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Abstract

For an unknown oscillator, it is sometimes useful to know what the
potential energy function associated with it is. An argument for
using a method of determining the optimal sequence of impulsive
forces in order to find the potential energy function is made using
principles of energy. Global optimization via simulated annealing
is discussed, and various parameters that can be adjusted across
experiments are established. A method for determining the optimal
sequence of impulsive forces for the excitation of a standard LRC
circuit is established using the methodology of simulated annealing.
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Chapter 1

Motivation

We want to develop a methodology that will allow us to determine the optimal
sequence of pulse timings for an oscillator, which will in turn determine the
optimal motion for the oscillator as well. This methodology must also allow us
to find the potential energy function of a given oscillator. In order to understand
what it means to determine the optimal sequence of pulse timings, we must first
understand the dynamics of oscillators. In particular, we want to understand
the dynamics of oscillators after they are hit by an impulsive force. Also, we
want to know what it means to find the potential energy function for a given
oscillator, and to figure out how that is related to the problem of finding the
optimal sequence of pulse timings. Finally, we want to understand what it
means to take the principles of these classical oscillator problems and apply
them to electronic oscillators.

For a thought experiment, let us consider a pendulum. If we gave this
pendulum a slight push, and if there is no friction present, then the pendulum
will move and the motion will not decrease. If we want to get this pendulum
to swing out further we want to push it more, but then comes the matter of
determining when it is best to push the pendulum again. Assuming that the
pendulum can only be pushed from one direction, the best moment for pushing
it again would be when it is back at its equilibrium position and when it is
going in the same direction as the push. However, since the pendulum has
a periodic behavior that is nonlinear for sufficiently large angles (so that the
approximation for the angular position θ of the pendulum, θ ≈ sin(θ), or the
angles for which simple harmonic motion occurs, no longer holds) the timing
of these pushes becomes a problem. The amount of time that one would have
to wait before pushing the pendulum again at the best time changes, so this
motivates a method that can find when to push the pendulum without prior
knowledge of the pendulum’s behavior.

In order to understand how our thought experiment relates to the larger
problem let us consider the dynamics of oscillators in general, and start with
the example of the simple harmonic oscillator.
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2 CHAPTER 1. MOTIVATION

1.1 Simple Harmonic Oscillator

The motion of the simple harmonic oscillator can be determined by first finding
the sum of forces that are acting on the oscillator. For the simple harmonic
oscillator there is only one force acting on it. This is the force due to the spring
attached to the mass. Our sum of forces equation can now be written as:

ΣF = −kx = mẍ, (1.1)

In equation 1.1 F is the force, k is Hooke’s constant for that spring, m is the
mass of the oscillator, and x is the one-dimensional position of the oscillator.
The dots represent the second derivative with respect to time t. We can use
equation 1.1 to find the equation of motion:

mẍ = −kx. (1.2)

This is then rewritten to obtain:

mẍ+ kx = 0. (1.3)

Equation 1.3 is a homogenous ordinary second-order differential equation
that can be solved to find x. In classical mechanics we can also refer to this
equation as the unforced case for the simple harmonic oscillator. Using methods
for solving ordinary differential equations the position x as a function of time
can be determined in terms of the various constants that govern the differential
behavior of the oscillator.

However, this is not the case of the oscillator that we want to investigate
in this experiment. Instead, we want to investigate a particular instance of the
forced oscillator where the oscillator is driven by a sequence of impulsive forces.
The differential equation for this case is:

mẍ+ kx = Fτ(t). (1.4)

Here F is a constant in units of force that represents the magnitude of the
impulsive force, the timing function, τ(t), is a unitless function that is written
as a series of Dirac delta functions:

τ(t) = δ(t0) + δ(t1) + δ(t2) + ... (1.5)

In equation 1.5 the moments in time ti (where i = 0, 1, 2, ...) are when an
impulsive force occurs. It is important to note that this particular function is
a model for showing when impulsive forces happen. For any physical examples
an impulsive force is simply a force that delivers a lot of momentum over a
short length of time in comparison to the overall duration of the motion that is
considered.

The ultimate goal of the experiment is to find the series of optimal ti for
exciting an oscillator. In order to determine at which moments an impulsive
force needs to act on an object for obtaining the optimal response, we must first
consider the effect that an impulsive force has on the overall momentum of an
object. If we integrate the impulsive force over time we get that the impulse
that is added to the oscillator is:∫

F dt = F∆t.
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Here ∆t is the length of a brief interval in time during which the impulsive force
acts.

When the impulsive force F is delivered the final momentum pf of the os-
cillator will then be:

pf = pi + F∆t, (1.6)

where pi is the initial momentum at the moment of the impulse. Both sides can
be rewritten in terms of energy. We can then consider the final energy Ef of
the oscillator after the impulsive force gives the system an amount of energy ui
to be:

Ef =
p2i
2m

+ ui. (1.7)

In order to optimize the motion of the oscillator, the energy ui that is de-
livered to the oscillator must be maximized. In order to determine how to
maximize this energy we first take a look at the change in energy that occurs
due to the impulsive force:

∆E =
p2f − p2i

2m
=
p2i + 2F∆tpi + F 2∆t2 − p2i

2m
,

which we rewrite as:

∆E =
2F∆tpi + F 2∆t2

2m
. (1.8)

For our one-dimensional case we can leave equation 1.8 as is and recognize
that when the initial momentum pi is at its maximum then the change in energy
is maximized as well. For two or three dimensional problems we can use vector
algebra to rewrite 1.8 as:

∆E =
2∆t ~F · ~pi + F 2∆t2

2m
. (1.9)

In equation 1.9 it is apparent that in order to maximize the change in energy,
the dot product of the impulsive force and the initial momentum at the moment
of the impulsive force must also be maximized. This means that in order to
excite an oscillator with impulsive forces, those forces must also be applied in
such a way that they will be in the same direction as the initial momentum at
the time of the impulsive force. This generalization to two or three dimensions
applies to our one dimensional problem as well.

Given the conditions that must be met in order to maximize the momen-
tum after the delivery of an impulsive force, we can determine the sequence of
impulsive forces that will optimize the motion of our oscillator. We first solve
equation 1.3 for x. In order to do this we will first define a new quantity ω0, or
the resonant frequency of the oscillator:

ω0 =

√
k

m
.

We can use this substitution to rewrite equation 1.3 as:

ẍ+ ω2
0x = 0. (1.10)

The general solution to this is:

x(t) = A sin(ω0t+ φ). (1.11)
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In equation 1.11 A is some maximum amplitude, and φ is some change in
phase. These constants can be determined using initial conditions. From this
point on we will consider an amplitude of one and a phase change of zero. We
must now consider finding when the velocity is maximized, which can be deter-
mined by finding the acceleration. We take the first and second derivatives to
find the velocity and acceleration of the simple harmonic oscillator respectively.

ẋ = ω0 cos(ω0t) (1.12)

ẍ = −ω2
0 sin(ω0t) (1.13)

We find the first point at which equation 1.13 is zero and equation 1.12 is
positive in order to find the point in time at which the velocity, and therefore
the momentum is maximized. Our system will look like the following:

0 < ω0 cos(ω0t) (1.14)

0 = −ω2
0 sin(ω0t) (1.15)

The system of equations is solved to obtain that the first moment in time
where both of these conditions are met is the time when the oscillator completes
the first full period. We refer to this time as tp, which we can write out as:

tp =
2π

ω0
.

By the conclusions that we arrived at earlier with equations 1.8 and 1.9, the
optimal timing function is:

τ(t) = δ(tp) + δ(2tp) + δ(3tp) + ... (1.16)

1.2 General Oscillator

Now that we have established the basic premise for maximizing the response
of the linear oscillator, let us consider a more general case where instead of
behaving like a linear spring there is a non-linear response. Before we can do
this, we must first consider the simple harmonic oscillator in terms of a potential
energy function so we can understand the general oscillator problem. In general
we can write the potential energy function U of a conservative force as:

U(x) = −
∫

~F (x) · d~x. (1.17)

For our simple harmonic oscillator we can find the potential energy function
of the spring using equation 1.17.

U(x) = −
∫
−kx dx

U(x) =
1

2
kx2. (1.18)

We also get from equation 1.17 that the relationship between a conservative
force and a potential energy can be written as:

~F = −~∇U, (1.19)
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or in one dimension:

F = −dU
dx

. (1.20)

For an oscillator whose motion is determined by a conservative force, assum-
ing no friction, we get that the equation of motion is:

mẍ+
dU

dx
= 0. (1.21)

Sometimes for the case of the general oscillator, and in particular when non-
linear behavior is present in the motion of the oscillator, we do not always know
the potential energy function. However, there is a relationship between the
amplitude of an oscillator and the kinetic energy that is given to an oscillator
that can be exploited in order to determine the potential energy function of the
oscillator. If we give an oscillator a discrete amount of energy each time and
then we record the maximum amplitude attained by the oscillator then we can
use these data points to fit a curve for the potential energy.

In order to show that we can do this, we first look at the general equation
for the total energy in a system. We define the kinetic energy K as:

K =
p2

2m

Our total energy is then:

E =
p2

2m
+ U. (1.22)

The total energy in any system can be expressed as a sum of the kinetic
and potential energy at any moment in time. Now we examine the energy at a
particular point in time. If there is a discrete amount of energy that is present
in a system, and if we can assume that none of that energy is lost to friction,
then we can conclude that there are moments in time where all the energy is
kinetic energy and where all the energy is potential energy. For the moments
where all the energy is kinetic we know that:

E =
p2max

2m
. (1.23)

We can conclude this because at this moment the momentum of the system
is maximized since all of the energy present in the system is kinetic. We also
know from the work in the previous section that at the moment the momentum
is maximized, that it would be the best time to deliver an impulsive force to
further increase the motion of the oscillator. This establishes that we require a
method that determines the optimal timing in order to maximize the change in
energy, and to make sure that the change in energy with each impulsive force is
the same.

In order to determine the potential energy function from an experiment
where the optimal sequence of impulsive forces is determined, we must also
examine what happens at moments when the total energy is all potential energy.
In an oscillator that assumes that the effects of friction on the total energy is
negligible, when we have established that after an impulsive force the kinetic
energy that can be present after that force is at a maximum, we know then
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that the potential energy at a later point will also be at a maximum. Stated
mathematically this is:

E = U. (1.24)

At these moments the oscillator is at it’s maximum position, which allows
us to rewrite equation 1.24 in terms of position as:

E = U(xmax). (1.25)

This means that in order to find the potential energy as a function of position,
an experiment must also include a way to measure the position after an impulsive
force is delivered. After gathering the maximum positions after each impulsive
force the total energy as a function of position can be determined via numerical
methods such as interpolation, and this function is equivalent to the potential
energy function as a function of position.

1.3 LRC Extensions

This experiment will utilize a LRC circuit as the oscillator. In order to under-
stand the behavior of this circuit, it is first important to note that there is a
frictional element present in the system that removes energy. In order to under-
stand the impact that a frictional element will have on the overall motion of the
system, it is important to consider the full equation for the damped harmonic
oscillator:

mẍ+ bẋ+ kx = 0. (1.26)

In this equation the value b corresponds to a drag constant, which determines by
how much the corresponding drag force removes energy from the system. The
drag force for this classical case is the friction due to the surrounding medium.

We now consider the equation for the voltage behavior of a charged LRC
circuit:

Lq̈ +Rq̇ +
1

C
q = 0. (1.27)

Here L is the inductance, R is the resistance, C is the capacitance, and q is the
charge. From here we can begin to make a few analogies that tie the LRC to the
classical damped harmonic oscillator problem, and how to determine energies
and potential energy functions.

