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In Brief

The histone demethylase LSD1 is critical

for epithelial-to-mesenchymal transition

(EMT) and tumor progression. Luo et al.

report that LSD1 is acetylated by theMOF

acetyltransferase. This modification

reduces association of LSD1 with

nucleosomes and decreases histone

demethylation, thus suppressing EMT.
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SUMMARY

The histone demethylase LSD1 facilitates epithelial-
to-mesenchymal transition (EMT) and tumor pro-
gression by repressing epithelial marker expression.
However, little is known about how its function may
be modulated. Here, we report that LSD1 is acety-
lated in epithelial but not mesenchymal cells. Acety-
lation of LSD1 reduces its association with nucleo-
somes, thus increasing histone H3K4 methylation at
its target genes and activating transcription. The
MOF acetyltransferase interacts with LSD1 and is
responsible for its acetylation. MOF is preferentially
expressed in epithelial cells and is downregulated
by EMT-inducing signals. Expression of exogenous
MOF impedes LSD1 binding to epithelial gene pro-
moters and histone demethylation, thereby sup-
pressing EMT and tumor invasion. Conversely,
MOFdepletion enhances EMT and tumormetastasis.
In human cancer, high MOF expression correlates
with epithelial markers and a favorable prognosis.
These findings provide insight into the regulation of
LSD1 and EMT and identify MOF as a critical sup-
pressor of EMT and tumor progression.

INTRODUCTION

Dynamic posttranslational modifications of histones profoundly

impact chromatin accessibility and gene transcription. Aberrant

histone modifications deregulate gene expression and actively

contribute to cancer initiation and progression (Baylin and

Jones, 2011; Chi et al., 2010). Lysine-specific demethylase 1

(LSD1 or KDM1A) was the first histone demethylase discovered

(Shi et al., 2004). LSD1 can repress gene transcription by deme-

thylating mono- and di-methyl lysine 4 on histone H3 (H3K4me1/

2) (Shi et al., 2004), which are histone marks associated with en-

hancers and active promoters, respectively (Kooistra and Helin,

2012;Martin and Zhang, 2005). Interactionwith CoREST enables

LSD1 to bind to nucleosomes and demethylate H3K4 on nucle-

osomal substrates (Lee et al., 2005; Shi et al., 2005; Yang et al.,

2006). LSD1-containing repressive protein complexes also

include histone reader subunits BHC80 and SFMBT1 that help

anchor LSD1 to chromatin (Lan et al., 2007; Tang et al., 2013;

Zhang et al., 2013). Moreover, through associations with various

sequence-specific DNA-binding transcription factors, LSD1 is

recruited to specific genomic loci to regulate target genes

involved in a broad spectrum of biological processes including

embryonic development and cancer (Amente et al., 2013; Mo-

sammaparast and Shi, 2010).

Overexpression of LSD1 has been observed in a wide range of

human solid tumors, and high levels of LSD1 are associated with

tumor aggressiveness, recurrence, and adverse prognosis (Høj-

feldt et al., 2013; Lim et al., 2010; Shi, 2007). LSD1 physically as-

sociates with the Snail family of zinc-finger transcription factors

(Lin et al., 2010a, 2010b; Tang et al., 2013;Wu et al., 2012), which

are central drivers of epithelial-to-mesenchymal transition (EMT)

(Peinado et al., 2007). EMT is a cellular reprogramming process

that is defined by the loss of epithelial characteristics, including

cell-cell adhesion and expression of epithelial cell markers, and

the acquisition of a more migratory and invasive mesenchymal

phenotype (Kalluri and Weinberg, 2009; Lamouille et al., 2014).

It has been proposed that reversible EMT may contribute to tu-

mor metastasis (Thiery, 2002; Tsai and Yang, 2013). Snail

directly represses epithelial gene expression through the recruit-

ment of LSD1 and subsequent LSD1-mediated H3K4 demethy-

lation (Lin et al., 2010a, 2010b; Tang et al., 2013). LSD1 is indis-

pensable for Snail-mediated EMT and transcriptional repression

of epithelial genes in mesenchymal cancer cells. LSD1 is ubiqui-

tously expressed; however, very little is known about whether

and how its activities might be modulated to facilitate EMT and

tumor progression.

MOF (also known as KAT8) is a member of the MYST family of

lysine acetyltransferases (Sapountzi and Côté, 2011) and is a

major enzyme that catalyzes histone H4K16 acetylation in
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mammalian cells (Smith et al., 2005; Taipale et al., 2005). MOF

exists in two distinct and evolutionarily conserved multiprotein

complexes: MSL and NSL (Cai et al., 2010; Li et al., 2009; Mend-

jan et al., 2006; Prestel et al., 2010; Raja et al., 2010; Smith et al.,

2005). Both complexes are capable of acetylating H4K16, but

the NSL complex has a broader substrate specificity and can

acetylate non-histone proteins such as p53 (Cai et al., 2010; Li

et al., 2009). MOF plays important roles in transcription activa-

tion, DNA damage response, and maintenance of embryonic

stem cell pluripotency (Gupta et al., 2005, 2014; Li et al., 2010,

2012; Sharma et al., 2010). Compared with normal tissues,

expression of MOF is frequently downregulated in several types

of solid tumors (Cao et al., 2014; Liu et al., 2013; Pfister et al.,

2008; Zhang et al., 2014). However, there are also reports that

MOF expression is elevated in certain cancers and MOF may

stimulate cell proliferation and transformation (Gupta et al.,

2008; Zhao et al., 2013a). Overall, the role of MOF in cancer re-

mains poorly defined.

In this study, we found that LSD1was acetylated specifically in

epithelial cells. This modification impairs LSD1’s association

with nucleosomes and prevents transcriptional repression re-

sulting from the demethylation of nucleosomal H3K4. MOF

was identified as the only acetyltransferase responsible for

LSD1 acetylation. The NSL complex interacted with and acety-

lated LSD1. MOF expression was highly enriched in epithelial

cells but was downregulated upon induction of EMT. Depletion

of MOF in epithelial cells accelerated EMT and enhanced tumor

metastasis. Expression of exogenous MOF dissociated LSD1

from epithelial gene promoters, activated epithelial marker

expression, and decreased tumor invasion. Collectively, the re-

sults suggest that acetylation of LSD1 by MOF functions as a

key switch to suppress EMT and tumor progression.

