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Whole-genome sequencing (WGS) of bacterial isolates has become standard practice in many laboratories. Applications for

WGS analysis include phylogeography and molecular epidemiology, using single nucleotide polymorphisms (SNPs) as the unit of

evolution. NASPwas developed as a reproducible method that scales well with the hundreds to thousands ofWGS data typically

used in comparative genomics applications. In this study, we demonstrate how NASP compares with other tools in the analysis of

two real bacterial genomics datasets and one simulated dataset. Our results demonstrate that NASP produces similar, and often

better, results in comparison with other pipelines, but is much more flexible in terms of data input types, job management systems,

diversity of supported tools and output formats. We also demonstrate differences in results based on the choice of the reference

genome and choice of inferring phylogenies from concatenated SNPs or alignments including monomorphic positions. NASP

represents a source-available, version-controlled, unit-tested method and can be obtained from tgennorth.github.io/NASP.

Keywords: SNPs; Phylogeography; bioinformatics.

Abbreviations: SNP, Single nucleotide polymorphism; WGS, Whole genome sequence.

Data statement: All supporting data, code and protocols have been provided within the article or through supplementary data files.

Data Summary

No data was generated as part of this study.

Introduction

Whole-genome sequence (WGS) data from microbes,
including bacteria, viruses, fungi and parasites, are rapidly

increasing in public databases and have been used for out-

break investigations (Rasko et al., 2011; Eppinger et al.,

2011; Engelthaler et al., 2016), associating phylogeny with

serology (Sahl et al., 2015b) and phylogeography (Keim &

Wagner, 2009; Engelthaler et al., 2014). WGS data are fre-

quently used for variant identification, especially with

regards to single nucleotide polymorphisms (SNPs). SNPs

provide stable markers of evolutionary change between

genomes (Foster et al., 2009). Accurate and reliable SNP

identification requires the implementation of methods to
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call, filter and merge SNPs with tools that are version con-

trolled, unit tested and validated (Olson et al., 2015).

Multiple pipelines are currently available for the identifica-

tion of SNPs from diverse WGS datasets, although the types

of supported input files differ substantially. There are few

pipelines that support the analysis of both raw sequence

reads as well as genome assemblies. The In Silico Genotyper

(ISG) pipeline (Sahl et al., 2015a) calls SNPs from both raw

reads, primarily from the Illumina platform, and genome

assemblies, but isn’t optimized for job management systems

and only exports polymorphic positions. While only poly-

morphic positions may be adequate for many studies, the

inclusion of monomorphic positions in the alignment is

important for calculating evolutionary rates. A commonly

used SNP analysis software method is kSNP, which has

been discussed in three separate publications (Gardner &

Hall, 2013; Gardner & Slezak, 2010; Gardner et al., 2015).

kSNP is a reference-independent approach in which all

kmers of a defined length are compared to identify SNPs.

The all-versus-all nature of the algorithm can result in a

large RAM footprint and can stall on hundreds of bacterial

genomes on some computational networks (Sahl et al.,

2015a). Finally, REALPHY was published as a method to

identify SNPs using multiple references and then merging

the results (Bertels et al., 2014). The authors claim that sin-

gle-reference-based methods bias the results, especially

from mapping raw reads against a divergent reference

genome.

Additional methods have also been published that only sup-

port specific input formats. Parsnp is a method that can

rapidly identify SNPs from the core genome, but currently

only processes closely related genome assemblies (Treangen

et al., 2014). SPANDx is a method that only supports raw

reads, but does run on a variety of job management systems

(Sarovich & Price, 2014). The program lyve-SET has been

applied to outbreak investigations and uses raw or simulated

reads to identify SNPs (Katz et al., 2013). Finally, the

CFSAN SNP pipeline is a published method from the

United States Food and Drug Administration that only sup-

ports the use of raw reads (Pettengill et al., 2014). There

have been, to our knowledge, no published comparative

studies to compare the functionality of these pipelines on a

range of test datasets.

In this study, we describe the NASP pipeline. NASP is a

source-available, unit-tested, version-controlled method to

rapidly identify SNPs and works on a range of job manage-

ment systems, incorporates multiple read aligners and SNP

callers, works on both raw reads and genome assemblies,

calls both monomorphic and polymorphic positions, and

has been validated on a range of diverse datasets. In this

study, we compare NASP with other methods, both refer-

ence-dependent and reference-independent, in the analysis

of three bacterial datasets.