To begin with L corresponds to m, which also gives us the following analogy
for kinetic energy K in an electronic system;

K =
1

2
LI2.

Here I is the current, or the first time derivative of charge. The charge q, and
its derivatives take on the role of the position x in the electronic system.

In the classical damped oscillator problem, we can determine the work W
that is removed from the system by evaluating the following integral:

W =

∫
bẋ dx.
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It is important to note that we can rewrite the differential element dx in terms
of time. This can simply be achieved by taking the first derivative of x and then
multiplying it by dt. This gives us the new integral:

W =

∫
bẋ2 dt. (1.28)

Therefore, if we can obtain x as a function of time, a derivative of that can
be taken and this integral can be solved to keep track of how much work was
eliminated due to friction as time goes on. By our analogy with the LRC, R
takes on the role of b. This means that for our electronic analog we get for the
work removed from the system over time:

W =

∫
RI2 dt. (1.29)

Finally, we have the matter of determining the potential energy function.
We continue our analogy to note that k is related to the inverse of C. The
potential energy function for our system is then:

U =
q2

2C
. (1.30)

This is related to the electrical potential V by dividing by q.
Now we must determine how to find the electrical potential from our pro-

posed experiment as a function of the charge q. We must first be able to deter-
mine the charge at any point during the experiment. For this, we consider the
charging behavior of the LRC circuit, and from there we can determine what
the charge present is at any point. We now consider a particular case of the
LRC where:

Lq̈ +Rq̇ +
1

C
q = V0τ(t). (1.31)

Here V0 is a constant value for the potential. This driven case of the LRC circuit
is the electronic form of our driven harmonic oscillator problem, only with some
frictional element included. When the circuit is driven by a voltage impulse,
it is considered to be a pure DC circuit. This means that the effects of the
inductor can be ignored while it is in this state. We obtain that the voltage as
a function of time for while the voltage impulse is present is then:

V (t) = V0(1− e−t/RC). (1.32)

Since the charge present in a capacitor is found by:

q = V C,

It follows that:
q(t) = CV0(1− e−t/RC), (1.33)

when the capacitor is charging. As the capacitor discharges over time from the
total amount of charge q0 we can state that the total charge present is then:

q(t) = q0e
−tR/2L cos(

t√
LC

), (1.34)
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which is the to equation 1.31 for the appropriate boundary conditions.
When we have an impulsive voltage, we can determine what the charge will

be after a given point in time. Let us suppose that before an impulsive charge
is given, that the total charge present is some discrete amount qi. We then get
that for after an impulsive charge is delivered:

qf = qi + CV0(1− e−ti/RC), (1.35)

where qf is the final amount of charge present and ti is the duration of the
impulse. If measurements are taken after that, then the charge present at the
time of a particular measurement will be:

q(t) = qfe
−tR/2L cos(

t√
LC

). (1.36)

For an experiment where the voltage is measured, and the time at which the
measurement was taken can be obtained, then the charge at this point can also
be found. This allows to find the electric potential as a function of charge, and
by extension will allow us to find the potential energy function as a function of
charge as well.



Chapter 2

Methodology

For our experiment, the oscillator of choice is an RLC circuit driven by a se-
quence of impulsive charges that are controlled by the Arduino microcontroller.
Our optimization algorithm, implemented in Python version 2.6, is a simulated
annealing algorithm that allows the user to control various stages of the al-
gorithm across experiments. Both versions for simulations and for the actual
experiment are developed, with the code of each version located in the appen-
dices.

2.1 Simulated Annealing

The method used for selecting the sequence of pulses used to excite the oscil-
lator is simulated annealing. Simulated annealing is an optimization method
that mimics the thermodynamic process of annealing with the goal of finding a
particular global optimum within a solution space. This solution space varies
from implementation to implementation. A general process for simulated an-
nealing for finding a global minimum is outlined in the pseudocode example in
Figure 2.1. Upon initialization, the algorithm makes a guess x from the prob-
lem’s solution space and computes the value of the fitness function f(x) (also
referred to as the cost function) for that particular guess. In addition to that a
temperature T that represents how much energy is available at the start of the
algorithm is determined.

After the initial guess a loop is begun that starts by generating a neighbor-
hood, or a subset of the solution space that is centered about the current ac-
cepted guess. A new guess is selected from this neighborhood, and subsequently
the fitness of this new guess is computed as well. The difference between the
two fitnesses ∆f is then calculated as per the calculation of the quantity change
in figure 2.1. For the algorithm in the pseudocode example, if this change is
negative the new guess is always accepted. If the change is non-negative, in
order to encourage exploration of the solution space within the algorithm the
chance of accepting this ”worse” guess is found using a Boltzmann-like proba-
bility distribution as described in the following equation:

P (∆f) = exp

(
−∆f

kT

)
(2.1)

9
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procedure s imulated annea l ing (T, s o l u t i o n space )
select guess from s o l u t i o n space
f i t n e s s = f ( guess )
loop un t i l T < te rminat ion cond i t i on :

generate neighborhood about guess
select newGuess from neighborhood
newFitness = f ( newGuess )
change = newFitness−f i t n e s s
i f change < 0 :

accept newGuess
e l i f exp(−change/kT) > random (0 , 1 ) :

accept newGuess
decrease T

return best guess and best f i t n e s s

Figure 2.1: Pseudo-Python implementation of the standard simulated anneal-
ing algorithm for finding a global minimum.

In equation 2.1 k is the Boltzmann constant. In general, the algorithm can
have other solution selection methods other than the one defined in our exam-
ple. After determining whether or not the guess is accepted, the temperature
is decreased and the loop repeats until the temperature is cooler than the ter-
mination condition. By the end of the algorithm the best guess that it made is
returned along with the corresponding fitness. This algorithm can also be ad-
justed for finding the global maximum of a particular solution space by always
accepting the new guess if the change is positive, and by changing the negative
sign in equation 2.1 to a positive sign.

There are a wide variety of things that can be altered about this simple
algorithm. These include determining the chance of keeping a guess, how to
decrease the temperature, how to select the neighbourhood for a particular
guess, and initializing the relevant constants for these. An example of a flexible
algorithm in Python that allows a user to make the changes mentioned in the
following sections can be seen in Appendix A.

2.1.1 Acceptance Probability

For the typical simulated annealing algorithm, a probability selection method
that comes from another algorithm called the Metropolis algorithm is used. For
the problem of finding the global maximum of a particular solution space the
probability P of selection is defined as:

P (x, y, T ) =

{
1, y > x

exp
(
y−x
kT

)
, y < x.

(2.2)

In equation 2.2, x is the previous guess and y is the most recent guess. This is
a mathematical representation of the guess selection process outlined in figure
2.1, and this the most frequently used guess selection probability method in
simulated annealing. In addition to that method, a slightly modified probability
distribution method was used whose Python implementation can be found on
line 47 of Appendix A. Mathematically, this method can be written as:
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P (x, y, T ) =

{
1− exp

(
x−y
kT

)
, y > x

exp
(
y−x
kT

)
, y < x.

(2.3)

For the method defined by equation 2.3 the probability of keeping a guess
better than the previous one is not one, but instead one minus the probability
of choosing a worse guess that has the same absolute value of the difference in
fitness from the previous guess. This allows for some variety in the experiments
that can be performed.

2.1.2 Annealing Schedule

The annealing schedule (also known as the cooling schedule) is the way by
which the algorithm decreases the temperature for each run of the loop. The
two methods most commonly used are the exponential annealing schedule and
the linear annealing schedule.

The exponential annealing schedule causes the temperature to decay ex-
ponentially over the course of the algorithm. A constant c between 0 and 1
(typically 0.95 for most implementations) is chosen, and at the end of each run
of the loop the current temperature is multiplied by this constant. This method
of decreasing can be written as:

Tnew = cTprevious. (2.4)

The linear annealing schedule causes the temperature to decrease linearly
over the course of the algorithm. An amount ∆T is subtracted from the temper-
ature as the algorithm progresses, and this rule for determining the temperature
can be mathematically written as:

Tnew = Tprevious −∆T. (2.5)

The algorithm in Appendix A allows for a choice between the exponential and
linear schedules as defined by the function on line 160, but the main experiment
utilizes an exponential schedule with a constant c of 0.95.

2.1.3 Neighborhood Selection

The last thing that is varied in the simulated annealing algorithm is the neigh-
borhood selection method. This is the method by which the algorithm finds new
solutions to test. In a typical simulated annealing algorithm the neighborhood is
always a constant interval centered about the current accepted guess. However,
if the neighborhood is adjusted over the course of the algorithm to decrease in
size as the temperature decreases, then the algorithm performs better than if
the algorithm has a fixed neighborhood size. This was established in the paper
”Dynamic Neighbourhood Size in Simulated Annealing” by Xin Yao.

There are several different methods for neighborhood selection that are uti-
lized in the algorithm that is written up in Appendix A. The first of these is
simply using a constant interval that is recreated every time that the algorithm
restarts. The programmer selects some number that represents the distance
away from the current guess in the solution space in both directions (for a one
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dimensional space), and then the algorithm selects a different solution to test
from this neighborhood.

The other approaches all rely on functions that decrease in size as T de-
creases. Each of these approaches uses another user-defined constant, m, which
for this set of experiments has the experiment start by exploring a neighbor-
hood that is one quarter of the size of the solution space. One of these options
is recreating the interval bounds at each time as a function of T proportional
to the square root of T as follows:

N =

√
T

m
, (2.6)

where N is the size of the neighborhood.
There are a few other functions that have similar limit behavior to the square

root function as T decreases. The reason for these functions is to test an algo-
rithm where the neighborhood decreases as T decreases, or in terms of limits:

lim
T→0

N(T ) = 0. (2.7)

This motivates us to explore a few other functions that have this behavior.
In the algorithm in Appendix A three additional functions for determining the
limits of the neighborhood that have this limit behavior as defined in equation
2.7. First, one of these has a linear proportionality with respect to T , or simply
that:

N = mT. (2.8)

Secondly, another method is proportional to T 2, or as defined within the algo-
rithm:

N =
T 2

m
. (2.9)

The last of these methods uses a decreasing exponential function. This function
as defined within the algorithm is:

N = me−
1
T (2.10)

The last method for neighborhood selection was one where the neighborhood
was selected so that it was increasing each time. This was meant both to
see what the algorithm behavior would be if the neighborhood increased as a
function of T and to test what would happen if at the end the entire solution
space was available for the algorithm to choose from. In the physical experiment,
this method was not selected. The function that is defined for this is:

N =
m

T
√

2π
e−

1
2T2 . (2.11)

The user is capable of selecting any of these neighborhood selection methods
at the beginning of the algorithm.

2.2 Electronics

2.2.1 Circuitry

The circuit tested was a simple LRC circuit, but in order to be able to ma-
nipulate and interact with this circuit via computer control the Arduino Uno
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microcontroller had to be used. This placed some limitations on the sort of
circuit that can be constructed.

First, the frequency of the LRC was limited because the Arduino can only
sample once every 100µs. In order to gain a sufficient range of data from which
an optimal value can be obtained, the parts were selected as follows:

R = 10Ω, L = 3.9mH, C = 6.5µF.

In addition, there were limits to the sorts of voltages that could be obtained
by the Arduino. The Arduino uses an on board analog to digital converter that
can only sample from 0V up to 5V. Therefore, negative voltages make it so that
we must design a circuit that will always give a positive voltage. In order to take
advantage of the full capability of the Arduino, this meant that the LRC had
to be set at a reference of 2.5V. This means that instead of the LRC going to
ground, it instead goes to a voltage supply that will remain at a constant 2.5V.
In order to drive the circuit with pulses, another voltage supply was needed that
could switch between providing 5V and 2.5V, and that this switching behavior
could also be controlled via the Arduino.