RESULTS

LSD1 Is Preferentially Acetylated in Epithelial Cells
LSD1 is a crucial regulator of EMT and is expressed in both

epithelial and mesenchymal cells. We wondered whether

LSD1’s activity might be differentially regulated in the two

cell types. Lysine acetylation of non-histone proteins has

proven a critical covalent modification that regulates protein

functions (Choudhary et al., 2014; Yang and Seto, 2008).

Therefore, we sought to determine whether LSD1 might un-

dergo acetylation. We transduced MCF7 epithelial breast can-

cer cells with lentiviruses expressing Flag-tagged LSD1. Flag-

LSD1 proteins were immunoprecipitated from infected cells

with anti-Flag antibodies, followed by immunoblotting with

pan-acetyl-lysine antibodies. LSD1 acetylation was observed

in MCF7 cells (Figure 1A). Treatment of MCF7 cells with the

HDAC inhibitor Trichostatin A or SIRT1 inhibitor nicotinamide

enhanced LSD1 acetylation, and a combination of both inhib-

itors additively increased LSD1 acetylation levels (Figure 1A).

The results suggest that LSD1 is acetylated in MCF7 epithelial

cells and multiple classes of deacetylases actively deacetylate

LSD1.

To determine whether LSD1 might be differentially acetylated

in epithelial versus mesenchymal cells, lentiviral Flag-LSD1 was

similarly expressed in MDA-MB-231 mesenchymal breast can-

cer cells. However, LSD1 acetylation was undetectable in such

cells even after treatment with deacetylase inhibitors (Figure 1A).

To verify that LSD1might be acetylated preferentially in epithelial

cells, we compared LSD1 acetylation in a panel of epithelial and

mesenchymal cancer cell lines (Figure 1B). These cells were in-

fected with lentiviral Flag-LSD1, and acetylation of LSD1 was

subsequently monitored. LSD1 acetylation was readily detected

in all epithelial cells examined, including T47D, MDA-MB-468,

BT474, and MCF7, but was virtually absent in mesenchymal

cells, including Hs578T, MDA-MB-435, BT549, and MDA-MB-

231 (Figure 1B). This observation supports the notion that

LSD1 is acetylated specifically in epithelial cells.

MOF Induces LSD1 Acetylation and Is Required for
Acetylation of Endogenous LSD1 in Epithelial Cells
To identify the enzyme(s) that might acetylate LSD1, we

screened a panel of candidates from multiple lysine acetyltrans-

ferase families (Kahali et al., 2014; Yang, 2004). When Flag-LSD1

alone was expressed in HEK293 cells, it was not acetylated (Fig-

ure 1C). We thus co-expressed various candidate acetyltrans-

ferases together with Flag-LSD1 and examined their ability to

induce LSD1 acetylation. Among a total of 18 acetyltransferases

examined, only the MYST family member MOF (Sapountzi and

Côté, 2011) strongly promoted LSD1 acetylation (Figure 1C).

Moreover, MOF did not affect LSD1 protein abundance. Other

acetyltransferases, including several related members of the

MYST family (e.g., Tip60), did not cause notable acetylation of

LSD1 (Figure 1C).

Because LSD1 acetylation was primarily detected in epithelial

cells (Figure 1B), we examined the expression of endogenous

MOF in epithelial and mesenchymal cancer cell lines. Unlike

the ubiquitous expression of LSD1, MOF was largely confined

to epithelial cells and was weakly expressed or undetectable in

mesenchymal cells, which correlated with the epithelial marker

E-cadherin (Figure 1D). The epithelial-enriched expression of

MOF is consistent with the LSD1 acetylation pattern.

To verify whether endogenous LSD1 was acetylated in epithe-

lial cells and MOF was the responsible enzyme, we depleted

MOF in MCF7 epithelial cells and MDA-MB-231 mesenchymal

cells with lentiviral short hairpin RNAs (shRNAs) (Figure 1E).

MOF RNA levels in MCF7 were indeed higher than those in

MDA-MB-231 (Figure 1E). Endogenous LSD1 proteins were

immunoprecipitated from the cells for evaluation of lysine acety-

lation. In vector-infected control MCF7 and MDA-MB-231 cells,

the abundance of endogenous LSD1 proteins was comparable

between the two cell lines, but acetylation of endogenous

LSD1 was only observed in MCF7 cells (Figure 1E). Furthermore,

when MOF was depleted in MCF7 cells, LSD1 protein abun-

dance was not affected but its acetylation was markedly

reduced (Figure 1E). Taken together, the results suggest that

MOF can induce LSD1 acetylation and is required for the acety-

lation of endogenous LSD1.

LSD1 Interacts with the NSL Complex
As MOF was responsible for LSD1 acetylation, we tested

whether the two proteins might interact with each other. In

a co-immunoprecipitation assay, when Myc-tagged LSD1

was co-expressed with Flag-tagged MOF in HEK293 cells,
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immunoprecipitation of MOF with anti-Flag antibodies failed to

pull down LSD1 (Figure 2A). Since the NSL complex is able to

acetylate non-histone proteins and the MSL1v1 subunit (also

known as KANSL1) recognizes substrates (Li et al., 2009), we

investigated whether MSL1v1 might bind to LSD1. MSL1v1

was unstable when expressed alone in HEK293 cells but could

be stabilized by co-expression of MOF (data not shown). When

Myc-LSD1 was co-expressed with both Flag-MSL1v1 and un-

tagged MOF, immunoprecipitation of MSL1v1 with anti-Flag an-

tibodies indeed co-precipitated LSD1 (Figure 2A). In a similar

assay, in HEK293 cells expressing Myc-LSD1 and Myc-MOF

as well as Flag-MSL1v1, immunoprecipitation of MSL1v1 with

anti-Flag antibodies pulled down both LSD1 and MOF (Fig-

ure S1A). The results suggest that the NSL complex associates

with LSD1 in cells.

To further verify the MSL1v1-LSD1 interaction, we isolated

Flag-LSD1 proteins from transfected HEK293 cells by immuno-

precipitation with anti-Flag antibodies, followed by elution with

Flag peptide. We also purified recombinant His-tagged MOF

andMSL1v1 proteins from bacteria and incubated themwith pu-

rified Flag-LSD1 proteins. MOF was unable to bind to LSD1 (Fig-

ure 2B). By contrast, both the full-length and carboxyl terminus

of MSL1v1 displayed association with LSD1 (Figure 2B). The

in vitro binding result suggests that LSD1 associates with the

NSL complex via direct interaction with MSL1v1. Such associa-

tion may facilitate LSD1 acetylation by MOF.