Methods

NASP is implemented in a mixture of Python and Go pro-

gramming languages. NASP accepts multiple file formats as

input, including ‘.fasta’, ‘.sam’, ‘.bam’, ‘.vcf’, ‘.fastq’ and

‘fastq.gz’. NASP can either function through a question/

answer command line interface designed for ease of use, or

with a configuration file. NASP was developed to work on

job management systems including Torque, Slurm and Sun/

Oracle Grid Engine (SGE); a single-node solution is avail-

able for NASP as well, but is not optimal.

If filtering of duplicate regions in the reference genome is

requested, the reference is aligned against itself with

NUCmer (Delcher et al., 2003). These duplicated regions

are then masked from downstream analyses, although still

available for investigation. If external genome assemblies are

supplied, they are also aligned against the reference genome

with NUCmer and SNPs are identified by a direct one-to-

one mapping of the query to the reference. In the case of

duplications in the query but not the reference, all copies

are aligned and any differences at any given base are masked

with an ‘N’ character to identify it as ambiguous.

If raw reads are supplied, they can be adapter and/or quality

trimmed with Trimmomatic (Bolger et al., 2014). Raw or

trimmed reads are aligned against a FASTA-formatted refer-

ence using one or a combination of the supported short-

read aligners, including BWA-MEM (Li, 2013), Novoalign

(www.novocraft.com), bowtie2 (Langmead & Salzberg,

2012) and SNAP (Zaharia et al., 2011). A binary alignment

map (BAM) file is created with Samtools (Li et al., 2009)

Impact Statement

NASP represents a comprehensive, open-source
method for SNP identification and differentiation
between and among large numbers of microbial
genomes. This method differs from other published
SNP pipelines in terms of: (1) the variety of sup-
ported short-read aligners and SNP callers; (2) the
variety of supported job management systems; (3)
the ability to call both monomorphic and polymor-
phic sites; and (4) the ability to integrate the results
from multiple SNP callers and identify the consensus
set of SNPs that define the population structure.
Accurate and comprehensive analysis of SNPs in a
reference population is critical in outbreak investiga-
tions, source attribution and population genetics.
NASP was developed for bacterial pathogens, but has
also been used to analyze the population structure of
fungal and viral pathogens. The NASP output can be
used for genome-wide association studies (GWAS)
to correlate the genotype and phenotype, and can
also be used for phylogenomics, which allows for an
understanding of the relatedness of microbial isolates
across temporal and spatial scales.
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and SNPs can be identified with multiple SNP callers,
including the UnifiedGenotyper method in GATK
(DePristo et al., 2011; McKenna et al., 2010), SAMtools,
SolSNP (http://sourceforge.net/projects/solsnp/), and Var-
Scan (Koboldt et al., 2012). If multiple aligners and/or SNP
callers are selected, calls that are the same between all meth-
ods are reported in the bestsnp matrix as the consensus.
Positions that fail a user-defined depth and proportion
threshold (mixture of alleles) are filtered from downstream
analyses but are retained in the ‘master’ matrices. A work-
flow of the NASP pipeline is shown in Fig. 1 and a summary
is detailed in Table S1 (available in the online Supplementry
Material).

The results of the pipeline can include up to four separate
SNP matrices. The first matrix is the master matrix (master.
tsv), which includes all calls, both monomorphic and poly-
morphic, across all positions in the reference with no posi-
tions filtered or masked; positions that fall within
duplicated regions are shown in this matrix, although they
are flagged as duplicated. An optional second matrix (mas-
ter_masked.tsv) can also be produced. This matrix is the
same as the master matrix, although any position that fails a
given filter (minimum depth, minimum proportion) is
masked with an ‘N’, whereas calls that could not be made

are given an ‘X’; this matrix could be useful for applications

where all high-quality, unambiguous positions should be

considered. The third matrix (missingdata.tsv) includes

only positions that are polymorphic across the sample set,

but can include those that are missing in a subset of

genomes and not found in duplicated regions; these SNPs

have also been processed with the minimum depth and pro-

portion filters and are still high-quality calls. The last matrix

(bestsnp.tsv) contains only polymorphic, non-duplicated,

clean calls (A, T, C, G) that pass all filters across all

genomes. FASTA files and multi-sample VCF files are auto-

matically produced that correspond to the bestsnp and mis-

singdata matrices.

In addition to the matrices, VCFs, and FASTA files, NASP

produces statistics that can be useful for the identification of

potentially problematic genomes, such as low-coverage or

mixtures of multiple strains. These statistics can also be

used for determining the size of the core, non-duplicated

genome, including both monomorphic and polymorphic

positions, of a given set of genomes.