In order to provide voltage supplies that could provide the necessary voltage
behavior and the currents that were needed for this particular circuit, a couple
of operational amplifiers (LF741) were used to make two follower circuits. The
resulting circuit using these follower circuits is diagrammed in Figure 2.2.

+5V

10kΩ 10kΩ

Arduino Output

−

+

10Ω

3.9mH

6.5µF

−

+

10kΩ

+5V

10kΩ

Figure 2.2: Circuit diagram of the follower circuit attached to the RLC circuit.

A follower circuit is one that keeps track of the voltage on one terminal, and
then outputs that exact same voltage. On the positive input is a voltage divider
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that is selected so that the voltage at that terminal is 2.5V. For the follower
circuit that was used for providing a constant reference voltage this consisted
of two 10kΩ resistors, one coming from a constant supply of 5V and another
attached to ground. The positive input is connected to the place on the voltage
divider where the voltage is 2.5V. For the follower circuit that provided the
pulses to drive the circuit, the other end of the voltage divider was attached
to a digital output from the Arduino. This output would be at logic 0, or at
ground, for most of the time, and would be at logic 1, which is 5V for this
Arduino, when a pulse is given. Once the positive inputs are established, a
connection between the negative input and the output of the op-amp is used.
The results are two circuits that behave like the voltage sources that are needed
for this particular problem.

The two ends of the LRC were then attached to the outputs of the follower
circuits. The Arduino could then be used to monitor the voltage along any point
of the circuit.

2.2.2 Arduino Program

The final part of the circuitry was to set up the Arduino properly with the correct
program. As a microcontroller, the digital electronics within are controlled by
programs (called sketches) that are written by the user using C++ and some
special libraries therein that are specific to Arduino programming. The full
Arduino sketch can be seen in Appendix D.

The program begins with the setup section, which determines some behaviors
of the microcontroller that will only be executed at the beginning of the sketch.
In this instance, the serial port is set to as high a speed as a computer can
handle, and a pin is selected to be an output for driving the LRC. After that
a function called pulse() is established, which takes an output pin and turns it
on for a length of time before shutting off again.

The second part of the program is one that will repeat in a loop, meaning
that this can be used to run multiple experiments. First, the microcontroller
waits for something to be available on the serial port. From the python program
this string will be something that looks as so:

3[100, 200, 300]20.

The first number in the incoming string is interpreted to be the number of
timings between pulses, and in this case there are three timings. Then the
numbers contained within the brackets are the timings between particular pulses
in microseconds, which in this case is 100, 200, and 300 respectively. The last
number is interpreted as how many points of data should be obtained for this
particular run.

After the numbers are interpreted the program then initiates a loop structure
in which a pulse of five microseconds occurs, and then it cycles through an
array of timings to figure out how long to wait before the next iteration of the
loop. Once this loop is complete one final pulse is given. Then the program
immediately gathers data that is sent back to the computer for interpretation.
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2.3 Main Python Program

In appendices B and C are two parts of a program that is used to interact with
the Arduino on the computer side. Appendix B is the main simulated annealing
program, and Appendix C is a module that defines a function that allows the
program to interact with the Arduino.

The program starts off by defining a lot of the same functions that were
defined in the algorithm in Appendix A. After that is where the programs start
to differ. Instead of allowing the user to reset the temperature at will, the tem-
perature for each run of the simulated annealing algorithm will always start at
10. The user is also unable to adjust the constant k for selection probability
and the constant m for each neighborhood selection method. The termination
condition is also fixed for this particular program. The user is allowed to vary
among various neighborhood selection methods, acceptance probability calcula-
tion methods, file names, and data points gathered for the fitness function.

In this program, simulated annealing is used in nested loop structures to
build a pulse train, or a sequence of pulses with particular timings associated
with each of them. The user specifies under the ”how many pulses are in the
pulse train” portion of the program how many timings in between pulses will
be specified.

The first loop structure will define how many times the experiment is re-
peated. If the user only wants to run the experiment once, they will only run
the experiment once. Otherwise, they can specify a nonzero integer amount of
times to repeat the experiment for.

The second loop structure within the first loop is the one that finds the
solution for a particular number of pulse timings j. It begins by making an initial
guess for the jth element as defined by the loop iterator, and then determining
the fitness. The graph and spreadsheet for this particular element of the solution
is also created within this loop structure.

The final loop structure that is within the second loop is the actual simulated
annealing algorithm itself. The simulated annealing process is repeated for each
element of the pulse train. This allows for the solution to be built up element
by element instead of all at once.
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Chapter 3

Results

3.1 How to Interpret Simulation Results

These results of this simulation are from 32 different runs of the algorithm pre-
sented in Appendix A. Figure 3.1 is the graph of the fitness function that this
algorithm explored. The temperature is the given value of T at the start of the
run, and the Boltzmann Constant was the given value of k for that experiment.
The interval weight was a value of m that was selected for the various meth-
ods of neighborhood selection that were discussed in the methodology section.
This algorithm allowed for the selection of a neighborhood selection method,
an annealing schedule, and the method by which the selection probability was
determined. Relevant annealing schedule constants were also chosen for each
run, and the termination temperature was also set. The algorithm also allows
for a simple gaussian test to be chosen to determine if a certain set of options
will select the optimal input that is expected for that function, and to select a
different interpolated function generated from a random set of points for testing
to see if certain options will converge on the global maximum or simply on a lo-
cal maximum. Upon completion, the algorithm returns a graph, a spreadsheet
of the data plotted on the graphs, and a logfile that talks about the choices
made for that particular run. This set of simulations did not explore the lin-
ear method of selection, and no other annealing constant other than 0.95 was
chosen for any given run. The Boltzmann Constant was also unchanged across
runs, and the termination temperature condition did not vary from run to run.
These choices were made so that a greater emphasis could be placed on explor-
ing neighborhood selection and selection probability, and how varying these two
conditions affects how a particular run will turn out. At the end of each run, it
is then determined whether or not the particular run converged on the global
optimum, or if one of the other local optima were selected for any given run.
The graph of the function that was explored for all of these runs can be seen in
Figure 3.1

17
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Figure 3.1: The graph of the interpolated function that was explored in the
algorithm in Appendix A. The x-axis is the solution space, and the y-axis is the
corresponding fitness for any given part of the solution space. Note the global
maximum at approximately 8.
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3.2 Results of Simulation

3.2.1 1st Simulation Run
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Figure 3.2: Results of 1st Experiment

The Temperature was: 10

The Boltzmann Constant was: 0.245

The Interval Weight was: 5.0

The Neighborhood Selection Method Chosen was: Constant

The Annealing Schedule was: Exponential

The relevant Annealing Constant was: 0.95

The probability method chosen was: Metropolis

The termination temperature set was: 0.1

The cost function chosen was: Random Interpolation

The optimal input found was: 8.12453669701

The maximum value found was: 4.94273200262

The optima reached was: Global
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3.2.2 2nd Simulation Run
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Figure 3.3: Results of 2nd Experiment

The Temperature was: 5

The Boltzmann Constant was: 0.245

The Interval Weight was: 5.0

The Neighborhood Selection Method Chosen was: Constant

The Annealing Schedule was: Exponential

The relevant Annealing Constant was: 0.95

The probability method chosen was: Metropolis

The termination temperature set was: 0.1

The cost function chosen was: Random Interpolation

The optimal input found was: 8.25702992337

The maximum value found was: 4.94262557569

The optima reached was: Global
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3.2.3 3rd Simulation Run
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Figure 3.4: Results of 3rd Experiment

The Temperature was: 10

The Boltzmann Constant was: 0.245

The Interval Weight was: 0.4

The Neighborhood Selection Method Chosen was: Square Root

The Annealing Schedule was: Exponential

The relevant Annealing Constant was: 0.95

The probability method chosen was: Metropolis

The termination temperature set was: 0.1

The cost function chosen was: Random Interpolation

The optimal input found was: -3.94145196297

The maximum value found was: 4.72607762918

The optima reached was: Local
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3.2.4 4th Simulation Run
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Figure 3.5: Results of 4th Experiment

The Temperature was: 5

The Boltzmann Constant was: 0.245

The Interval Weight was: 0.2

The Neighborhood Selection Method Chosen was: Square Root

The Annealing Schedule was: Exponential

The relevant Annealing Constant was: 0.95

The probability method chosen was: Metropolis

The termination temperature set was: 0.1

The cost function chosen was: Random Interpolation

The optimal input found was: -3.91731183007

The maximum value found was: 4.72582418859

The optima reached was: Local
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3.2.5 5th Simulation Run
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Figure 3.6: Results of 5th Experiment

The Temperature was: 1

The Boltzmann Constant was: 0.245

The Interval Weight was: 0.04

The Neighborhood Selection Method Chosen was: Square Root

The Annealing Schedule was: Exponential

The relevant Annealing Constant was: 0.95

The probability method chosen was: Metropolis

The termination temperature set was: 0.1

The cost function chosen was: Random Interpolation

The optimal input found was: 8.36686935583

The maximum value found was: 4.83238399159

The optima reached was: Global
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3.2.6 6th Simulation Run
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Figure 3.7: Results of 6th Experiment

The Temperature was: 10

The Boltzmann Constant was: 0.245

The Interval Weight was: 0.04

The Neighborhood Selection Method Chosen was: Square Root

The Annealing Schedule was: Exponential

The relevant Annealing Constant was: 0.95

The probability method chosen was: Alternate

The termination temperature set was: 0.1

The cost function chosen was: Random Interpolation

The optimal input found was: 8.19310048306

The maximum value found was: 4.96191639881

The optima reached was: Global
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3.2.7 7th Simulation Run
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Figure 3.8: Results of 7th Experiment

The Temperature was: 5

The Boltzmann Constant was: 0.245

The Interval Weight was: 0.02

The Neighborhood Selection Method Chosen was: Square Root

The Annealing Schedule was: Exponential

The relevant Annealing Constant was: 0.95

The probability method chosen was: Alternate

The termination temperature set was: 0.1

The cost function chosen was: Random Interpolation

The optimal input found was: 8.26344538045

The maximum value found was: 4.93879936195

The optima reached was: Global



26 CHAPTER 3. RESULTS

3.2.8 8th Simulation Run
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Figure 3.9: Results of 8th Experiment

The Temperature was: 1

The Boltzmann Constant was: 0.245

The Interval Weight was: 0.04

The Neighborhood Selection Method Chosen was: Square Root

The Annealing Schedule was: Exponential

The relevant Annealing Constant was: 0.95

The probability method chosen was: Alternate

The termination temperature set was: 0.1

The cost function chosen was: Random Interpolation

The optimal input found was: 2.38064428537

The maximum value found was: 3.55647132056

The optima reached was: Local
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3.2.9 9th Simulation Run
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Figure 3.10: Results of 9th Experiment

The Temperature was: 10

The Boltzmann Constant was: 0.245

The Interval Weight was: 0.5

The Neighborhood Selection Method Chosen was: Linear

The Annealing Schedule was: Exponential

The relevant Annealing Constant was: 0.95

The probability method chosen was: Metropolis

The termination temperature set was: 0.1

The cost function chosen was: Random Interpolation

The optimal input found was: 8.29950940596

The maximum value found was: 4.91110900971

The optima reached was: Global
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3.2.10 10th Simulation Run
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Figure 3.11: Results of 10th Experiment

The Temperature was: 5

The Boltzmann Constant was: 0.245

The Interval Weight was: 1.0

The Neighborhood Selection Method Chosen was: Linear

The Annealing Schedule was: Exponential

The relevant Annealing Constant was: 0.95

The probability method chosen was: Metropolis

The termination temperature set was: 0.1

The cost function chosen was: Random Interpolation

The optimal input found was: 2.50249440476

The maximum value found was: 3.6303864234

The optima reached was: Local
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3.2.11 11th Simulation Run
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Figure 3.12: Results of 11th Experiment