Figure 1. LSD1 Is Acetylated by MOF Specifically in Epithelial Cells

(A) LSD1 is acetylated in MCF7 epithelial but not MDA-MB-231 mesenchymal breast cancer cells, and deacetylase inhibitors enhance its acetylation. MCF7 and

MDA-MB-231 cells were transduced with lentiviral Flag-LSD1, treated with Trichostatin A (TSA) and/or Nicotinamide (NAM) for 24 hr, and subjected to immu-

noprecipitation with anti-Flag antibodies, followed by immunoblotting with anti-acetyl-lysine (Ac-K) and anti-Flag antibodies.

(B) LSD1 is preferentially acetylated in epithelial cells. Indicated epithelial and mesenchymal cancer cells were transduced with lentiviral Flag-LSD1, treated with

TSA and NAM for 24 hr, and examined for LSD1 acetylation by immunoprecipitation and immunoblotting as in (A).

(C) MOF induces LSD1 acetylation. HEK293 cells were transfected with Flag-LSD1 in combination with various acetyltransferases as indicated. Flag-LSD1 was

immunoprecipitated with anti-Flag antibodies and the precipitate was analyzed by immunoblotting for lysine acetylation. Asterisk denotes the pCAF protein,

which is also Flag-tagged.

(D) Expression of MOF is enriched in epithelial cells. Indicated cancer cells were lysed and immunoblotted with antibodies as indicated. E-cad, E-cadherin.

(E) Endogenous LSD1 is acetylated inMCF7 cells in aMOF-dependent manner. MCF7 andMDA-MB-231 cells were infected with lentiviral control vector pLKO or

vector expressing shRNAs targetingMOF (shMOF). Depletion of MOFwas verified by quantitative RT-PCR (left). The RNA levels ofMOF inMCF7 cells were set as

1. Endogenous LSD1 proteins were immunoprecipitated with anti-LSD1 antibodies, followed by immunoblotting with anti-Ac-K antibodies (right).
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MOF Directly Acetylates LSD1 at Lysine Residues 432,
433, and 436
We sought to identify the MOF acetylation sites in LSD1. Two

in silico online programs, LAceP and BRABSB-PHKA, both pre-

dicted potential lysine (K) acetylation sites in human LSD1,

including K432 and K436 (http://www.scbit.org/iPTM) (Hou

et al., 2014; Shao et al., 2012). Global proteomics also uncovered

acetylation of LSD1 K432, K433, and K436 (http://www.

phosphosite.org). These three residues are located in the Tower

domain of LSD1.

To test whether MOFmight acetylate the LSD1 Tower domain,

we purified recombinant proteins consisting of this region from

bacteria. We also substituted K432, K433, and K436 with

arginine (R) to make an acetylation-resistant mimic (the 3KR

mutant). To prepare the MOF enzyme, we expressed Flag-

MOF in HEK293 cells together with or without MSL1v1 and

immunoprecipitated the MOF proteins with anti-Flag antibodies.

The LSD1 Tower domain was weakly acetylated when incubated

with the MOF-only immunoprecipitates in vitro and became

strongly acetylated when incubated with the MOF-MSL1v1 im-

munoprecipitates (Figure 2C). By contrast, the 3KR mutant

Tower domain was resistant to MOF-mediated acetylation (Fig-

ure 2C). Similarly, we purified recombinant full-length wild-type

(WT) and 3KR mutant LSD1 proteins (Figure S1B) and incubated

them with the MOF-containing immunoprecipitates. Robust

acetylation of WT LSD1 by MOF-MSL1v1 was observed, and

there was no detectable acetylation of the 3KR mutant LSD1

(Figure S1C). The results suggest that LSD1 K432, K433, and

K436 are the only sites acetylated by MOF in vitro.

MOF induced LSD1 acetylation when both were expressed in

HEK293 cells (Figures 1C and 2D). However, a catalytically inac-

tive MOF mutant (K274R) (Sun et al., 2011) failed to acetylate

LSD1 in these cells (Figure 2D). This result is consistent with

direct acetylation of LSD1 by MOF. When LSD1 K432, K433,

and K436 were individually replaced by R, the single mutants

were still efficiently acetylated by MOF in the transfection assay

(Figure S1D). Only when all three Ks were mutated (i.e., 3KR),

LSD1 acetylation by MOF was completely abolished (Figures

2D and S1D). Similarly, when the three Ks of LSD1 were simulta-

neously replaced with glutamine (Q), the resulting 3KQ mutant

Figure 2. LSD1 Interacts with MOF-MSL1v1 and Is Acetylated by MOF at K432, K433, and K436

(A) LSD1 interacts with MOF-MSL1v1 in cells. HEK293 cells were transfected with vectors expressing Myc-tagged LSD1 alone or in combination with Flag-MOF

or Flag-MSL1v1 and untagged MOF. Whole-cell lysates were subjected to immunoprecipitation with anti-Flag antibodies, followed by immunoblotting with Myc

or Flag antibodies. See also Figure S1A.

(B) LSD1 binds to MSL1v1 in vitro. Flag-LSD1 proteins were immunoprecipitated from transfected HEK293 cells with anti-Flag antibodies and eluted with Flag

peptide. His-taggedMOF andMSL1v1 (FL, full-length; N, aa 1–429; M, aa 429–800; C, aa 800–1105) were purified from bacteria and incubated with purified Flag-

LSD1 proteins. His-tagged proteins were precipitated with Ni-NTA agarose beads, and bound proteins were examined for the presence of LSD1 by immuno-

blotting with anti-Flag antibodies. Coomassie blue protein staining is shown in the lower panel. Arrowheads denote theMOF protein. Asterisks indicate full-length

and truncated MSL1v1 proteins.

(C) Acetylation of the LSD1 Tower domain by MOF-MSL1v1 in vitro. HEK293 cells were transfected with vectors expressing Flag-MOF alone or in combination

with MSL1v1, followed by immunoprecipitation with anti-Flag antibodies. The precipitates were incubated with recombinant LSD1 Tower domain (WT or 3KR).