Post matrix scripts are included with NASP in order to con-

vert between file formats, remove genomes and/or SNPs,

provide functional SNP information, and to convert into

Align against self with NUCmer

Duplicates
Reference

Align with NUCmer

Map alignments to
reference

Assemblies

Delta file

Fasta

Merge

Filter by minimum depth, proportion

Remove monomorphics

Remove SNPs with missing data

Master matrix

VCF files

Filter duplicates

Missing data matrix

Filtered master matrix

Best SNPs matrix

BAM files

Call SNPs with GATK,
solSNP, samtools, Varscan2

Convert with
samtools

Adapter trim with
Trimmomatic

Align with bwa-MEM,
novoalign, SNAP, bowtie2

Raw readsTrimmed reads

Fig. 1. Workflow of the NASP pipeline.
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formats that can be directly accepted by other tools, such as
Plink (Renteria et al., 2013), a method to conduct genome-
wide association studies (GWAS). Documentation for all
scripts is included in the software repository.

Test datasets. To demonstrate the speed and functionality
of the NASP pipeline, and to compare the output with other
pipelines, three datasets were selected. The first includes a
set of 21 genome assemblies of members of the genera
Escherichia and Shigella used in other comparative studies
(Bertels et al., 2014; Touchon et al., 2009) (Table S2).
REALPHY was run on self-generated single-ended simu-
lated reads, 100 bp in length. Additional pipelines were run
with paired-end reads generated by ART chocolate cherry
cake (Huang et al., 2012), using the following parameters: -l
100 -f 20 -p -ss HS25 -m 300 -s 50; this method was not
run in conjunction with REALPHY, as the short-read gener-
ation is integrated into the method. Unless otherwise noted,
the reference genome for SNP comparisons was
Escherichia coli K-12 MG1655 (NC_000913) (Blattner et al.,
1997). All computations were performed on a single node,
16-core server with 48 Gb of available RAM. For kSNP, the
optimum k value was selected by the KChooser script
included with the repository.

The second dataset includes a set of 15 Yersinia pestis
genomes from North America (Table S3). For those exter-
nal SNP pipelines that only support raw reads, simulated
reads were generated from genome assemblies with ART. A
set of SNPs (Table S4) has previously been characterized on
these genomes with wet-bench methods (unpublished).
This set was chosen to determine how many verified SNPs
could be identified by different SNP pipelines. All computa-
tions were performed on a single node, 16-core server with
48Gb of available RAM.

The last dataset includes simulated data from Y. pestis.
Reads and assemblies from 133 Y. pestis genomes (Cui et al.,
2013) were downloaded from public databases and proc-
essed with NASP using the Colorado 92 (CO92) genome as
the reference to produce a reference phylogeny for WGS
data simulation. Assemblies and reads were simulated from

this reference phylogeny and a reference genome (CO92
chromosome) using TreeToReads (https://github.com/
snacktavish/TreeToReads), introducing 3501 mutations; in
this process, mutations are introduced into genomes to
reproduce the phylogeny, although the mutations are
completely manufactured. A phylogeny was inferred from
the concatenated SNP alignment (3501 simulated SNPs pro-
duced by TreeToReads) with RAxML v8 (Stamatakis, 2014)
to provide a ‘true’ phylogeny for the simulated data. Simu-
lated reads (250 bp) and assemblies were both processed
with pipelines to identify how many of these introduced
SNPs could be identified.

To test the scalability of NASP on genome assemblies, a set
of 3520 E. coli genomes was selected (Table S5). Genomes
were randomly selected with a python script (https://gist.
github.com/jasonsahl/990d2c56c23bb5c2909d) at various
levels (100–1000) and processed with NASP. In this case,
NASP was run on multiple nodes across a 31-node high
performance computing (HPC) cluster at Northern Arizona
University. The elapsed time was reported only for the step
where aligned files are compiled into the resulting matrix.
Time required for the other processes is dependent on the
input file type and the amount of available resources on a
HPC cluster.

External SNP pipelines. Multiple SNP pipelines, both ref-
erence-dependent and reference-independent, were com-
pared with NASP, including kSNP v3.9.1 (Gardner et al.,
2015), ISG v0.16.10–3 (Sahl et al., 2015a), Parsnp v1.2
(Treangen et al., 2014), REALPHY v112 (Bertels et al.,
2014), SPANDx v3.1 (Sarovich & Price, 2014), Mugsy
v1r2.2 (Angiuoli & Salzberg, 2011), lyve-SET v1.1.6 (Katz
et al., 2013), and the CFSAN SNP pipeline (https://github.
com/CFSAN-Biostatistics/snp-pipeline). Exact commands
used to run each method are shown in Supplemental Data
File 1. An overview of all tested methods is shown in Table 1.
Most of the methods output FASTA or nexus files, which
were used to infer phylogenies. For Mugsy, the MAF file
was converted to FASTA with methods described previously
(Sahl et al., 2011).