The Temperature was: 1

The Boltzmann Constant was: 0.245

The Interval Weight was: 5.0

The Neighborhood Selection Method Chosen was: Linear

The Annealing Schedule was: Exponential

The relevant Annealing Constant was: 0.95

The probability method chosen was: Metropolis

The termination temperature set was: 0.1

The cost function chosen was: Random Interpolation

The optimal input found was: -3.88278730133

The maximum value found was: 4.71396455154

The optima reached was: Local
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3.2.12 12th Simulation Run
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Figure 3.13: Results of 12th Experiment

The Temperature was: 10

The Boltzmann Constant was: 0.245

The Interval Weight was: 0.5

The Neighborhood Selection Method Chosen was: Linear

The Annealing Schedule was: Exponential

The relevant Annealing Constant was: 0.95

The probability method chosen was: Alternate

The termination temperature set was: 0.1

The cost function chosen was: Random Interpolation

The optimal input found was: 8.24916033885

The maximum value found was: 4.9468572584

The optima reached was: Global
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3.2.13 13th Simulation Run
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Figure 3.14: Results of 13th Experiment

The Temperature was: 5

The Boltzmann Constant was: 0.245

The Interval Weight was: 1.0

The Neighborhood Selection Method Chosen was: Linear

The Annealing Schedule was: Exponential

The relevant Annealing Constant was: 0.95

The probability method chosen was: Alternate

The termination temperature set was: 0.1

The cost function chosen was: Random Interpolation

The optimal input found was: 5.99006003943

The maximum value found was: 4.84934812591

The optima reached was: Local
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3.2.14 14th Simulation Run
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Figure 3.15: Results of 14th Experiment

The Temperature was: 1

The Boltzmann Constant was: 0.245

The Interval Weight was: 5.0

The Neighborhood Selection Method Chosen was: Linear

The Annealing Schedule was: Exponential

The relevant Annealing Constant was: 0.95

The probability method chosen was: Alternate

The termination temperature set was: 0.1

The cost function chosen was: Random Interpolation

The optimal input found was: 5.81446248631

The maximum value found was: 4.84908964862

The optima reached was: Local
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3.2.15 15th Simulation Run
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Figure 3.16: Results of 15th Experiment

The Temperature was: 10

The Boltzmann Constant was: 0.245

The Interval Weight was: 0.05

The Neighborhood Selection Method Chosen was: Squared

The Annealing Schedule was: Exponential

The relevant Annealing Constant was: 0.95

The probability method chosen was: Metropolis

The termination temperature set was: 0.1

The cost function chosen was: Random Interpolation

The optimal input found was: 8.17734638299

The maximum value found was: 4.96125587134

The optima reached was: Global
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3.2.16 16th Simulation Run
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Figure 3.17: Results of 16th Experiment

The Temperature was: 5

The Boltzmann Constant was: 0.245

The Interval Weight was: 0.2

The Neighborhood Selection Method Chosen was: Squared

The Annealing Schedule was: Exponential

The relevant Annealing Constant was: 0.95

The probability method chosen was: Metropolis

The termination temperature set was: 0.1

The cost function chosen was: Random Interpolation

The optimal input found was: 5.92454497566

The maximum value found was: 4.88964836538

The optima reached was: Local
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3.2.17 17th Simulation Run
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Figure 3.18: Results of 17th Experiment

The Temperature was: 1

The Boltzmann Constant was: 0.245

The Interval Weight was: 5.0

The Neighborhood Selection Method Chosen was: Squared

The Annealing Schedule was: Exponential

The relevant Annealing Constant was: 0.95

The probability method chosen was: Metropolis

The termination temperature set was: 0.1

The cost function chosen was: Random Interpolation

The optimal input found was: 3.63840734657

The maximum value found was: 1.59143401283

The optima reached was: Nonoptimal
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3.2.18 18th Simulation Run
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Figure 3.19: Results of 18th Experiment

The Temperature was: 10

The Boltzmann Constant was: 0.245

The Interval Weight was: 0.05

The Neighborhood Selection Method Chosen was: Squared

The Annealing Schedule was: Exponential

The relevant Annealing Constant was: 0.95

The probability method chosen was: Alternate

The termination temperature set was: 0.1

The cost function chosen was: Random Interpolation

The optimal input found was: 5.84291572758

The maximum value found was: 4.87167478904

The optima reached was: Local
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3.2.19 19th Simulation Run
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Figure 3.20: Results of 19th Experiment

The Temperature was: 5

The Boltzmann Constant was: 0.245

The Interval Weight was: 0.2

The Neighborhood Selection Method Chosen was: Squared

The Annealing Schedule was: Exponential

The relevant Annealing Constant was: 0.95

The probability method chosen was: Alternate

The termination temperature set was: 0.1

The cost function chosen was: Random Interpolation

The optimal input found was: -9.04789162475

The maximum value found was: 4.25423352425

The optima reached was: Local
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3.2.20 20th Simulation Run
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Figure 3.21: Results of 20th Experiment

The Temperature was: 1

The Boltzmann Constant was: 0.245

The Interval Weight was: 5.0

The Neighborhood Selection Method Chosen was: Squared

The Annealing Schedule was: Exponential

The relevant Annealing Constant was: 0.95

The probability method chosen was: Alternate

The termination temperature set was: 0.1

The cost function chosen was: Random Interpolation

The optimal input found was: 5.17406360604

The maximum value found was: 2.96278314043

The optima reached was: Local
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3.2.21 21st Simulation Run
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Figure 3.22: Results of 21st Experiment

The Temperature was: 10

The Boltzmann Constant was: 0.245

The Interval Weight was: 5.5

The Neighborhood Selection Method Chosen was: Exponential

The Annealing Schedule was: Exponential

The relevant Annealing Constant was: 0.95

The probability method chosen was: Metropolis

The termination temperature set was: 0.1

The cost function chosen was: Random Interpolation

The optimal input found was: 5.8349624473

The maximum value found was: 4.8661724921

The optima reached was: Local
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3.2.22 22nd Simulation Run
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Figure 3.23: Results of 22nd Experiment

The Temperature was: 5

The Boltzmann Constant was: 0.245

The Interval Weight was: 6.1

The Neighborhood Selection Method Chosen was: Exponential

The Annealing Schedule was: Exponential

The relevant Annealing Constant was: 0.95

The probability method chosen was: Metropolis

The termination temperature set was: 0.1

The cost function chosen was: Random Interpolation

The optimal input found was: -4.02034824486

The maximum value found was: 4.67704142695

The optima reached was: Local
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3.2.23 23rd Simulation Run
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Figure 3.24: Results of 23rd Experiment

The Temperature was: 1

The Boltzmann Constant was: 0.245

The Interval Weight was: 13.6

The Neighborhood Selection Method Chosen was: Exponential

The Annealing Schedule was: Exponential

The relevant Annealing Constant was: 0.95

The probability method chosen was: Metropolis

The termination temperature set was: 0.1

The cost function chosen was: Random Interpolation

The optimal input found was: 2.54326998373

The maximum value found was: 3.64055218711

The optima reached was: Local



42 CHAPTER 3. RESULTS

3.2.24 24th Simulation Run
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Figure 3.25: Results of 24th Experiment

The Temperature was: 10

The Boltzmann Constant was: 0.245

The Interval Weight was: 5.5

The Neighborhood Selection Method Chosen was: Exponential

The Annealing Schedule was: Exponential

The relevant Annealing Constant was: 0.95

The probability method chosen was: Alternate

The termination temperature set was: 0.1

The cost function chosen was: Random Interpolation

The optimal input found was: -3.78353911027

The maximum value found was: 4.61158829596

The optima reached was: Local
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3.2.25 25th Simulation Run

0 10 20 30 40 50 60 70 80
iteration

3

4

5

6

7

8

9

p
o
si

ti
o
n

Simulated Annealing Test

0 10 20 30 40 50 60 70 80
iteration

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

fi
tn

e
ss

Figure 3.26: Results of 25th Experiment

The Temperature was: 5

The Boltzmann Constant was: 0.245

The Interval Weight was: 6.1

The Neighborhood Selection Method Chosen was: Exponential

The Annealing Schedule was: Exponential

The relevant Annealing Constant was: 0.95

The probability method chosen was: Alternate

The termination temperature set was: 0.1

The cost function chosen was: Random Interpolation

The optimal input found was: 8.290748868

The maximum value found was: 4.91878894657

The optima reached was: Global
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3.2.26 26th Simulation Run
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Figure 3.27: Results of 26th Experiment

The Temperature was: 1

The Boltzmann Constant was: 0.245

The Interval Weight was: 13.6

The Neighborhood Selection Method Chosen was: Exponential

The Annealing Schedule was: Exponential

The relevant Annealing Constant was: 0.95

The probability method chosen was: Alternate

The termination temperature set was: 0.1

The cost function chosen was: Random Interpolation

The optimal input found was: 8.26080563276

The maximum value found was: 4.94041449576

The optima reached was: Global



3.2. RESULTS OF SIMULATION 45

3.2.27 27th Simulation Run
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Figure 3.28: Results of 27th Experiment

The Temperature was: 10

The Boltzmann Constant was: 0.245

The Interval Weight was: 127.0

The Neighborhood Selection Method Chosen was: Normal Distribution

The Annealing Schedule was: Exponential

The relevant Annealing Constant was: 0.95

The probability method chosen was: Alternate

The termination temperature set was: 0.1

The cost function chosen was: Random Interpolation

The optimal input found was: 6.03075787558

The maximum value found was: 4.7978270401

The optima reached was: Local
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3.2.28 28th Simulation Run
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Figure 3.29: Results of 28th Experiment

The Temperature was: 5

The Boltzmann Constant was: 0.245

The Interval Weight was: 63.6

The Neighborhood Selection Method Chosen was: Normal Distribution

The Annealing Schedule was: Exponential

The relevant Annealing Constant was: 0.95

The probability method chosen was: Alternate

The termination temperature set was: 0.1

The cost function chosen was: Random Interpolation

The optimal input found was: 8.12612264053

The maximum value found was: 4.94366208577

The optima reached was: Global
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3.2.29 29th Simulation Run
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Figure 3.30: Results of 29th Experiment

The Temperature was: 1

The Boltzmann Constant was: 0.245

The Interval Weight was: 20.7

The Neighborhood Selection Method Chosen was: Normal Distribution

The Annealing Schedule was: Exponential

The relevant Annealing Constant was: 0.95

The probability method chosen was: Alternate

The termination temperature set was: 0.1

The cost function chosen was: Random Interpolation

The optimal input found was: 5.74795311155

The maximum value found was: 4.76635076685

The optima reached was: Local
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3.2.30 30th Simulation Run
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Figure 3.31: Results of 30th Experiment

The Temperature was: 10

The Boltzmann Constant was: 0.245

The Interval Weight was: 127.0

The Neighborhood Selection Method Chosen was: Normal Distribution

The Annealing Schedule was: Exponential

The relevant Annealing Constant was: 0.95

The probability method chosen was: Metropolis

The termination temperature set was: 0.1

The cost function chosen was: Random Interpolation

The optimal input found was: 6.10503840733

The maximum value found was: 4.65468377356

The optima reached was: Local
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3.2.31 31st Simulation Run
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Figure 3.32: Results of 31st Experiment

The Temperature was: 5

The Boltzmann Constant was: 0.245

The Interval Weight was: 63.6

The Neighborhood Selection Method Chosen was: Normal Distribution

The Annealing Schedule was: Exponential

The relevant Annealing Constant was: 0.95

The probability method chosen was: Metropolis

The termination temperature set was: 0.1

The cost function chosen was: Random Interpolation

The optimal input found was: 8.06337249662

The maximum value found was: 4.8885707594

The optima reached was: Global
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3.2.32 32nd Simulation Run
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Figure 3.33: Results of 32nd Experiment

The Temperature was: 1

The Boltzmann Constant was: 0.245

The Interval Weight was: 20.7

The Neighborhood Selection Method Chosen was: Normal Distribution

The Annealing Schedule was: Exponential

The relevant Annealing Constant was: 0.95

The probability method chosen was: Metropolis

The termination temperature set was: 0.1

The cost function chosen was: Random Interpolation

The optimal input found was: -3.95033095606

The maximum value found was: 4.72443970661

The optima reached was: Local
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3.3 General Remarks on Simulation Results

The only thing that needs to be determined for the analysis of these simulation
results is whether or not the run converges on the global maximum, on one of
the local maxima, or if it did not converge at all. Of these, only the 17th run
of the simulation did not converge to an optimal solution. This suggests that
for the given conditions of that particular run that convergence to an optimal
solution is unlikely.