Acetylation of LSD1 was determined by immunoblotting with anti-Ac-K antibodies. See also Figure S1C.

(D) Lysine 432, 433 and 436 of LSD1 are the MOF acetylation sites. Flag-tagged WT and mutants (3KR and 3KQ) of LSD1 were co-expressed with MOF (WT or

K274R mutant) in HEK293 cells. Acetylation of LSD1 was evaluated by immunoprecipitation with anti-Flag antibodies and immunoblotting with anti-Ac-K an-

tibodies. See also Figure S1D.
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LSD1 also resisted MOF-mediated acetylation (Figure 2D).

These results confirm that K432, K433, and K436 of LSD1 are

the MOF acetylation sites.

Acetylation of LSD1 Disrupts Its Association with
Nucleosomes and Demethylation of Nucleosomal
Substrates In Vitro
We next investigated the effect of lysine acetylation on the func-

tion of LSD1. The Tower domain of LSD1 protrudes from the cat-

alytic core and provides the binding platform for CoREST (Fig-

ure S2A) (Chen et al., 2006; Stavropoulos et al., 2006; Yang

et al., 2006). However, the acetylation sites K432, K433, and

K436 are not located at the binding interface between LSD1

and CoREST. Indeed, WT, 3KR, and 3KQ mutant LSD1 proteins

all associated with CoREST in co-immunoprecipitation assays

(Figure S2B), suggesting that LSD1 acetylation does not affect

its interaction with CoREST.

To demethylate histone tails in chromatin, LSD1 must asso-

ciate with nucleosomes (Lee et al., 2005; Shi et al., 2005; Yang

et al., 2006). Based on the crystal structure of the LSD1-CoREST

complex (Yang et al., 2006), K432, K433, and K436 of LSD1 may

directly contact nucleosomal DNA (Figure S2A). Acetylation of

these residues neutralizes their positive charge and thus abro-

gates their electrostatic interaction with the negatively charged

phosphate backbone of DNA. Therefore, acetylation of LSD1

may impair its association with nucleosomes and subsequent

demethylation of nucleosomal substrates.

We tested whether the acetylation-mimicking 3KQ LSD1

mutant was able to bind nucleosomes in vitro. Mononucleo-

somes were reconstituted with recombinant core histones and

biotin-tagged DNA fragments (Li et al., 2014). The resultant

nucleosome particles were subsequently incubated with recom-

binant WT or 3KQ LSD1 proteins in the absence or presence of

recombinant CoREST (Figure S1B). The nucleosomes were

isolated with streptavidin-conjugated beads, and associated

proteins were examined by immunoblotting. Consistent with

previous reports showing that LSD1 requires CoREST for nucle-

osome binding (Lee et al., 2005; Shi et al., 2005; Yang et al.,

2006), LSD1 alone (WT or 3KQ) did not bind to nucleosomes (Fig-

ure 3A). In the presence of CoREST, the association of WT LSD1

with nucleosomes became readily detected (Figure 3A). By

contrast, the binding of acetylation-mimicking 3KQ mutant to

nucleosomes was substantially reduced (Figure 3A). LSD1 and

CoREST did not bind to nucleosome-free DNA in vitro (Fig-

ure S2C). The results suggest that acetylation of LSD1 decreases

its association with nucleosomes.

LSD1 alone is capable of demethylating H3K4me1/2 in pep-

tides or bulk histones, but its demethylation of nucleosomal

H3K4 depends on CoREST-assisted nucleosome binding (Lee

et al., 2005; Shi et al., 2005; Yang et al., 2006). Acetylation of

LSD1 impairs its association with nucleosomes and hence may

compromise its ability to demethylate nucleosomal substrates.

When incubated with bulk histones, recombinant WT, 3KR,

and 3KQ LSD1 proteins all strongly decreased H3K4me2 levels

(Figure 3B), suggesting that the acetylation status of K432,

K433, and K436 in LSD1 does not impact its enzymatic activity

on free histones. However, when incubated with mononucleo-

somes, WT LSD1 alone was unable to demethylate H3K4me2

(Figure 3C). With the addition of recombinant CoREST, WT

LSD1 efficiently demethylated H3K4me2 in nucleosomes, and

the 3KR mutant LSD1 also actively demethylated nucleosomal

substrates (Figure 3C). By contrast, the acetylation-mimicking

3KQ mutant failed to demethylate nucleosomal H3K4me2 even

in the presence of CoREST (Figure 3C). These results suggest

that acetylation of LSD1 diminishes its demethylation activity to-

ward nucleosomal substrates.

Acetylation-Mimicking Mutant LSD1 Is Compromised
for Chromatin Association, H3K4 Demethylation, and
Repression of Target Genes in Cells
Based on the above in vitro assays, we asked whether LSD1

acetylation might negatively impact its association with chro-

matin, H3K4me2 demethylation, and transcriptional repression

in intact cells. In HCT116 colon cancer cells, multiple direct

target genes of LSD1 were identified, including AIM1 and

VAT1L, and their expression was upregulated when the

LSD1 gene was deleted through homologous recombination

(Jin et al., 2013). We reconstituted the LSD1-null HCT116 cells

with Flag-tagged WT, 3KR, or 3KQ LSD1 through lentiviral

infection. Because LSD1 aspartic acid (D) 555 and 556 are

essential for its enzymatic activity (Stavropoulos et al., 2006),

we substituted both residues with asparagine (N) to generate

an inactive mutant (2DN) as control. All forms of exogenous

LSD1 were expressed at comparable levels in the LSD1-null

cells (Figure S2D).

To evaluate the binding of WT and mutant exogenous LSD1

proteins to genomic targets, we performed chromatin immuno-

precipitation (ChIP) analysis with anti-Flag antibodies. While

WT LSD1 bound to the AIM1 and VAT1L promoters, the 3KQ

acetylation-mimetic mutant LSD1 demonstrated significantly

decreased association with these genomic loci (Figure 3D), sug-

gesting that acetylation of LSD1 attenuates its recruitment to

chromatin in cells. Chromatin binding of the enzymatically inac-

tive 2DN mutant LSD1 was comparable to that of WT LSD1.

Acetylation-resistant 3KR mutant LSD1 exhibited stronger chro-

matin binding than WT LSD1 (Figure 3D), which might be attrib-

uted to acetylation of WT LSD1 by endogenous MOF in these

cells.