Table 1. An overview of commonly used SNP pipelines

Pipeline name Supported data types Output type Parallel job management support?

NASP FASTA, BAM, SAM, VCF, FASTQ, FASTQ.GZ Matrix, VCF, FASTA SGE, SLURM, TORQUE

ISG FASTA, BAM, VCF, FASTQ, FASTQ.GZ Matrix, FASTA No

Parsnp FASTA gingr file, phylogeny, FASTA, VCF No

REALPHY FASTA*, FASTQ, FASTQ.GZ FASTA, phylogeny No

SPANDx FASTQ.GZ Nexus file, phylogeny SGE, SLURM, TORQUE

CFSAN FASTQ, FASTQ.GZ SNP list, FASTA SGE, TORQUE

kSNPv3 FASTA Matrix, FASTA, phylogeny No

Mugsy FASTA MAF file No

lyve-set FASTQ.GZ, FASTA* Matrix, FASTA, phylogeny SGE

*Generates simulated reads.
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Phylogenetics. Phylogenies were inferred using a maxi-
mum likelihood algorithm implemented in RAxML v8.1.7
(Stamatakis, 2014), except where noted. The exact com-
mands used to infer the phylogenies are shown in Supple-
mental Data File 1. Tree topologies were also compared on
the same input data using compare2trees (Nye et al., 2006).
Commands to infer these phylogenies using FastTree2
v2.1.7 SSE3 (Price et al., 2010), ExaBayes v1.4.1 (Aberer
et al., 2014), and Parsimonator v1.0.2 (github.com/stama-
tak/Parsimonator-1.0.2) are shown in Supplemental Data
File 1.

Dendrogram of multiple methods. To visually represent
the performance of different methods, a dendrogram was
generated. Each phylogeny was compared against a maxi-
mum likelihood phylogeny inferred from the reference test
set with compare2trees and a congruence score was calcu-
lated. A unweighted pair group method with arithmetic
mean (UPGMA) dendrogram was then calculated with Phy-
lip v3.6 (Felsenstein, 2005) on the resulting similarity
matrix.

RESULTS

Pipeline functionality and post-matrix scripts

NASP is a reference-dependent pipeline that can incorporate
both raw reads and assemblies in the SNP discovery process;
NASP was not developed for the identification and annota-
tion of short insertions/deletions (indels). NASP can use
multiple aligners and SNP callers to identify SNPs and the
consensus calls can be calculated across all methods. A com-
plete workflow of the NASP method is shown in Fig. 1. Sev-
eral post-matrix scripts are included with NASP in order to
convert between file formats, including generating input

files for downstream pipelines [e.g. Plink (Renteria et al.,
2013)]. An additional script can annotate a NASP SNP
matrix using SnpEff (Cingolani et al., 2012) to provide
functional information for each SNP.

NASP run time scalability

To visualize how NASP scales on processing genome assem-
blies, a set of 3520 E. coli genomes was sampled at 100-
genome intervals and processed with NASP with 10 repli-
cates. The results demonstrate that the matrix building step
in NASP scales linearly up to three and a half minutes with
the processing of additional genomes (Fig. 2a). The memory
footprint of this step also scales linearly (Fig. 2b) and
doesn’t exceed 4Gb on a large set of genomes (n = 1000). If
raw reads are used, additional time is required for the align-
ment and SNP calling methods, and the overall wall time
would scale with the number of reads that needed to be
processed.

Pipeline comparisons on E. coli genomes data

set

To test differences between multiple pipelines, a set of
21 genomes of members of the genera Escherichia
and Shigella used in other comparative genomics studies
(Bertels et al., 2014; Touchon et al., 2009) were downloaded
and processed with Parsnp, SPANDx, kSNPv3, ISG, REAL-
PHY, CFSAN, lyve-SET, Mugsy, and NASP. For methods
that do not support genome assemblies, paired-end reads
were simulated with ART, while single-end reads were used
by REALPHY, as this method is integrated into the pipeline.

To identify how well the simulated paired end reads repre-
sent the finished genomes, a NASP run was conducted on a
combination of completed genome assemblies as well as
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simulated raw reads. The phylogeny demonstrates that
assemblies and raw reads fall into identical locations (Fig.
S1, available in the online Supplementry Material), suggest-
ing that the paired-end reads are representative of the fin-
ished genome assemblies.