For the rest, it seems that for higher temperatures that the algorithm is
likely to converge on the global optimum independent of the other choices that
are made. This suggests that temperature is the most important factor, along
with the termination condition, in determining whether or not the algorithm
will converge on the global maximum.

In addition, it was determined that the selection method for determining the
neighborhood that grew as a function of temperature (called the Normal Dis-
tribution method in the algorithm) converged to the global maximum the least
often. This motivated the abandoning of this neighborhood selection method in
the physical experiment algorithm.

3.4 Results of Physical Experiment

The algorithm that was written in Appendix B, with the corresponding module
for interaction with the Arduino defined in Appendix C, was used to obtain one
set of results for the physical experiment. The graphs showing the selection of
the method are shown after the logfile. The logfile from this experiment is:

These were the selections made for this experiment:
The Neighborhood Selection Method Chosen was: Square Root
The probability method chosen was: Metropolis
The number of pulses per pulse train was: 5
The number of experiments ran was: 1
The number of points of data the Arduino collected was: 20
For the 1st experiment, the optimal timing for the 1st element of the sequence

is: 1508
The corresponding maximum voltage attained for this is: 0.9814453125
For the 1st experiment, the optimal timing for the 2nd element of the se-

quence is: 3983
The corresponding maximum voltage attained for this is: 0.9716796875
For the 1st experiment, the optimal timing for the 3rd element of the se-

quence is: 2254
The corresponding maximum voltage attained for this is: 0.83984375
For the 1st experiment, the optimal timing for the 4th element of the se-

quence is: 3984
The corresponding maximum voltage attained for this is: 0.8642578125
For the 1st experiment, the optimal timing for the 5th element of the se-

quence is: 691
The corresponding maximum voltage attained for this is: 0.8837890625
For the 1st experiment, the optimal pulse train was: [1508, 3983, 2254, 3984,

691]
The corresponding fitness for this pulse train was: 0.8837890625
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Figure 3.34: 1st pulse timing selection
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Figure 3.35: 2nd pulse timing selection
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Figure 3.36: 3rd pulse timing selection
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Figure 3.37: 4th pulse timing selection
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Figure 3.38: 5th pulse timing selection

3.5 Analysis of Physical Experiment

For this experiment, the voltage was taken across the resistor. This means that
the voltage as a function of time is related to the first derivative of charge, which
means that the voltage behaves as a sine function allowing for our assumptions
about when the optimal time occurrs to be true. In addition, it can also be
assumed that there is no significant loss of charge from when the last pulse was
delivered to the system and when the measurement of the amplitude was taken.
Therefore, the charge after the previous pulse is assumed to be the charge present
when the voltage measurement was taken. We can use the established equations
in the Motivation section (specifically 1.35 and 1.36) in order to determine what
the charge is for that moment in time. From there we can obtain the electric
potential as a function of charge, and this can be used to find the potential
energy function for the LRC.

Using the Mathematica code in Appendix E with the results from this ex-
periment, a fit for the electric potential is obtained in Figure 3.39.
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Figure 3.39: Electric potential fit
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Chapter 4

Discussion

4.1 Conclusions

The experiment did perform within expectations. Either the solutions converged
to a timing near the optimal predicted timing of approximately 1000µs, the
period of the oscillator, near some integer multiple of the optimal timing, or they
were in the vicinity of approaching such a timing as can be seen in the graph
in Figure 4.1. This demonstrates that, with some further iterations included
in the algorithm, the algorithm is capable of approaching optimal solutions for
physical systems.
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Figure 4.1: Plot of voltage for this LRC

However, this particular version of the experiment did not perform well at
obtaining the necessary data for finding a fit for the potential energy. The
charge data acquired from the timing was not good for determining a potential
fit for this experiment. However, because we can obtain fitness amplitude mea-
surements using this methodology there is still potential for this methodology
to find the potential energy function if the timing can be assessed properly.
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4.2 Next Steps With this Methodology

Some of the next steps with this particular methodology would be to test the
various combinations of neighborhood selection and selection probability as was
done in the simulations. Then it could be determined whether or not certain
selections of this method are better or worse for this particular experiment.

In addition, this methodology either needs to be able to determine the timing
at which a measurement was taken, or it needs to be applied to a different
oscillator. This timing information is critical to determining the potential energy
function, especially with regards to determining the charge. If it turns out
that this particular experiment is not designed properly with regards to this
particular oscillator, then it needs to be adjusted for a different oscillator. One
example of a different oscillator that could be used is with a magnetic pendulum,
and instead of finding the current voltage the experiment could keep track of
the angular position.

4.3 Future Directions

Future applications of a similar methodology would involve various other types
of oscillators that require different hardware and software capabilities, and for
this methodology to be used in conjunction with another optimization method
for when this method alone does not suffice for a particular problem.

One of the future applications intended for this method is to use it to find an
optimal sequence of ultrafast laser pulses for exciting a particular crystal. These
crystals have potential energy functions associated with them that are currently
unknown. However, this experiment can be used to find the potential energy
function using an analysis process similar to what is outlined in the motivation
section.

However, for this particular problem sometimes it takes more than a few laser
pulses before some sort of measurable oscillation happens. For this situation, it
would be more than appropriate to use a genetic algorithm to find the optimal
timings for the first few pulses. After that, this simulated annealing method
can continue to build up the sequence pulse by pulse, allowing us to acquire the
amplitude information after each pulse in the sequence afterwards. This will
allow for us to determine the potential energy function of the crystal.



Appendix A

Simulated Annealing Test
Algorithm

1 from pylab import ∗ #For p l o t t i n g
2 import math #For c a l l i n g var i ous f unc t i on s
3 import random #For gene ra t i on o f pseudorandom numbers
4 import numpy as np #Numerical l i b r a r y
5 import s c ipy #S c i e n t i f i c computation l i b r a r y
6 import s c ipy . i n t e r p o l a t e #For the i n t e r p o l a t i o n func t i on
7 import matp lo t l i b . pyplot as p l t #Also f o r p l o t t i n g
8 import csv #For the gene ra t i on o f . csv f i l e s
9 import sys #For f i l e wr i t i ng

10
11 ”””
12 The f o l l ow i ng three l i n e s d e f i n e an i n t e r p o l a t i n g func t i on over

the range
13 −10 to 10 . The i n t e r p o l a t i o n method i s 1D cubic , and t h i s func t i on

cannot
14 be eva luated out s id e o f the bounds .
15 ”””
16 in t e rpo l a t i onX = [−10.0 , −9.0 , −8.0 , −7.0 , −6.0 , −5.0 , −4.0 , −3.0 ,

−2.0 , −1.0 , 0 . 0 , 1 . 0 , 2 . 0 , 3 . 0 , 4 . 0 , 5 . 0 , 6 . 0 , 7 . 0 , 8 . 0 , 9 . 0 ,
1 0 . 0 ]

17 in t e rpo l a t i onY = [1 .4125429788401118 , 4 .2303586635432469 ,
2 .9150883719169718 , 2 .4927172814567351 , 1 .0656216430970016 ,
0 .96046262410472871 , 4 .6972935801324649 , 2 .3895126263029107 ,
2 .3922138420600785 , 2 .3834152342501835 , 1 .4678720026242216 ,
0 .21532145496108546 , 2 .9089386977089138 , 3 .2503152700752054 ,
0 .87631644883654436 , 2 .3113950122881244 , 4 .8386630886391035 ,
1 .9046074692601027 , 4 .7934041954114956 , 2 .8450389093210138 ,
1 .3939939155628545 ]

18 in t e rpo la t edFunct i on = sc ipy . i n t e r p o l a t e . in te rp1d ( inte rpo la t i onX ,
in te rpo la t i onY , kind=’ cubic ’ , bounds er ror=True )

19
20
21 ”””
22 The f o l l ow i ng de f commands e s t a b l i s h a s e t o f u s e f u l f un c t i on s
23 f o r the s imulated annea l ing a lgor i thm .
24 ”””
25 #Def ine s the Boltzmann d i s t rubut i on func t i on f o r va r i ous

p r obab i l i t y computations
26 de f boltzmann (x , y ,T, k ) :
27 d i f f e r e n c e = y − x

59
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28 d i v i s o r = k ∗ T
29 p = f l o a t ( d i f f e r e n c e ) / f l o a t ( d i v i s o r )
30 p r obab i l i t y = math . exp (p)
31 re turn p r obab i l i t y
32
33 #Def ine s the p r obab i l i t y func t i on from the standard Metropo l i s

a lgor i thm
34 de f prob1 (x , y ,T, k ) :
35 i f x < y :
36 re turn 1
37 e l s e :
38 a = boltzmann (x , y ,T, k )
39 re turn a
40
41 ”””
42 This d e f i n e s an a l t e r n a t e p r obab i l i t y func t i on where be t t e r

gue s s e s are kept
43 most o f the time , but not a l l o f the time . This p r obab i l i t y f o r

the be t t e r
44 gue s s e s i s equal to one minus the p r obab i l i t y o f keeping a worse

guess that
45 has the same d i f f e r e n c e in f i t n e s s from the cur rent bes t guess .
46 ”””
47 de f prob2 (x , y ,T, k ) :
48 i f x < y :
49 a = boltzmann (y , x ,T, k )
50 a = 1−a
51 re turn a
52 e l s e :
53 a = boltzmann (x , y ,T, k )
54 re turn a
55
56 #Allows the user to choose which p r obab i l i t y func t i on w i l l be used

during the round
57 de f prob (x , y ,T, k , cho i c e ) :
58 i f ( cho i c e == ’ Metropo l i s ’ ) :
59 p = prob1 (x , y ,T, k )
60 re turn p
61 e l i f ( cho i c e == ’ Al te rnate ’ ) :
62 p = prob2 (x , y ,T, k )
63 re turn p
64
65 #Gaussian f i t n e s s func t i on f o r t e s t s i nvo l v i ng a s i n g l e maximum
66 de f f 1 ( x ) :
67 p = math . pow(x , 2 )
68 p = −p
69 p = p / 25
70 f i t = math . exp (p)
71 re turn f i t
72
73 #The above i n t e r p o l a t ed func t i on i s c a l l e d f o r t e s t s i nvo l v i ng

mu l t ip l e maxima
74 de f f 2 ( x ) :
75 f i t = in t e rpo la t edFunct i on (x )
76 f i t = f l o a t ( f i t )
77 re turn f i t
78
79 #Lets the user s e l e c t the f i t n e s s func t i on f o r a g iven run
80 de f f (x , cho i c e ) :
81 i f ( cho i c e == ’ Gaussian ’ ) :
82 f i t = f1 (x )
83 re turn f i t
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84 e l i f ( cho i c e == ’Random In t e r p o l a t i o n ’ ) :
85 f i t = f2 (x )
86 re turn f i t
87
88 #Square root neighbourhood s e l e c t i o n method
89 de f l im i tF inde r1 (T,m) :
90 a = T / m
91 a = math . s q r t ( a )
92 re turn a
93
94 #Linear neighbourhood s e l e c t i o n method
95 de f l im i tF inde r2 (T,m) :
96 a = m ∗ T
97 return a
98
99 #Squared neighbourhood s e l e c t i o n method