As expected, theH3K4me2 levels at the LSD1 target gene pro-

moters were high in LSD1-null cells reconstituted with empty

vector or the inactive 2DN mutant (Figure 3E). Introduction of

WT or 3KR LSD1 potently reduced H3K4me2 levels at these

loci (Figure 3E). By contrast, the 3KQ mutant LSD1 failed to

decrease H3K4me2 (Figure 3E), which is consistent with its

reduced association with chromatin. Accordingly, expression

of LSD1 target genes was strongly repressed by reconstitution

with WT and 3KR LSD1, but not with 3KQ and 2DN mutant

LSD1 (Figure 3F). These observations suggest that acetylation

of LSD1 inhibits its ability to bind to chromatin, demethylate

H3K4, and repress transcription.

MOF Dissociates LSD1 from Chromatin and Activates
E-Cadherin Expression at Least in Part via Suppression
of LSD1 Function
We further explored the biological significance ofMOF-mediated

regulation of LSD1. LSD1 is indispensable for repression of
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epithelial genes in mesenchymal cells (Lin et al., 2010a, 2010b;

Tang et al., 2013). Since MOF was able to induce LSD1 acetyla-

tion that impaired LSD1’s nucleosomal binding and H3K4 deme-

thylation, we expected that ectopic expression of MOF in

mesenchymal cells might dissociate LSD1 from chromatin and

thus de-repress/activate epithelial markers. We transduced

mouse embryonic fibroblasts (MEFs) with a lentiviral vector ex-

pressing MOF or a control vector. In MOF-transduced MEFs,

the binding of LSD1 at the epithelial genes E-cadherin and

KRT8 was indeed decreased (Figure 4A), and, consequently,

H3K4me2 levels were increased (Figure 4B). MEFs were nega-

tive for E-cadherin expression. However, E-cadherin protein

expression became detectable in many MOF-transduced cells

(Figure 4C). This increase in E-cadherin expression was accom-

panied by a reduction of cellular invasiveness in vitro (Figure 4D).

These results suggest that MOF is able to dissociate LSD1 from

its chromatin targets, increase H3K4me2 levels at these sites,

and activate epithelial marker gene expression.

Figure 3. Acetylation of LSD1 Impairs Its Ability to Associate with Nucleosomes, Demethylate Nucleosomal Substrates, and Repress Target

Gene Transcription

(A) LSD1 acetylation attenuates its affinity for nucleosomes in vitro. Nucleosomes were reconstituted with recombinant core histones and biotin-labeled DNA

(Bio-nucl). Reconstituted nucleosomes were then incubated with recombinant WT or 3KQ mutant LSD1 proteins in the absence or presence of CoREST. Nu-

cleosomes were isolated with streptavidin beads, and associated proteins were examined by immunoblotting with anti-LSD1 antibodies. See also Figure S2C.

(B) LSD1 acetylation does not affect its ability to demethylate H3K4 in bulk histones in vitro. Equal amounts of bulk histones were incubated with recombinant WT

or mutant (3KR, 3KQ) LSD1, followed by immunoblotting with anti-H3K4me2, -H3K4me3, and -LSD1 antibodies. H3K4me3 levels were used as loading controls.

(C) Acetylation of LSD1 abolishes its demethylation activity on nucleosomal substrates. Mononucleosomes were prepared from cells and incubated with re-

combinant LSD1 (WT, 3KR, 3KQ) and/or CoREST proteins. Histone demethylation was verified by immunoblotting with anti-H3K4me2/3 antibodies.

LSD1-null HCT116 cells were reconstituted with Flag-tagged WT or mutant (3KR, 3KQ, 2DN) LSD1 through lentiviral infection (see also Figure S2D).

(D) Binding of WT and mutant Flag-LSD1 proteins to the AIM1 and VAT1L promoters was evaluated by ChIP analysis with anti-Flag antibodies. Normal

immunoglobulin G (IgG) was used as a non-specific antibody control.

(E) H3K4me2 (K4m2) levels at the AIM1 and VAT1L promoters in the reconstituted cells were measured by ChIP analysis.

(F) Expression of indicated LSD1 target genes was determined by real-time RT-PCR.

Error bars represent SD from triplicate experiments. *p < 0.05 (3KQ versus WT LSD1).
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MOF acetylates H4K16 and plays a critical role in transcrip-

tional activation (Sapountzi and Côté, 2011). To verify whether

activation of E-cadherin by MOF in MEFs was attributed to

LSD1 acetylation, we tested whether acetylation-resistant

LSD1 mutant might suppress MOF’s activity. We transduced

MEFs with MOF in combination with WT and mutant forms of

LSD1. WT LSD1 slightly attenuated MOF-activated E-cadherin

expression (Figure 4E). Interestingly, the acetylation-resistant

3KR mutant LSD1 strongly suppressed MOF’s capability to

induce E-cadherin (Figure 4E). Meanwhile, the acetylation-

mimetic 3KQ LSD1 was similar to WT LSD1 (Figure 4E), implying

that WT LSD1might be prevalently acetylated by overexpressed

MOF in this assay. These results suggest that MOF activates

E-cadherin expression at least in part through acetylation of

LSD1.

MOF Expression Is Downregulated and LSD1 Is
Deacetylated upon Induction of EMT
LSD1 critically represses epithelial gene expression during

EMT (Lin et al., 2010a, 2010b; Tang et al., 2013). In response

to EMT-inducing signals (e.g., transforming growth factor b

[TGF-b], nickel), A549 epithelial lung cancer cells undergo

robust EMT, and the recruitment of LSD1 to epithelial gene

promoters was crucial for the induction of EMT (Tang et al.,

2013). Because MOF is highly expressed in epithelial cells

(Figure 1D) and MOF can suppress LSD1’s function through

acetylation, it is puzzling why endogenous MOF cannot pre-

vent EMT. We examined the expression of endogenous MOF

during EMT. In untreated A549 cells, MOF was expressed at

high levels (Figure 5A). However, both RNA and protein levels

of MOF were strongly downregulated by nickel treatment (Fig-

ure 5A). Consistent with reduced MOF expression, LSD1 pro-

teins were deacetylated in A549 cells following nickel treat-

ment (Figure 5B). The LSD1 protein abundance remained

unchanged (Figure 5B). Downregulation of MOF by EMT-

inducing signals may pave the way for EMT.