The developers of REALPHY assert that their analysis of
this dataset demonstrates the utility of using their approach
to avoid biases in the use of a single reference genome by
using multiple references (Bertels et al., 2014). To test dif-
ferences between methods, SNPs were identified with multi-
ple reference-dependent and -independent methods, and
maximum likelihood (ML) phylogenies were compared
with compare2trees. The results demonstrate that all meth-
ods, with the exception of kSNPv3 and lyve-SET, returned a
phylogeny with the same topology as the published phylog-
eny (Bertels et al., 2014) (compare2trees topological score
=100 %) (Table 2). The run wall time demonstrates that
most other methods were significantly faster than

REALPHY (Table 2), even when REALPHY was invoked
using a single reference. Wall time comparisons between
methods are somewhat problematic, as some pipelines infer
phylogenies and others, including NASP, do not. Addition-
ally, using raw reads is generally expected to be slower than
using a draft or finished genome assembly. Finally, some
methods are optimized for job management systems,
whereas others were designed to run on a single node.

One of the other assertions of the REALPHY developers is
that phylogenies reconstructed using an alignment of
concatenated SNPs are unreliable (Bertels et al., 2014; Tou-
chon et al., 2009), especially with regards to branch length
biases (Leache et al., 2015). However, the phylogeny
inferred from a NASP alignment of monomorphic and
polymorphic sites was in complete agreement with the
topology of the phylogeny inferred from a concatenation of
SNPs (compare2trees topological score =100 %); tree
lengths were indeed variable with use of these two different

Table 2. SNP calling results on a set of 21 genomes of members of the genus Escherichia

Method Reference Data type Parameters Number of SNPs

considered

Total

number

of sites

Walltime (single

node - eight

cores)

Topological

score

Number of

defining

SNPs

NASP K12

MG1655

Assemblies Default 267978* 2322434 10 m 00 s 100 % 809

NASP K12

MG1655

Assemblies NUCmer (�b 20) 162758* 1839583 10 m 00 s 100 % 744

NASP K12

MG1655

ART PE

reads

BWA, GATK,

MinDepth = 3,

MinAF = 0.90

170208* 1984510 1 h 43 m 00 s 100 % 826

NASP E.

fergusonii

35469

Assemblies Default 244262* 2227038 10 m 00 s 100 % 741

NASP E.

fergusonii

35469

ART PE

reads

BWA, GATK,

MinDepth = 3,

MinAF = 0.90

141238* 1813349 1 h 17 m 10 s 100 % 748

ISG K12

MG1655

Assemblies Default 268524* N/A 6 m 47 s 100 % 810

ISG K12

MG1655

ART PE

reads

minaf 0.9, mindp 3 206193* N/A 14 m 45 s 100 % 824

Parsnp K12

MG1655

Assemblies "-c d" 151256* 1682404 4 m 35 s 100 % 777

REALPHY K12

MG1655

REALPHY

SE reads

Default 171828* 1897146 3 h 11 m 00 s 100 % 779

kSNPv3 N/A Assemblies -core 20587* N/A 27 m 58 s 91.80 % 5

kSNPv3 N/A Assemblies Default 284134 N/A 27 m 58 s 95.80 % 547

SPANDx K12

MG1655

ART PE

reads

-t Illumina -p PE -

z yes

98492 N/A 3h 6 m 100 % 609

CFSAN K12

MG1655

ART PE

reads

Default 128512* N/A 1 h 56 m 00 s 100 % 808

Mugsy N/A Assemblies Default 307072* 2478794 1 h 39 m 03 s 100 % unknown

lyve-SET K12

MG1655

ART PE

reads

min_coverate 3,

min_alt_frac 0.9

163118* 1183153 6 h 25 m 85 % 329

*strictly core genome SNPs.
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input types using the same substitution model (Fig. S2). We
also employed an ascertainment bias correction (Lewis cor-
rection) (Leache et al., 2015) implemented in RaxML, in
order to correct for the use of only polymorphic sites, and
found no difference between tree topologies using substitu-
tion models that did not employ this correction (data not
shown). For this dataset of genomic assemblies, there
appears to be no effect of using a concatenation of polymor-
phic sites on the resulting tree topology, although branch
lengths were affected compared with an alignment including
monomorphic sites.

To understand how the choice of the reference affects the
analysis, NASP was also run using E. coli genome assemblies
and simulated reads against the outgroup, E. fergusonii, as
the reference. The results demonstrate that the same tree
topology was obtained by using a different, and much more
divergent, reference (compare2trees topology score =100
%). However, in both cases, fewer SNPs were identified by
using a divergent reference (Table 2).