100 de f l im i tF inde r3 (T,m) :
101 a = T ∗ T
102 a = a / m
103 return a
104
105 #Exponent ia l neighbourhood s e l e c t i o n method
106 de f l im i tF inde r4 (T,m) :
107 a = 1 / T
108 a = math . exp(−a )
109 a = m ∗ a
110 re turn a
111
112 #Normal d i s t r i b u t i o n neighbourhood s e l e c t i o n method
113 de f l im i tF inde r5 (T,m) :
114 a = 2 ∗ T ∗ T
115 a = 1 / a
116 a = math . exp(−a )
117 tau = 2 ∗ pi
118 s = math . s q r t ( tau )
119 s = T ∗ s
120 c = m / s
121 a = a ∗ c
122 re turn a
123
124 #Allows the user to s e l e c t which neighbourhood s e l e c t i o n method to

use
125 de f l im i tF inde r (T,m, i n t e rva lCho i c e ) :
126 i f ( i n t e rva lCho i c e == ’ Constant ’ ) :
127 l im i t = m
128 return l im i t
129 e l i f ( i n t e rva lCho i c e == ’ Square Root ’ ) :
130 l im i t = l im i tF inde r1 (T,m)
131 re turn l im i t
132 e l i f ( i n t e rva lCho i c e == ’ Linear ’ ) :
133 l im i t = l im i tF inde r2 (T,m)
134 re turn l im i t
135 e l i f ( i n t e rva lCho i c e == ’ Squared ’ ) :
136 l im i t = l im i tF inde r3 (T,m)
137 re turn l im i t
138 e l i f ( i n t e rva lCho i c e == ’ Exponent ia l ’ ) :
139 l im i t = l im i tF inde r4 (T,m)
140 re turn l im i t
141 e l i f ( i n t e rva lCho i c e == ’Normal D i s t r i bu t i on ’ ) :
142 l im i t = l im i tF inde r5 (T,m)
143 re turn l im i t
144
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145 #Generates a new guess that i s a ”mutation” o f the cur rent bes t
guess

146 de f mutator (x , l im i t ) :
147 whi le (True ) :
148 whi l e (True ) :#Does not a l low a change o f 0
149 change = random . uniform(− l im i t , l im i t )
150 i f change != 0 :
151 break
152 new = f l o a t ( x ) + change
153 i f (new < −10 or new > 10) :#Only gue s s e s with in the bounds

are chosen
154 cont inue
155 e l s e :
156 break
157 re turn new
158
159 #Allows the user to choose the annea l ing schedu le
160 de f annealSchedule (T, const , cho i c e ) :
161 i f ( cho i c e == ’ Exponent ia l ’ ) :#Exponent ia l annea l ing schedu le
162 a = const ∗ T
163 return a
164 e l i f ( cho i c e == ’ Linear ’ ) :#Linear annea l ing schedu le
165 a = T − const
166 re turn a
167
168 p r i n t ”Set Temperature”
169 T = raw input ( ) #The user s e t s the temperature at the beg inning o f

the run
170 p r i n t ”Set Boltzmann Constant”
171 k = raw input ( ) #The user s e t s the Boltzmann Constant f o r the

p r obab i l i t y d i s t r i b u t i o n func t i on
172 p r i n t ”Set Neighbourhood Constant”
173 m = raw input ( ) #The user s e t s the Neighbourhood Constant f o r a

g iven problem
174 p r i n t ”Choose Neighbourhood S e l e c t i o n Method ( Constant , Square

Root , Linear , Squared , Exponent ia l or Normal D i s t r i bu t i on ) ”
175 cho i c e = raw input ( ) #The user s e t s the neighbourhood s e l e c t i o n

method
176 p r i n t ”Set Schedule Constant”
177 scheduleConst = raw input ( ) #The user s e t s the constant f o r the

annea l ing schedu le
178 p r i n t ”Choose Annealing Schedule ( Exponent ia l or Linear ) ”
179 scheduleChoice = raw input ( ) #The user chooses the annea l ing

schedu le
180 p r i n t ”Choose Probab i l i t y Method ( Metropo l i s or Al te rnate ) ”
181 probChoice = raw input ( ) #The user chooses the s e l e c t i o n

p r obab i l i t y method
182 p r i n t ”Choose F i tne s s Function ( Gaussian or Random In t e r p o l a t i o n ) ”
183 f i tCho i c e = raw input ( ) #The user s e l e c t s which f i t n e s s func t i on

to exp lo r e
184 p r i n t ”Set te rminat ion cond i t i on ”
185 termin = raw input ( ) #The user s e t s the te rminat ion cond i t i on f o r

the a lgor i thm
186 p r i n t ”Set f i l e names”
187 fNameBase = raw input ( ) #The user s e t s the name base f o r the f i l e s

generated
188
189 #Conversion to appropr ia te types from raw input ( )
190 T = f l o a t (T)
191 k = f l o a t ( k )
192 m = f l o a t (m)
193 cho i c e = s t r ( cho i c e )



63

194 scheduleConst = f l o a t ( scheduleConst )
195 scheduleChoice = s t r ( scheduleChoice )
196 probChoice = s t r ( probChoice )
197 f i tCho i c e = s t r ( f i tCho i c e )
198 termin = f l o a t ( termin )
199 fNameBase = s t r ( fNameBase )
200 T i n i t i a l = T #Saves the i n i t i a l temperature f o r a l og f i l e
201
202 #I n i t i a l i z e s the f i g u r e
203 f i g = p l t . f i g u r e ( )
204 ax = f i g . add subplot (211)
205 ay = f i g . add subplot (212)
206 x , y , z = [ ] , [ ] , [ ] #Empty l i s t s f o r s t o r i n g data
207 n=1 #Creates a counter
208
209 bestGuess = random . rand int (−10 ,10) #Makes a random in t e g e r guess

in the range
210 be s tF i tn e s s = f ( bestGuess , f i tCho i c e ) #Computes the f i t n e s s
211
212 #The f o l l ow i n g i s the main s imulated annea l ing loop
213 whi l e (T > termin ) : #Runs f o r as long as T i s g r e a t e r than the

te rminat ion cond i t i on
214 l im = l im i tF inde r (T,m, cho i c e ) #Finds the l im i t s o f the

neighbourhood
215 guess = mutator ( bestGuess , l im ) #Finds a new guess
216 f i t n e s s = f ( guess , f i tCho i c e ) #Computes the new f i t n e s s
217 #Computes the p r obab i l i t y o f keeping the guess
218 maybeKeep = prob ( be s tF i tne s s , f i t n e s s ,T, k , probChoice )
219 t e s t = random . random ( ) #Generates a random f l o a t from 0 to 1
220 x . append (n) #Appends the cur rent count to the l i s t x
221 i f (maybeKeep >= t e s t ) : #I f t h i s t e s t i s t rue we keep the new

guess
222 y . append ( guess ) #Saves the guess to the l i s t y
223 z . append ( f i t n e s s ) #Saves the f i t n e s s to the l i s t z
224 bestGuess = guess #The new guess i s now the guess that i s

kept
225 be s tF i tn e s s = f i t n e s s #The new f i t n e s s i s saved
226 e l s e : #I f the t e s t was f a l s e we d i s r e ga rd the new guess
227 y . append ( bestGuess ) #The cur rent bestGuess i s saved to y
228 z . append ( be s tF i tn e s s ) #The cur rent b e s tF i tn e s s i s saved to

z
229 n+=1 #Increments the count by 1
230 #Changes the temperature in accordance with the annea l ing

schedu le
231 T = annealSchedule (T, scheduleConst , scheduleChoice )
232
233 ”””
234 The f o l l ow i ng gene ra t e s a . pdf with two graphs . The f i r s t graph

repre s en ted by the
235 subplot ax i s a graph o f the guess with r e sp e c t to the i t e r a t i o n .

The second graph
236 repre s en ted by the subplot ay i s a graph o f the f i t n e s s with

r e sp e c t to the i t e r a t i o n .
237 ”””
238 ax . p l o t (x , y )
239 ax . g r id ( )
240 ax . s e t x l a b e l ( ’ i t e r a t i o n ’ )
241 ax . s e t y l a b e l ( ’ p o s i t i o n ’ )
242 ay . p l o t (x , z )
243 ay . g r id ( )
244 ay . s e t x l a b e l ( ’ i t e r a t i o n ’ )
245 ay . s e t y l a b e l ( ’ f i t n e s s ’ )
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246 ax . s e t t i t l e ( ’ Simulated Annealing Test ’ )
247 graphName = fNameBase + ’ . pdf ’
248 p l t . s a v e f i g ( graphName)
249 #The f o l l ow i n g wr i t e s a . csv f i l e with the data f o r f u r t h e r

an a l y s i s in Mathematica i f so d e s i r ed
250 dataLogName = fNameBase + ’ . csv ’
251 with open (dataLogName , ’w ’ ) as da taF i l e :
252 #This e s t a b i l i s h e s the formatt ing o f the . csv and how en t r i e s

are d iv ided
253 dataWriter = csv . wr i t e r ( dataFi l e , d e l im i t e r=’ , ’ , quotechar=’ | ’

, quot ing=csv .QUOTEMINIMAL)
254 c = 0
255 #This names the columns o f the . csv
256 dataWriter . writerow ( [ ’ I t e r a t i o n ’ , ’ Best Guess ’ , ’ F i tne s s ’ ] )
257 whi le ( c < l en (y ) ) :
258 #This grabs a l l e lements o f the l i s t s and wr i t e s them to

t h e i r
259 #r e s p e c t i v e columns in the . csv
260 gue s sS t r i ng = s t r ( y [ c ] )
261 i t e r S t r i n g = s t r ( x [ c ] )
262 f i t n e s s S t r i n g = s t r ( z [ c ] )
263 dataWriter . writerow ( [ i t e r S t r i n g , gues sSt r ing , f i t n e s s S t r i n g

] )
264 c+=1
265
266 #This shows the user the r e s u l t s o f the run and a l l ows the user to

wr i t e
267 #commentary that w i l l be saved in the l o g f i l e
268 p r i n t ”The optimal input f o r our co s t func t i on i s : ”
269 p r i n t bestGuess
270 p r i n t ”The optimal f i t n e s s i s : ”
271 p r i n t b e s tF i tn e s s
272 p r i n t ” State Commentary Here”
273 Commentary = raw input ( )
274 #Al l o f t h i s c r e a t e s the s t r i n g that w i l l be wr i t t en to the

l o g f i l e
275 docStr ing = ’The Temperature was : ’
276 docStr ing += s t r ( T i n i t i a l ) + ’ \n ’
277 docStr ing += ’The Boltzmann Constant was : ’
278 docStr ing += s t r ( k ) + ’ \n ’
279 docStr ing += ’The Neighbourhood Constant was : ’
280 docStr ing += s t r (m) + ’ \n ’
281 docStr ing += ’The Neighbourhood S e l e c t i o n Method Chosen was : ’
282 docStr ing += cho i c e + ’ \n ’
283 docStr ing += ’The Annealing Schedule was : ’
284 docStr ing += scheduleChoice + ’ \n ’
285 docStr ing += ’The r e l e van t Annealing Constant was : ’
286 docStr ing += s t r ( scheduleConst ) + ’ \n ’
287 docStr ing += ’The p r obab i l i t y method chosen was : ’
288 docStr ing += probChoice + ’ \n ’
289 docStr ing += ’The terminat ion temperature s e t was : ’
290 docStr ing += s t r ( termin ) + ’ \n ’
291 docStr ing += ’The co s t func t i on chosen was : ’
292 docStr ing += f i tCho i c e + ’ \n ’
293 docStr ing += ’The optimal input found was : ’
294 docStr ing += s t r ( bestGuess ) + ’ \n ’
295 docStr ing += ’The maximum value found was : ’
296 docStr ing += s t r ( b e s tF i t n e s s ) + ’ \n ’
297 docStr ing += ’Commentary :\n ’
298 docStr ing += s t r (Commentary )
299 docFileName = fNameBase + ’ . txt ’
300
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301 #This wr i t e s the l o g f i l e
302 with open ( docFileName , ’w ’ ) as l o gF i l e :
303 l o gF i l e . wr i t e ( docStr ing )
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Appendix B