MOF Suppresses LSD1’s Chromatin Association, H3K4
Demethylation, EMT, and Cell Invasion
If downregulation of MOF was a prerequisite for EMT, persistent

MOF expression might prevent EMT. We transduced A549 cells

with lentiviral Flag-MOF (driven by the CMV enhancer/promoter)

or control vector, followed by nickel treatment. Expression of

exogenous MOF was confirmed by immunoblotting with anti-

Flag antibodies (Figure 5C). Because A549 cells expressed

high levels of endogenous MOF, the total amount of MOF pro-

teins was not increased by exogenous MOF expression (Fig-

ure 5C). After nickel treatment, MOF protein abundance in con-

trol A549 cells was strongly decreased; however, MOF protein

expression persisted (albeit slightly reduced) in the MOF-trans-

duced cells (Figure 5C). We further examined epithelial marker

expression. In nickel-treated control A549 cells, E-cadherin

and KRT8 were markedly downregulated (Figures 5C and S3).

By contrast, their expression in MOF-transduced cells was

only partially decreased by nickel (Figures 5C and S3). The re-

sults suggest that MOF critically maintains epithelial gene

expression.

Nickel treatment of control A549 cells markedly increased the

binding of endogenous LSD1 proteins to the epithelial genes

E-cadherin and KRT8 (Figure 5D). Consequently, H3K4me2

levels at these loci were significantly reduced (Figure 5E).

However, in MOF-transduced cells, nickel-induced recruitment

of LSD1 to these epithelial genes was blunted (Figure 5D),

and, correspondingly, nickel treatment failed to reduce the

H3K4me2 levels at these genes (Figure 5E). Because MOF is a

major H4K16 acetyltransferase, we also examined this histone

mark and found that its presence at epithelial gene promoters

was markedly decreased by nickel treatment in control cells,

which is consistent with downregulation of MOF expression

but remained high in MOF-transduced cells (Figure 5F). These

results suggest that persistent MOF expression blocks nickel-

induced recruitment of LSD1 to epithelial gene promoters and

LSD1-mediated H3K4 demethylation at these loci.

A549 cells attached to each other and exhibited an epithelial

morphology in culture (Figure 5G). Following nickel treatment,

these cells became elongated and dispersed (Figure 5G),

which was characteristic of EMT. However, many MOF-trans-

duced cells resisted nickel-induced EMT: they maintained

cell-cell adhesion and remained clustered (Figure 5G). EMT

endows cells with increased invasiveness. In response to

nickel treatment, control A549 cells showed an enhanced abil-

ity to invade extracellular matrix in the Transwell in vitro inva-

sion assay (Figure 5H). This nickel-stimulated invasiveness

was significantly suppressed by MOF overexpression (Fig-

ure 5H). Together, these data suggest that MOF can coun-

teract nickel-induced EMT.

Snail physically recruits LSD1 to epithelial genes and re-

presses their expression in an LSD1-dependent manner (Lin

et al., 2010a, 2010b; Tang et al., 2013). Cells expressing an

inducible form of Snail, Snail-ER, exhibited increased LSD1

Figure 4. MOF Dissociates LSD1 from Chromatin and Activates E-Cadherin Expression in MEFs at Least in Part through Acetylation of LSD1

(A) Overexpression of MOF in MEFs causes dissociation of LSD1 from epithelial gene promoters. MEFs were transduced with lentiviral control vector or vector

expressing MOF, followed by ChIP analysis to determine the binding of LSD1 at the epithelial genes E-cadherin and KRT8.

(B) MOF increases H3K4me2 levels at epithelial genes in MEFs. Control and MOF-transduced MEFs were subjected to ChIP with anti-H3K4me2 (K4m2)

antibodies.

(C) MOF induces E-cadherin expression in MEFs. Control and MOF-transduced MEFs were subjected to immunofluorescence staining with anti-E-cadherin

antibodies. DNA was stained with Hoechst.

(D) MOF inhibits cell invasion in vitro. Control and MOF-transduced MEFs were assayed for Transwell invasion. Cells that invaded through the matrix membrane

were imaged and counted. Representative images are shown (left). The histogram shows the quantification of relative number of cells migrated through matrix

(from five random fields). Error bars indicate SD. *p < 0.05.

(E) Acetylation-resistant 3KR LSD1 mutant suppresses MOF’s ability to activate E-cadherin. MEFs were transduced with lentiviruses expressing MOF in

combination withWT ormutant LSD1. E-cadherin expression was assessed by quantification of cells positive for immunostaining with anti-E-cadherin antibodies

(left) or real-time RT-PCR (right). Error bars indicate SD from triplicate experiments. *p < 0.05.
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Figure 5. MOF Is Downregulated by Nickel, and Persistent MOF Expression Prevents the Recruitment of LSD1 to Chromatin, H3K4me2

Demethylation, and EMT

(A) MOF expression is reduced during nickel-induced EMT. A549 cells were treated with nickel for 2 days. RNA and protein levels of MOF were determined by

real-time RT-PCR and immunoblotting, respectively.

(B) Endogenous LSD1 is deacetylated during nickel-induced EMT. Endogenous LSD1 proteins were immunoprecipitated from A549 cells (with or without nickel

treatment), followed by immunoblotting for lysine acetylation.

(C) Persistent expression of MOF in A549 cells maintains E-cadherin expression. A549 cells were transduced with lentiviral Flag-MOF or empty vector, followed

by treatment with nickel or control (H2O) for 2 days. Cells were lysed for immunoblotting with indicated antibodies. See also Figure S3.

(D) Recruitment of endogenous LSD1 to the promoters of epithelial genes, E-cadherin and KRT8, was determined by ChIP analysis with anti-LSD1 antibodies.

(legend continued on next page)
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recruitment to epithelial genes following Snail induction (Tang

et al., 2013). We infected DLD1 epithelial colon cancer cells

with lentiviral Snail-ER. As expected, induction of Snail boosted

LSD1 binding and reduced H3K4me2 levels at the E-cadherin

promoter (Figure S4A). However, when exogenous MOF was

co-expressed in the Snail-ER cells via lentiviral transduction,

Snail-induced LSD1 chromatin recruitment and H3K4me2 de-

methylation were substantially blocked (Figure S4A). Morpho-

logically, while control Snail-ER cells exhibited complete EMT

upon induction of Snail, overexpression of MOF in such cells

enabled many cells to resist Snail-induced EMT and largely

retain the epithelial status (Figure S4B). Consistently, repression

of E-cadherin by Snail was also partially blocked by MOF (Fig-

ure S4B). Collectively, the results suggest that MOF is able to

suppress nickel- and Snail-induced EMT.