Some researchers suggest that reference-independent
approaches are less biased and more reliable than reference
dependent-approaches (Gardner & Hall, 2013). For the case
of this E. coli dataset, the phylogeny inferred by Mugsy, a
reference-independent approach, was in topological agree-
ment with other reference-dependent approaches (Table 2).
In fact, kSNPv3 was one of the only methods that returned
a topology that was inconsistent with all other methods
(Table 2); an inconsistent kSNP phylogeny has also been
reported in the analysis of other datasets (Pettengill et al.,
2014). To analyze this further, we identified SNPs (n = 826)
from the NASP run using simulated paired-end reads that
were uniquely shared on a branch of the phylogeny that
defines a monophyletic lineage (Fig. S3). We then calculated
how many of these SNPs were identified by all methods and
found widely variable results (Table 2). Using kSNP with
only core genome SNPs identified only five of these SNPs,
which explains the differences in tree topologies.

In many cases, the same tree topology was returned even
though the number of identified SNPs differed dramatically
(Table 2). This result could be due to multiple factors,
including if and how duplicates are filtered from the refer-
ence genome or other genome assemblies. With regards to
NASP, erroneous SNPs called in genome assemblies are
likely to be artifacts from the whole-genome alignments
using NUCmer. The default value for aligning through
poorly scoring regions before breaking an alignment in
NUCmer is 200, potentially introducing spurious SNPs into
the alignment, especially in misassembled regions in draft
genome assemblies. By changing this value to 20, the same
tree topology was obtained, although many fewer SNPs
(n = approximately 100 000) were identified (Table 2). This
value is easily altered in NASP and should be appropriately
tuned based on the inherent expected diversity in the cho-
sen dataset. Additional investigation is required to verify
that SNPs in divergent regions are not being lost by chang-
ing this parameter. Another option is to use simulated reads

from the genome assemblies in the SNP identification
process.

Phylogeny differences for the same dataset

Previously, it has been demonstrated that different phyloge-
nies can be obtained for the same dataset using either
RAxML or FastTree2 (Pettengill et al., 2014). To test this
result across multiple phylogenetic inference methods, the
NASP E. coli read dataset was used. Phylogenies were
inferred using a maximum likelihood method in RAxML, a
maximum parsimony method implemented in Parsimona-
tor, a minimum evolution method in FastTree2, and a
Bayesian method implemented in Exabayes (Aberer et al.,
2014). The results demonstrate variability in the placement
of one genome (UMN026) depending on the method. Fast-
Tree2 and Exabayes agreed on the topology, including 100
% congruence of the replicate trees. The maximum-likeli-
hood and maximum-parsimony phylogenies were slightly
different (Fig. S3) and included low bootstrap support val-
ues at the variable node. The correct placement of UMN026
is unknown and is likely to be confounded by the extensive
recombination observed in E. coli (Dykhuizen & Green,
1991).

Pipeline comparisons on a well characterized

dataset

To test the functionality of different SNP calling pipelines, a
set of 15 finished Y. pestis genomes were processed with
NASP. This set of genomes was selected because 26 SNPs in
the dataset have been verified by wet-bench methods
(Table S4). Additionally, 13 known errors in the reference
genome, Y. pestis CO92 (Parkhill et al., 2001), have been
identified (Table S4) and should consistently be identified
in SNP discovery methods. The small number of SNPs in
the dataset requires accurate SNP identification to resolve
the phylogenetic relationships of these genomes.

The results demonstrate differences in the total number of
SNPs called between methods (Table 3). Most of the meth-
ods identified all 13 known sequencing errors in CO92,
although Parsnp, REALPHY and kSNPv3 failed to do so.
The number of verified SNPs identified also varied between
methods, from 21 in kSNPv3 to all 26 in multiple methods
(Table 3). An analysis of wet-bench-validated SNPs (n = 9)
that are identified in more than one genome demonstrated
that some methods failed to identify all of these SNPs,
which could lead to a very different phylogeny and incorrect
resolution of important phylogenetic relationships. In fact,
such SNPs could represent critical markers, resulting in the
inappropriate linkage or separation of strains in an outbreak
event.

Pipeline comparisons on a simulated set of

assemblies and reads

Simulated data for Y. pestis were used to compare SNP iden-
tification between pipelines. In this method, 3501 mutations
(Supplemental Data File 2) were inserted into genomes
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based on a published phylogeny and FASTA file. Raw reads

were also simulated from these artificially mutated assem-

blies with ART to generate paired end sequences. Reads and

assemblies were run across all pipelines, where applicable.