Main Experiment Python
Code

1 #Imports the nece s sa ry l i b r a r i e s
2 import time
3 #For pauses
4 import s e r i a l
5 #For s e r i a l communication
6 import s t r i n g
7 #For manipulat ing s t r i n g s
8 from pylab import ∗
9 #For graphs

10 import math
11 #To inc lude some key func t i on s
12 import numpy as np
13 import s c ipy
14 import s c ipy . i n t e r p o l a t e
15 import matp lo t l i b . pyplot as p l t
16 #For p l o t t i n g
17 import csv
18 #For making . csv f i l e s
19 import sys
20 #For read ing / wr i t i ng f i l e s
21 import arduinoFitnessModule as AF
22 #For the f i t n e s s func t i on
23 import random
24 #For gene ra t ing random numbers
25
26 #Def ine s the boltzmann d i s t r i b u t i o n func t i on
27 de f boltzmann (x , y ,T) :
28 d i f f e r e n c e = y − x
29 d i v i s o r = 0.245 ∗ T
30 p = f l o a t ( d i f f e r e n c e ) / d i v i s o r
31 p r obab i l i t y = math . exp (p)
32 re turn p r obab i l i t y
33
34 #Def ine s the Metropo l i s p r obab i l i t y func t i on
35 de f prob1 (x , y ,T) :
36 i f x < y :
37 re turn 1
38 e l s e :
39 a = boltzmann (x , y ,T)
40 re turn a

67
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41
42 #Def ine s an a l t e r n a t e p r obab i l i t y func t i on
43 de f prob2 (x , y ,T) :
44 i f x < y :
45 a = boltzmann (y , x ,T)
46 a = 1−a
47 re turn a
48 e l s e :
49 a = boltzmann (x , y ,T)
50 re turn a
51
52 #Allows the user to choose between two p r obab i l i t y f unc t i on s
53 de f prob (x , y ,T, cho i c e ) :
54 i f ( cho i c e == ’ Metropo l i s ’ ) :
55 p = prob1 (x , y ,T)
56 re turn p
57 e l i f ( cho i c e == ’ Al te rnate ’ ) :
58 p = prob2 (x , y ,T)
59 re turn p
60
61 #Square Root s e l e c t i o n method
62 de f l im i tF inde r1 (T) :
63 a = T / 0.000004
64 a = math . s q r t ( a )
65 re turn a
66
67 #Linear s e l e c t i o n method
68 de f l im i tF inde r2 (T) :
69 a = 150 .0 ∗ T
70 return a
71
72 #Squared s e l e c t i o n method
73 de f l im i tF inde r3 (T) :
74 a = T ∗ T
75 a = a / 0 .067
76 re turn a
77
78 #Exponent ia l s e l e c t i o n method
79 de f l im i tF inde r4 (T) :
80 a = 1 / T
81 a = math . exp(−a )
82 a = 1657.76 ∗ a
83 re turn a
84
85 #Def ine s the user ’ s cho i c e o f neighborhood s e l e c t i o n method
86 de f l im i tF inde r (T, i n t e rva lCho i c e ) :
87 i f ( i n t e rva lCho i c e == ’ Constant ’ ) :
88 l im i t = 750 .0
89 re turn l im i t
90 e l i f ( i n t e rva lCho i c e == ’ Square Root ’ ) :
91 l im i t = l im i tF inde r1 (T)
92 re turn l im i t
93 e l i f ( i n t e rva lCho i c e == ’ Linear ’ ) :
94 l im i t = l im i tF inde r2 (T)
95 re turn l im i t
96 e l i f ( i n t e rva lCho i c e == ’ Squared ’ ) :
97 l im i t = l im i tF inde r3 (T)
98 re turn l im i t
99 e l i f ( i n t e rva lCho i c e == ’ Exponent ia l ’ ) :

100 l im i t = l im i tF inde r4 (T)
101 re turn l im i t
102
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103 #Se l e c t s new s o l u t i o n from the neighborhood
104 de f mutator (x , l im i t ) :
105 whi l e (True ) :
106 whi le (True ) :
107 change = random . uniform(− l im i t , l im i t )
108 change = round ( change , 0)
109 i f change != 0 :
110 break
111 new = f l o a t ( x ) + change
112 new = in t (new)
113 i f (new < 100 or new > 6000) :
114 cont inue
115 e l s e :
116 break
117 re turn new
118
119 #This i s used in the wr i t i ng o f l og f i l e s
120 de f i t e r a t i o n (n) :
121 i f (n == 1) :
122 re turn ’ s t ’
123 e l i f (n == 2) :
124 re turn ’nd ’
125 e l i f (n == 3) :
126 re turn ’ rd ’
127 e l s e :
128 re turn ’ th ’
129
130 #Def ine s the base temperature
131 Tbase = 10 .0
132 #Lets the user s e l e c t the neighborhood s e l e c t i o n method
133 p r i n t ”Choose I n t e r v a l S e l e c t i o n Method ( Constant , Square Root ,

Linear , Squared , or Exponent ia l ) ”
134 cho i c e = raw input ( )
135 #Lets the user s e l e c t the p r obab i l i t y method
136 p r i n t ”Choose Probab i l i t y Method ( Metropo l i s or Al te rnate ) ”
137 probChoice = raw input ( )
138 #Lets the user s e t the f i l e names f o r the experiment
139 p r i n t ”Set f i l e names”
140 fNameBase = raw input ( )
141 #Def ine s how many t imings in between pu l s e s w i l l be found
142 p r i n t ”How many pu l s e s in the pu l s e t r a i n ?”
143 pu l s e s = raw input ( )
144 #Def ine s how many exper iments the user wants to run
145 p r i n t ”How many times do you want to repeat the experiment f o r ?”
146 exper iments = raw input ( )
147 #Def ine s the number o f po in t s o f data c o l l e c t e d by the Arduino
148 p r i n t ”How many po in t s o f data should the Arduino c o l l e c t ?”
149 dataPoints = raw input ( )
150 #F i r s t part o f the log f i l e
151 docStr ing = ’ These were the s e l e c t i o n s made f o r t h i s experiment :\n

’
152 docStr ing += ’The Neighbourhood S e l e c t i o n Method Chosen was : ’
153 docStr ing += cho i c e + ’ \n ’
154 docStr ing += ’The p r obab i l i t y method chosen was : ’
155 docStr ing += probChoice + ’ \n ’
156 docStr ing += ’The number o f pu l s e s per pu l s e t r a i n was : ’
157 docStr ing += pu l s e s + ’ \n ’
158 docStr ing += ’The number o f exper iments ran was : ’
159 docStr ing += exper iments + ’ \n ’
160 docStr ing += ’The number o f po in t s o f data the Arduino c o l l e c t e d

was : ’
161 docStr ing += dataPoints + ’ \n ’
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162 #Converts some s t r i n g inputs from the raw input ( ) func t i on in to
the appropr ia t e types

163 pu l s e s = in t ( pu l s e s )
164 exper iments = in t ( exper iments )
165 dataPoints = in t ( dataPoints )
166 #Lets the user know that the parameters are s e t
167 p r i n t ”Parameters Set ”
168 #Sets the terminat ion cond i t i on
169 termin = 0 .1
170 #This f o r loop runs f o r as many times as the re are exper iments
171 f o r i in xrange (0 , exper iments ) :
172 #Prepares i n i t i a l guess
173 s o l = [ ]
174 experimentNumber = i + 1
175 #Lets the user know the experiment i s beg inning
176 p r i n t ”Experiment beg inning ”
177 #This loop s t r u c tu r e gene ra t e s the pu l s e t r a i n
178 f o r j in xrange (0 , pu l s e s ) :
179 #The temperature i s s e t to the base temperature
180 T = Tbase
181 #Se l e c t s a random guess from the s o l u t i o n space
182 bestGuess = mutator (3050 ,3000)
183 #Appends to the l i s t s o l the new guess
184 s o l . append ( bestGuess )
185 #Lets the user know the new guess i s be ing t r i e d
186 p r i n t ” t ry ing new guess ”
187 #Finds the f i t n e s s
188 be s tF i tn e s s = AF. ardu inoF i tne s s ( so l , dataPoints )
189 n = 1
190 #i n i t i a l i z e s a p l o t
191 f i g = p l t . f i g u r e ( )
192 ax = f i g . add subplot (211)
193 ay = f i g . add subplot (212)
194 x , y , z = [ ] , [ ] , [ ]
195 #Lets the user know that a s u c c e s s f u l arduino

communication has been made
196 p r i n t ”new guess t r i e d ”
197 #This loop s t r u c tu r e i s the s imulated annea l ing por t i on o f

the a lgor i thm
198 whi l e (T > termin ) :
199 #Finds the bounds o f the neighborhood
200 l im = l im i tF inde r (T, cho i c e )
201 #Finds the new guess
202 guess = mutator ( s o l [ j ] , l im )
203 #Creates a d i f f e r e n t l i s t to t ry new s o l u t i o n in
204 s o lT r i a l = s o l
205 s o lT r i a l [ j ] = guess
206 #Finds the f i t n e s s o f the l i s t
207 f i t n e s s = AF. ardu inoF i tne s s ( s o lT r i a l , dataPoints )
208 #Es t ab l i s h e s the s e l e c t i o n p r obab i l i t y
209 maybeKeep = prob ( be s tF i tne s s , f i t n e s s ,T, probChoice )
210 t e s t = random . random ( )
211 x . append (n)
212 #I f the t e s t i s s u c c e s s f u l , the new guess i s the new

best s o l u t i o n
213 i f (maybeKeep >= t e s t ) :
214 y . append ( guess )
215 z . append ( f i t n e s s )
216 bestGuess = guess
217 be s tF i t n e s s = f i t n e s s
218 s o l [ j ] = guess
219 #Otherwise , keep the o ld guess
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220 e l s e :
221 y . append ( bestGuess )
222 z . append ( be s tF i tn e s s )
223 n+=1
224 #Decrease the temperature
225 T = T ∗ 0 .95
226 #Plot s the graph o f the s e l e c t i o n proce s s o f the cur rent

l i s t element
227 ax . p l o t (x , y )
228 ax . g r id ( )
229 ax . s e t x l a b e l ( ’ i t e r a t i o n ’ )
230 ax . s e t y l a b e l ( ’ p o s i t i o n ’ )
231 ay . p l o t (x , z )
232 ay . g r id ( )
233 ay . s e t x l a b e l ( ’ i t e r a t i o n ’ )
234 ay . s e t y l a b e l ( ’ f i t n e s s ’ )
235 #Lets the user know the graph i s prepared
236 p r i n t ”graph prepared ”
237 pulseNumber = j + 1
238 t it leName = ’ S l e c t i o n proce s s o f element ’ + s t r (

pulseNumber )
239 ax . s e t t i t l e ( t i t leName )
240 t r i a lF i l eNames = fNameBase
241 t r i a lF i l eNames += ’ Experiment ’ + s t r ( experimentNumber )
242 t r i a lF i l eNames += ’ PulseSpacing ’ + s t r ( pulseNumber )
243 graphName = tr i a lF i l eNames + ’ . pdf ’
244 #Saves the graph
245 p l t . s a v e f i g ( graphName)
246 #Writes more o f the l o g f i l e
247 docStr ing += ’ For the ’ + s t r ( i +1) + i t e r a t i o n ( i +1)
248 docStr ing += ’ experiment , the optimal t iming f o r the ’
249 docStr ing += s t r ( j +1) + i t e r a t i o n ( j +1)
250 docStr ing += ’ element o f the sequence i s : ’
251 docStr ing += s t r ( bestGuess ) + ’ \n ’
252 docStr ing += ’The corre spond ing maximum vo l tage a t ta ined

f o r t h i s i s : ’
253 docStr ing += s t r ( b e s tF i t n e s s ) + ’ \n ’
254 p r i n t ”Writing Log F i l e s ”
255 dataLogName = tr i a lF i l eNames + ’ . csv ’
256 #Writes the raw data that was p l o t t ed in the graphs
257 with open (dataLogName , ’w ’ ) as da taF i l e :
258 dataWriter = csv . wr i t e r ( dataFi l e , d e l im i t e r=’ , ’ ,

quotechar=’ | ’ , quot ing=csv .QUOTEMINIMAL)
259 c = 0
260 dataWriter . writerow ( [ ’ I t e r a t i o n ’ , ’ Best Guess ’ , ’ F i tne s s