To validate the anti-EMT role of endogenous MOF, we

depleted MOF in A549 cells with lentiviral shRNAs (Figure 6A).

Depletion of MOF did not alter cell growth or survival (Figure 6B).

Without EMT-inducing signals, MOF-depleted A549 cells did not

show evident morphological changes compared with control

cells, and expression of epithelial markers E-cadherin and kera-

tin KRT8 was not significantly affected by MOF depletion (Fig-

ure 6C). When treated with increasing concentrations of nickel,

expression of epithelial markers became gradually decreased

in control cells, but MOF-depleted cells downregulated these

markers more robustly than control cells (Figure 6C), suggesting

(E) H3K4me2 (K4m2) levels at the epithelial gene promoters were measured by ChIP analysis.

(F) Acetyl H4K16 levels at the epithelial genes were determined by ChIP.

(G) Overexpression of MOFblocks nickel-induced EMT in A549 cells. Phase-contrast images of control andMOF-overexpressing A549 cells treatedwith nickel or

control (H2O) are shown. Arrowheads indicate cells that maintain the epithelial morphology.

(H) MOF expression attenuates nickel-induced cell invasion in vitro. Control and MOF-overexpressing A549 cells were treated with or without nickel for 2 days,

and were subjected to the Transwell invasion assay. The histogram shows the quantification of relative number of cells that migrated through matrix (from five

random fields).

Error bars indicate SD. *p < 0.05.

Figure 6. Depletion of MOF Accelerates EMT and Increases Tumor Metastatic Potential

(A) Depletion of MOF in A549 cells with lentiviral shRNAs was verified by real-time RT-PCR.

(B) Depletion of MOF does not affect cell growth and survival. Control andMOF-depleted A549 cells were plated, and cell viability was determined by Trypan blue

staining. Living cells were counted.

(C) Depletion of MOF facilitates the induction of EMT by nickel. Control and MOF-depleted A549 cells were treated with varying concentrations of nickel for

2 days. Expression of epithelial cell markers E-cadherin and KRT8 was quantified by RT-PCR.

(D) Depletion of MOF enhances metastasis. Control and MOF-depleted A549 cells were injected into tail vein of immunodeficient mice. Lung tumors were

counted. The number of mice in each group is shown.

Error bars indicate SD. *p < 0.05 (comparing shMOF with pLKO).
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that depletion of MOF facilitates EMT. EMT enhances lung

metastasis in the experimental metastasis assay (Tsai and

Yang, 2013). MOF-depleted A549 cells formed significantly

more tumors than control cells in mouse lungs following tail

vein injection (Figure 6D). These observations suggest that

endogenous MOF functions against EMT.

MOF Suppresses Tumor Invasion and Is Associated with
Epithelial Gene Expression and Favorable Prognosis in
Human Cancer
The role of MOF in malignant progression remains poorly under-

stood. Because MOF inhibited LSD1-dependent EMT, we

asked whether MOF might suppress tumor progression. MDA-

MB-231 triple-negative breast cancer cells are mesenchymal

and aggressive. Similar to MEFs, infection of MDA-MB-231 cells

with lentiviral MOF also decreased LSD1’s binding (Figure S5A)

and increased H3K4me2 levels (Figure S5B) at epithelial gene

promoters, resulting in E-cadherin expression (Figure S5C).

When injected into immunodeficient mice, control MDA-MB-

231 cells were invasive and exhibited extensive infiltration into

neighboring muscle fibers (Figure 7A). By contrast, tumors

fromMOF-overexpressingMDA-MB-231 cells showed generally

clear boundaries (Figure 7A). The results suggest that MOF may

Figure 7. MOF Suppresses Tumor Progres-

sion and Is a Favorable Prognostic Factor

in Human Cancer

(A) MOF inhibits tumor invasion in xenograft

models. MDA-MB-231 cells were transduced with

lentiviral MOF or control vector (see also Fig-

ure S5), and injected into immunodeficient mice.

Tumors were sectioned and stained by H&E.

(B) Correlation of MOF with epithelial cell markers

in human lung and breast cancers. Tumors were

clustered based on expression levels of MOF

along with epithelial markers E-cadherin (E-cad)

and KRT8, and mesenchymal markers fibronectin

(FN1), vimentin (Vim), and MMP2 in human lung

and breast cancer cohorts (TCGA dataset

GSE62944). Green and red colors indicate lower

and higher expression, respectively. See also

Figure S6.

(C) Higher levels of MOF expression predict better

clinical outcomes in human lung and breast can-

cers. Kaplan-Meier survival was analyzed based

on expression levels of MOF in large cohorts of

lung (left) and breast (right) cancer patients using

online software (http://kmplot.com/analysis/).

Log-rank p values are shown.

inhibit LSD1 function, activate epithelial

gene expression, and suppress tumor in-

vasion in vivo.

The importance of MOF in suppressing

EMT and tumor progression prompted us

to investigate its expression in human

cancer. Because MOF positively regu-

lated epithelial genes and itself was

downregulated upon EMT, we compared

MOF expression with EMT markers in

more than 500 cell lines derived from human solid tumors (Barre-

tina et al., 2012). MOF was highly expressed in cancer cells that

expressed epithelial markers E-cadherin and EPCAM and was

absent or low in cells expressing mesenchymal markers Vimen-

tin and Zeb1 (Figure S6). We next examined microarray data

from human primary tumor samples. MOF expression was het-

erogeneous among tumor samples (Figure 7B). Some tumors ex-

pressed high levels of MOF, whereas others were negative for

MOF expression. Interestingly, in both lung and breast cancer

cohorts, MOF expression overlapped with epithelial markers,

such as E-cadherin and KRT8, and inversely correlated with

mesenchymal markers (Figure 7B).