The results demonstrate that NASP identified all of the

inserted SNPs using raw reads, although 67 SNPs failed the

proportion filter (0.90) and 232 SNPs fell in duplicated

regions (Table 4); some of the duplicated SNPs would also

fail the proportion filter. Of all other methods, only ISG

identified all inserted mutations. Parsnp identified the

majority of the mutations, although duplicate regions

appear to have also been aligned.

To understand how the SNPs called would affect the overall

tree topology, a phylogeny was inferred for each set of SNPs

with RAxML. A similarity matrix was made for each

method based on the topological score compared with the

ML phylogeny inferred from the known mutations. The

UPGMA dendrogram demonstrates that the NASP results

generally return a phylogeny that is more representative of

the ‘true’ phylogeny than other methods (Fig. 3). Without

removing SNPs found in duplicated regions, the NASP

Table 3. SNP calling results on a set of Yersinia pestis genomes

Method Data type Parameters Number called

SNPs

Number CO92

errors (n=13)

Number verified

SNPs (n=26)

Vital

SNPs

(n=9)

NASP ART simulated

reads

BWA, GATK, MinDepth = 3, MinAF = 0.90 147 13 26 9

NASP assemblies default 181 13 26 9

ISG ART simulated

reads

minaf = 3, mindp = 0.9 151 13 26 9

ISG assemblies default 177 13 26 9

Parsnp assemblies default 141 12 23 7

REALPHY REALPHY

simulated reads

default 163 12 25 9

SPANDx ART simulated

reads

default 150 13 25 9

kSNPv3 assemblies k=19 130 11 21 5

CFSAN ART simulated

reads

default 250 13 26 9

lyve-SET ART simulated

reads

min_coverage 3, min_alt_frac 0.9 402 13 26 9

Table 4. Simulated data results

Method Data type Number of called SNPs SNPs in duplicated regions Filtered SNPs Total SNPs Topological score

NASP simulated reads 3202 232 67 3501 98.50%

NASP simulated

assemblies

3269 232 NA 3501 98.50%

Parsnp simulated

assemblies

3492 unknown NA 3492 95.60%

ISG simulated reads 3258 126 8 3392 92.40%

ISG simulated

assemblies

3266 235 NA 3501 95.60%

SPANDx simulated reads 3391 unknown 116 3391 99.20%

CFSAN simulated reads 3290 unknown unknown 3290 95.30%

REALPHY simulated

assemblies

3320 unknown unknown 3320 91.60%

kSNPv3 simulated

assemblies

3304 unknown NA 3304 91.90%

lyve-SET simulated reads 3460 unknown unknown 3460 95.80%
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phylogeny was identical to the phylogeny inferred from the
known SNPs.

Comparisons between short-read aligners and

SNP callers

One of the benefits of NASP is that it implements multiple
SNP callers and aligners. To identify potential differences
between methods, short reads simulated from the E. coli
dataset were aligned against K-12 MG1655. Simulated reads
were aligned against the reference genome with BWA-
MEM, bowtie2 and Novoalign, and SNPs were called with
the UnifiedGenotyper method in GATK. The results dem-
onstrate that clear differences were observed between SNP
sets between aligners (Fig. S4a). This demonstrates that
aligners using different algorithms and alignment stringen-
cies can differ dramatically in the set of SNPs called. To
determine the effect of including a divergent outlier, the
analysis was repeated excluding E. fergusonii. The results

demonstrate that many more consensus SNPs were identi-
fied (79 %) between all three methods by excluding E. fergu-
sonii compared with including the outlier (45 %) (Fig. S4a).
These results indicate that some aligners are better at align-
ing divergent sequences using default parameters.

To test the effect of different SNP callers on the set of SNPs
identified, BWA-MEM was used to align reads and SNPs
were called with the UnifiedGenotyper method in GATK
v2.7.2, Samtools v0.1.19 and VarScan v2.3.6. The results of
this analysis demonstrated variability in the set of SNPs
identified, although the variation was much less than
observed between aligners (Fig. S4b). In this dataset, these
small differences between SNP callers are unlikely to affect
the tree topology.