’ ] )
261 whi l e ( c < l en (y ) ) :
262 gue s sS t r i ng = s t r ( y [ c ] )
263 i t e r S t r i n g = s t r ( x [ c ] )
264 f i t n e s s S t r i n g = s t r ( z [ c ] )
265 dataWriter . writerow ( [ i t e r S t r i n g , gues sSt r ing ,

f i t n e s s S t r i n g ] )
266 c+=1
267 #Writes the r e s t o f the l o g f i l e f o r t h i s experiment
268 docStr ing += ’ For the ’ + s t r ( i +1) + i t e r a t i o n ( i +1)
269 docStr ing += ’ experiment , the optimal pu l s e t r a i n was : ’
270 docStr ing += s t r ( s o l ) + ’ \n ’
271 docStr ing += ’The corre spond ing f i t n e s s f o r t h i s pu l s e t r a i n

was : ’
272 docStr ing += s t r ( b e s tF i t n e s s ) + ’ \n ’
273 #Lets the user know that an experiment has been completed
274 p r i n t ”Experiment done”
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275 #Lets the user s ee the l o g f i l e and wr i t e commentary on i t
276 p r i n t docStr ing
277 p r i n t ” State commentary here ”
278 Commentary = raw input ( )
279 docStr ing += Commentary
280 docFileName = fNameBase + ’ . txt ’
281 #Writes the l o g f i l e
282 with open ( docFileName , ’w ’ ) as l o gF i l e :
283 l o gF i l e . wr i t e ( docStr ing )
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Arduino Module Code

1 #Import the s e r i a l l i b r a r y f o r i n t e r a c t i o n s with the s e r i a l port
2 import s e r i a l
3 #Import the t iming l i b r a r y f o r pauses
4 import time
5 #Import the s t r i n g l i b r a r y to manipulate s t r i n g s
6 import s t r i n g
7
8 #Def ine s the f i t n e s s func t i on
9 de f a rdu inoF i tne s s ( L i s t , po in t s ) :

10 #F i r s t we f i nd the l ength o f the l i s t g iven to the func t i on
11 l ength = len ( L i s t )
12 #Then we wr i t e the s t r i n g with the length , t iming l i s t , and

data po in t s
13 wr i t eS t r i ng = s t r ( l ength ) + s t r ( L i s t ) + s t r ( po in t s )
14 #Creates the s e r i a l ob j e c t arduino f o r i n t e r a c t i o n with the

Arduino
15 arduino = s e r i a l . S e r i a l ( port=’ /dev/cu . usbmodem621 ’ , baudrate

=115200 , t imeout=1)
16 #Gives the Arduino time to turn on
17 time . s l e e p (2 )
18 #Write the s t r i n g to Arduino
19 arduino . wr i t e ( wr i t eS t r i ng )
20 #Wait f o r experiment to complete
21 time . s l e e p ( 0 . 5 )
22 d = 0
23 dataL i s t = [ ]
24 #This loop s t r u c tu r e reads in the data
25 whi le (d < po in t s ) :
26 readIn = arduino . r e ad l i n e ( )
27 #The Arduino wr i t e s the cha ra c t e r s ’\ r \n ’ at the end o f

each s t r i n g i t wr i t e s to the computer . This removes
those cha ra c t e r s .

28 po int = s t r i n g . t r a n s l a t e ( readIn , None , d e l e t i o n s=’ \ r \n ’ )
29 #Generates the l i s t o f data po in t s
30 po int = in t ( po int )
31 dataL i s t . append ( po int )
32 d+=1
33 #We want to maximize the minimum amplitude a t ta ined
34 vo l tage = min ( dataL i s t )
35 #This i n t e r p r e t s the 10 b i t number as a vo l tage
36 vo l tage = f l o a t ( vo l tage ) / 1024 .0
37 vo l tage = vo l tage ∗ 5
38 vo l tage = vo l tage − 2 .5
39 vo l tage = abs ( vo l tage )
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40 #Close the s e r i a l ob j e c t arduino
41 arduino . c l o s e ( )
42 #Return the vo l tage to the l a r g e r program
43 return vo l tage
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Arduino Sketch Code

1 /∗ The setup ( ) por t i on o f the Arduino sketch d e f i n e s
2 events that w i l l happen upon the a c t i v a t i o n o f the Arduino ∗/
3 void setup ( ) {
4 // I n i t i a l i z e the s e r i a l port with a baud ra t e o f 115200
5 S e r i a l . begin (115200) ;
6 // Set d i g i t a l pin 5 to be an output
7 pinMode (5 , OUTPUT) ;
8 }
9

10 /∗ This func t i on d e f i n e s how a pu l s e i s d e l i v e r e d
11 during the experiment . ∗/
12 void pu l s e ( i n t pin , i n t time ) {
13 // Turns the pin on
14 d i g i t a lWr i t e ( pin , HIGH) ;
15 // Delays f o r an amount o f microseconds
16 de layMicroseconds ( time ) ;
17 // Turns the pin o f f a f t e r the time has passed
18 d i g i t a lWr i t e ( pin , LOW) ;
19 }
20
21 /∗ The loop ( ) por t i on o f the Arduino sketch d e f i n e s
22 events that w i l l happen repea t ed ly a f t e r the setup ( )
23 por t i on o f the Arduino completes ∗/
24 void loop ( ) {
25 // Wait f o r something to a r r i v e over the S e r i a l port
26 whi l e ( ! S e r i a l . a v a i l a b l e ( ) ) {
27 }
28 // Dec lare v a r i a b l e s to s t o r e incoming data
29 i n t l ength ;
30 i n t po in t s ;
31 /∗ Read the f i r s t r e c ogn i z ab l e i n t e g e r that
32 comes in from the S e r i a l port and save that
33 to the va r i ab l e l ength ∗/
34 l ength = S e r i a l . pa r s e In t ( ) ;
35 // I n i t i a l i z e an array to s t o r e t imes between pu l s e s
36 unsigned i n t array [ l ength ] ;
37 // Dec lare an i t e r a t o r i
38 i n t i ;
39 /∗ This f o r loop wr i t e s to the array the t imes between
40 pu l s e s as generated by the Python program . The formatt ing
41 o f l i s t v a r i a b l e s in Python a l l ows f o r the pa r s e In t ( ) command
42 to be used to read in the t imes . ∗/
43 f o r ( i = 0 ; i < l ength ; i++) {
44 array [ i ] = S e r i a l . pa r s e In t ( ) ;
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45 }
46 /∗ Saves the l a s t i n t e g e r in the s t r i n g as the number o f data
47 po in t s to c o l l e c t ∗/
48 po in t s = S e r i a l . pa r s e In t ( ) ;
49 //Creates an array to s t o r e the vo l tage data in
50 i n t data [ po in t s ] ;
51 // Dec la re s add i t i o na l i t e r a t o r s
52 i n t d ;
53 i n t c = 0 ;
54 /∗ This whi l e loop f i r s t g ene ra t e s a pu l s e at each i t e r a t i o n
55 and then waits f o r a number o f microseconds s to r ed in the
56 cth element o f the array . ∗/
57 whi le ( c < l ength ) {
58 pu l s e (5 , 1) ;
59 de layMicroseconds ( array [ c ] ) ;
60 c++;
61 }
62 // De l i v e r one l a s t pu l s e
63 pu l s e (5 , 1) ;
64 /∗ This f o r loop reads in an amount o f po in t s equ iva l en t
65 to the number de f ined e a r l i e r and saves them to the array
66 data [ ] ∗/
67 f o r (d = 0 ; d < po in t s ; d++) {
68 data [ d ] = analogRead (0) ;
69 }
70 //One f i n a l i t e r a t o r
71 i n t e = 0 ;
72 /∗ This loop sends a l l the data po in t s back up the s e r i a l port
73 as s t r i n g s . These are then r e c e i v ed and i n t e r p r e t ed by the main
74 Python program ∗/
75 whi le ( e < po in t s ) {
76 St r ing dataStr ing = ”” ;
77 dataStr ing += data [ e ] ;
78 S e r i a l . p r i n t l n ( dataSt r ing ) ;
79 e++;
80 }
81 }
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Mathematica Analysis for
Experiment

L = 0 . 0035 ;
R = 10 ;
c = 6 .5 10ˆ−6;
qpul se = c 2 .5 (1 − Exp[−((5 10ˆ−6) /(R c ) ) ] ) ;
charge [ q , t ] := q Exp[−(( t R) /(2 L) ) ] Cos [ t /Sqrt [ L c ] ]
vo l t age [ n ] := Piecewise [{0 .9814453125 , n==1} ,{0.9716796875 ,n

==2} ,{0.83984375 ,n==3} ,{0.8642578125 ,n==4} ,{0.8837890625 ,n==5}]
t iming [ n ] := Piecewise [{1508 10ˆ−6 ,n==1} ,{3983 10ˆ−6 ,n==2} ,{2254

10ˆ−6 ,n==3} ,{3984 10ˆ−6 ,n==4} ,{691 10ˆ−6 ,n==5}]
data = {{ qpul se + charge [ qpulse , t iming [ 1 ] ] , vo l t age [ 1 ] } } ;
AppendTo [ data , { qpul se + charge [ data [ [ 2 − 1 , 1 ] ] , t iming [ 2 ] ] ,

vo l t age [ 2 ] } ] ;
AppendTo [ data , { qpul se + charge [ data [ [ 3 − 1 , 1 ] ] , t iming [ 3 ] ] ,

vo l t age [ 3 ] } ] ;
AppendTo [ data , { qpul se + charge [ data [ [ 4 − 1 , 1 ] ] , t iming [ 4 ] ] ,

vo l t age [ 4 ] } ] ;
AppendTo [ data , { qpul se + charge [ data [ [ 5 − 1 , 1 ] ] , t iming [ 5 ] ] ,

vo l t age [ 5 ] } ] ;
s o l = Nonl inearModelFit [ data , 1/2 k qˆ2 , {k} , q ] ;
Show [ ListPlot [ data ] , Plot [ s o l [ q ] , {q , 0 , 1 . 3 10ˆ−6} ] ]
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