Given the association of MOF expression with the epithelial

phenotype, we further investigated whether MOFmight be an in-

dependent prognostic indicator in human cancer. In a cohort of

nearly 2,000 lung cancer patients (Györffy et al., 2013), highMOF

expression in tumors strongly predicted a better overall survival

(Figure 7C). Similarly, in a large cohort of over 3,500 breast can-

cers (Györffy et al., 2010), elevated MOF levels robustly corre-

lated with relapse-free survival (Figure 7C). These data suggest

that MOF is a potent indicator of favorable prognosis in human

cancer, which is consistent with its ability to suppress LSD1

function and tumor progression.
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DISCUSSION

LSD1-catalyzed demethylation of H3K4 is required for Snail-

mediated transcriptional repression of epithelial markers in cells

undergoing EMT. Demethylation of nucleosomal H3K4 by LSD1

depends on its association with nucleosomes. In this study, we

found that LSD1 was acetylated preferentially in epithelial cells.

This covalent modification impaired LSD1’s ability to bind to nu-

cleosomes, demethylate nucleosomal substrates, and repress

target gene expression. Therefore, despite its ubiquitous expres-

sion, LSD1’s functionality may differ between epithelial and

mesenchymal cells due to its differential acetylation. The

MYST family acetyltransferase MOF was identified as the only

enzyme that was sufficient and necessary for LSD1 acetylation.

Expression of MOF is enriched in epithelial cells, which is consis-

tent with epithelial-specific acetylation of LSD1. MOF prevented

the recruitment of LSD1 to epithelial gene promoters and LSD1-

dependent H3K4 demethylation, thereby maintaining epithelial

gene expression and suppressing EMT and tumor invasion (Fig-

ure S7). Taken together, this study uncovers MOF-mediated

acetylation of LSD1 as a crucial regulatory switch controlling

LSD1 function and provides a mechanistic link to EMT regula-

tion. Furthermore, our data illustrate MOF as an important sup-

pressor of EMT and tumor progression.

Recruitment of the LSD1 corepressor complex to chromatin

involves multivalent interactions. Association with sequence-

specific DNA-binding transcription factors may guide the com-

plex to particular genomic loci, and local chromatin environment

also plays an essential role in this process. SFMBT1, a putative

reader subunit recognizing certain histone marks, is required

for the chromatin recruitment of LSD1 (Tang et al., 2013). Asso-

ciation of LSD1 with chromatin also depends on CoREST, which

not only interacts with LSD1, but also directly binds to nucleo-

somal DNA, thereby tethering LSD1 to nucleosomes (Lee

et al., 2005; Shi et al., 2005; Yang et al., 2006). The present study

suggests that the binding of LSD1 to nucleosomes critically in-

volves a cluster of lysine residues in its Tower domain, which

may directly contact the negatively charged DNA backbone.

MOF-mediated acetylation neutralizes their positive charge

and thus de-stabilizes the LSD1-nucleosome association.

LSD1 interacts with many transcription factors and regulates

diverse biological processes. It will be interesting to investigate

whether MOF may impact LSD1-dependent regulation in

general.

MOF is primarily responsible for H4K16 acetylation. Our

study shows that MOF blocks H3K4 demethylation by LSD1.

Moreover, the NSL complex shares common subunits with

the MLL H3K4 methyltransferase complexes (Cai et al., 2010;

Dias et al., 2014; Dou et al., 2005; Li et al., 2009; Mendjan

et al., 2006; Sharma et al., 2010; Zhao et al., 2013b). Therefore,

in addition to implementing H4K16 acetylation, MOF may

promote H3K4 methylation by dissociating the LSD1 demethy-

lase and engaging the MLL methyltransferase, thereby driving

the transition from a transcription-repressed state to an active

state.

The physiological role of MOF has been extensively character-

ized in mice. Targeted deletion of MOF in mice results in early

embryonic lethality and cell death (Gupta et al., 2008; Thomas

et al., 2008). Purkinje cell-specific deletion of mouse MOF

causes loss of these cells (Kumar et al., 2011). Ablation of

MOF specifically in mouse T cells leads to defective cell differen-

tiation and reduces T cell number and thymus size (Gupta et al.,

2013). In mouse podocytes, MOF is required for cell-cycle pro-

gression in proliferating cells but is dispensable for terminally

differentiated, postmitotic cells. However, following injury,

MOF is critical for podocyte maintenance in vivo (Horikoshi

et al., 2015; Sheikh et al., 2015). Overall, a complete lack of

MOF is deleterious to normal cell proliferation and/or survival.

In the present study, RNA interference-mediated depletion of

MOF in cancer cells influences EMT but does not impact their

growth and viability. These observations imply that the biological

significance of MOF is context dependent, and reduced MOF

expression/activity, rather than a complete loss of MOF, may

promote malignant progression.

The role of MOF in cancer has just begun to be understood. In

this study, MOFwas found to suppress EMT and tumor invasion.

High MOF expression was strongly associated with the epithelial

state and favorable clinical outcomes in cancer patients. There-

fore, MOF functions as a critical suppressor of tumor progres-

sion. MOF expression was downregulated by EMT-inducing

signals. Thus, increasing MOF expression and/or activity may

represent a therapeutic approach for cancer treatment. The ace-

tyltransferase activity of MOF depends on its autoacetylation at

K274 (Sun et al., 2011; Yuan et al., 2012). SIRT1 deacetylates

MOF and inhibits its enzymatic activity (Peng et al., 2012). There-

fore, SIRT1 inhibitorsmay stimulateMOF activity and LSD1 acet-

ylation and impede tumor progression.

EXPERIMENTAL PROCEDURES

Cell Culture and Chemical Reagents

The human cell lines HEK293, MCF7, and MDA-MB-231 cells were cultured in

DMEM supplemented with 10% bovine calf serum. A549, DLD1, T47D, MDA-

MB-468, BT474, Hs578T, MDA-MB-435, BT549, and MEF cells were cultured

in DMEM with 10% fetal bovine serum (FBS). HCT116 LSD1 knockout cells

were cultured in McCoy’s 5A medium with 10% FBS. Where indicated, the

following drugs were used: 4-hydroxy-tamoxifen (4HT) (100 nM), nickel chlo-

ride (1 mM), Trichostatin A (TSA) (100 nM), Nicotinamide (5 mM). Except nico-

tine, chemical reagents were added to culture media from 1,000-fold concen-

trated stock solutions, and equal volumes of vehicle (DMSO or H2O) were

added as controls.

For additional experimental descriptions see the Supplemental Experi-

mental Procedures.
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