To test the impact of different read aligners in a smaller
dataset, reads from the Y. pestis North America dataset were
aligned against CO92 and the number of called SNPs were
identified. In this case, six SNPs were called that were only

NASP (reads)

NASP (assemblies)

NASP (assemblies, no dups)

Simulated set

CFSAN

Iyve-SET

Parsnp

ISG (reads)

ISG (assemblies)

kSNPv3

REALPHY

SPANDx

Fig. 3. Dendrogram of tree building methods on a simulated set of mutations in the genome of Yersinia pestis Colorado 92. The topologi-
cal score was generated by compare2trees (Nye et al., 2006) compared with a maximum likelihood phylogeny inferred from a set of 3501
SNPs inserted by Tree2Reads. The dendrogram was generated with the neighbor-joining method in the Phylip software package (Felsen-

stein, 2005).
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identified by bowtie2 and three SNPs were not identified by
Novoalign. In outbreak situations where all SNPs may be
needed to understand relationships, the union of SNPs
called by all methods could be used. In situations where a
large number of SNPs define the population structure, the
intersection of all aligners and SNP callers provides high
confidence, consistent calls.

Discussion

Understanding relationships between microbial isolates in a
population is important for applications such as source
tracking, outbreak investigations, phylogeography, popula-
tion dynamics and diagnostic development. With the large
number of genomes that are typically associated with these
investigations, methods are required to quickly and accu-
rately identify SNPs in a reference population. However, no
studies have conducted a broad analysis to compare pub-
lished methods on real and simulated datasets to identify
relevant strengths and weaknesses.

Multiple publications have used a reference-dependent
approach to identify SNPs to understand population
dynamics. While the specific methods are often published,
the pipelines to run these processes are often unpublished
(den Bakker et al., 2014; Hsu et al., 2015), which compli-
cates the ability to replicate results. NASP has already been
used to identify SNPs from multiple organisms, including
fungal (Engelthaler et al., 2014; Etienne et al., 2016) and
bacterial (Sahl et al., 2015c; d; Bowers et al., 2015) patho-
gens. The version-controlled source code is available for
NASP, which should ensure the replication of results across
research groups.

Recently it has been suggested that the use of a single refer-
ence can bias the identification of SNPs, especially in diver-
gent references (Bertels et al., 2014). In our E. coli test set,
~29 000 fewer SNPs were called by aligning E. coli reads
against the reference genome of the outgroup, E. fergusonii,
compared with the E. coli K-12 reference, although the tree
topologies were identical (Table 2). In the E. coli test set
phylogeny, the major clades are delineated by enough SNPs
that the loss of a small percentage is insufficient to change
the overall tree topology, although the branch lengths were
variable. In other datasets, the choice of the reference
should be made carefully to include as many SNPs as
needed to define the population structure of a given dataset.

According to the authors of kSNP, a k-mer-based reference-
independent approach, there are times where alignments
are not appropriate in understanding bacterial population
structure (Gardner & Hall, 2013). In our E. coli analysis, ref-
erence-dependent and reference-independent methods gen-
erally returned the same tree topology (Table 2), with the
exception of kSNPv3 and lyve-SET, using only core genome
SNPs. Using all of the SNPs identified by kSNPv3 also gave
a different tree topology than the other methods (Table 2).
A detailed look at branch-specific SNPs demonstrated that
using kSNP with core SNPs failed to identify most of the
branch-specific SNPs for one of the major defining clades

(Table 2). For datasets that are only defined by a small
number of SNPs, a method should be chosen that includes
as many SNPs as possible in order to maximize the relevant
search space. While NASP cannot truly use the pan-genome
if a single reference genome is chosen, it can incorporate
data from all positions in the reference genome if missing
data are included in the alignment. A true pan-genome ref-
erence can be used with NASP to more comprehensively
identify SNPs, but curation of the pan-genome is necessary
to remove genomic elements introduced by horizontal gene
transfer that could potentially confound phylogenetic
inference.

Phylogenetics on an alignment of concatenated SNPs is
thought to be less preferable than an alignment that also
contains monomorphic positions (Bertels et al., 2014;
Leache et al., 2015). However, the inclusion of monomor-
phic positions can drastically increase the run time needed
to infer a phylogeny, especially where the population struc-
ture of a species can be determined by a small number of
polymorphisms. Substitution models are available in
RAxML v8 that contain acquisition bias corrections that
should be considered when inferring phylogenies from
concatenated SNP alignments. In our E. coli test case, using
concatenated SNPs did not change the tree topology com-
pared with a phylogeny inferred from all sites, but did affect
branch lengths (Fig. S2). For downstream methods that
depend on accurate branch lengths, decisions must be made
on whether or not to include monomorphic positions in
the alignment. NASP provides the user with the flexibility to
make those decisions in a reproducible manner.

NASP represents a version-controlled, source-available,
unit-tested pipeline for identifying SNPs from datasets with
diverse input and output types. NASP is a high-throughput
method that can take a range of input formats, can accom-
modate multiple job management systems, can use multiple
read aligners and SNP callers, can identify both monomor-
phic and polymorphic sites, and can generate core genome
statistics across a population.
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