Washington University
	Health Sciences Research Commons
	2-15-2017

	Elevated prevalence of Helicobacter species and virulence factors in opisthorchiasis and associated hepatobiliary disease.
	Raksawan Deenonpoe
	Eimorn Mairiang
	Pisaln Mairiang
	Chawalit Pairojkul
	Yaovalux Chamgramol
	See next page for additional authors
	APA Citation
	Authors


	Elevated prevalence of Helicobacter species and virulence factors in opisthorchiasis and associated hepatobiliary disease
	Results
	Liver fluke burden positively correlated with Helicobacter infection. 
	Increased prevalence and load of H. pylori and H. bilis during opisthorchiasis. 
	Helicobacter spp. associated with grade of biliary peridcutal fibrosis. 
	cagA genotypes associated with biliary periductal fibrosis. 
	Phylogram analysis of CagA EPIYA motifs revealed novel genotypes during liver fluke infection. 

	Discussion
	Materials and Methods
	Ethics statement. 
	Study participants. 
	Parasitological diagnosis of infection with the liver fluke Opisthorchis viverrini. 
	Detection by PCR of Helicobacter species and virulence genes. 
	Abdominal ultrasonography to visualize hepatobiliary fibrosis. 
	Quantitative real-time PCR. 
	Phylogenetic analysis of cagA gene partial sequences. 
	Statistical analysis. 

	Acknowledgements
	Author Contributions
	Figure 1.  Prevalence of Helicobacter species, H.
	Figure 2.  Phylogenetic relationship among partial CagA sequences amplified from representative samples.
	Table 1.   Gender and age of participants and status of infection with Opisthorchis viverrini and species of Helicobacter.
	Table 2.   Prevalence of Helicobacter spp.
	Table 3.   Prevalence of Helicobacter species and virulence genes during infection with Opisthorchis viverrini, and relationships with status (grade) of hepatobiliary disease as established by abdominal ultrasonography for degree of periportal echoes.
	Table 4.   Associations among genotypes of CagA of Helicobacter pylori and infection status with Opisthorchis viverrini.
	Table 5.   Associations among cagA genotypes bearing the CagA multimerization motif (CM) and infection with Opisthorchis viverrini.
	Table 6.   CagA genotypes in participants positive for liver fluke infection, and relationships with status (grade) of biliary periductal fibrosis as established by abdominal ultrasonography.



 
    
       
          application/pdf
          
             
                Elevated prevalence of Helicobacter species and virulence factors in opisthorchiasis and associated hepatobiliary disease
            
         
          
             
                srep ,  (2017). doi:10.1038/srep42744
            
         
          
             
                Raksawan Deenonpoe
                Eimorn Mairiang
                Pisaln Mairiang
                Chawalit Pairojkul
                Yaovalux Chamgramol
                Gabriel Rinaldi
                Alex Loukas
                Paul J. Brindley
                Banchob Sripa
            
         
          doi:10.1038/srep42744
          
             
                Nature Publishing Group
            
         
          
             
                © 2017 Nature Publishing Group
            
         
      
       
          
      
       
          © 2017 The Author(s)
          10.1038/srep42744
          2045-2322
          
          Nature Publishing Group
          
             
                permissions@nature.com
            
         
          
             
                http://dx.doi.org/10.1038/srep42744
            
         
      
       
          
          
          
             
                doi:10.1038/srep42744
            
         
          
             
                srep ,  (2017). doi:10.1038/srep42744
            
         
          
          
      
       
       
          True
      
   


