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ABSTRACT

Identification of non-synonymous single nucleotide
variations (nsSNVs) has exponentially increased due
to advances in Next-Generation Sequencing tech-
nologies. The functional impacts of these variations
have been difficult to ascertain because the cor-
responding knowledge about sequence functional
sites is quite fragmented. It is clear that mapping of
variations to sequence functional features can help
us better understand the pathophysiological role of
variations. In this study, we investigated the effect
of nsSNVs on more than 17 common types of post-
translational modification (PTM) sites, active sites
and binding sites. Out of 1 705 285 distinct nsS-
NVs on 259 216 functional sites we identified 38 549
variations that significantly affect 10 major functional
sites. Furthermore, we found distinct patterns of site
disruptions due to germline and somatic nsSNVs.
Pan-cancer analysis across 12 different cancer types
led to the identification of 51 genes with 106 nsSNV
affected functional sites found in 3 or more cancer
types. 13 of the 51 genes overlap with previously
identified Significantly Mutated Genes (Nature. 2013
Oct 17;502(7471)). 62 mutations in these 13 genes
affecting functional sites such as DNA, ATP binding
and various PTM sites occur across several cancers
and can be prioritized for additional validation and
investigations.

INTRODUCTION

Non-synonymous single nucleotide variation (nsSNV) can
have profound effects on protein function because of re-
sulting changes to the amino acid sequence of the protein
(1–4). By knowing the distribution of all nsSNVs on the

human proteome, the number of expected variations in a
specific protein can be calculated (5). Additionally, map-
ping of disease-related and functional information onto the
proteome can provide a comprehensive view of the im-
pact of nsSNVs (2,6–7). There are several databases that
contain SNV data and disease-related annotations (OMIM
(8), ClinVar (9), SwissVar (10), LSDB (11), HGMD (6),
dbSNP (12)). At the same time, Next-Generation Se-
quencing (NGS) technology is rapidly becoming a main-
stream approach for identifying thousands of novel mu-
tations and polymorphisms through national and interna-
tional collaborative projects like the 1000 Genome Project
(13), TCGA project (http://cancergenome.nih.gov/), NCI-
60 panel project (14) and others (15,16). There are not yet
standardized methods for NGS analysis, so there is a high
level of variability between different analysis pipelines (17).
Thus, there is a developing need for the creation of sec-
ondary curated databases to provide mechanisms for biocu-
ration and standardization of NGS analysis pipelines and
comparisons of their results (3,18–19).

To take advantage of the vast volume of human vari-
ation data accumulated over the last few years, the inte-
gration and unification of the data is critical, as a com-
prehensive data set is necessary to better summarize the
variation trends. Based on our previous work (2,5,20),
we have mapped and analyzed nsSNV impact in terms
of N-linked glycosylation and active sites of enzymes for
single-nucleotide polymorphisms (SNPs) available in db-
SNP (12), somatic mutations from COSMIC (21) and vari-
ations reported in UniProtKB (22). To ensure a compre-
hensive study, we have now further extended our non-
redundant nsSNV data set to cover all somatic mutations
published by TCGA, ICGC (15) and IntOGen (23) as well
as cancer-related mutations from NCI-60 cell lines and on-
going Curated Short Reads (CSR) (3) project. All variations
were mapped to functional sites and unified based on the
UniProtKB/Swiss-Prot defined complete human proteome
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(22) while different disease annotations were labeled and
unified using Disease Ontology (DO) terms (24) for com-
parative analysis purposes.

Protein function has been observed to rely on select es-
sential sites instead of requiring all sites to be indispens-
able. Many of these sites are crucial for normal physiolog-
ical functions and are categorized according to function
as active sites, binding sites, post-translational modification
(PTM) sites, etc. An enzyme active site is the region where
substrates bind to and are catalyzed by an enzyme, but the
exact definition can differ across databases and publications
(2,25–27). Binding sites, on the other hand, exist not only
in enzymes but in any protein that interacts with other bio-
logical components in a cell. Both UniProtKB/Swiss-Prot
(22) and NCBI Conserved Domain Database (CDD) (26)
provide rich annotation on active sites and binding sites of
human proteins. CDD stores a significant amount of bind-
ing site annotations about small molecules like ligands and
ions as well as macromolecular protein complexes. PTMs
have always been considered important for their role in
control of protein functionality and activity under differ-
ent physiological conditions (28) and they have been ex-
tensively studied in various species (29). With the advent
of new and powerful technologies, hundreds of thousands
of diverse PTMs have been identified from organisms rang-
ing from prokaryotes to eukaryotes. Cutting edge PTM re-
search includes understanding the biological functions of
PTMs (30), associating PTM to traits and the interplay and
roles of different types of modifications (28,31–32). There
exist several databases that store PTM-related information.
Several efforts have been made to resolve this heterogene-
ity and to organize the data in a better way. A controlled
vocabulary has been developed by UniProKB/Swiss-Prot
with more than 100 types of PTMs annotated in the feature
(FT) line. Annotations from CDD use a similar but differ-
ent vocabulary. Besides these two major protein annotation
sources, dbPTM 3.0 (33) carries out a comprehensive com-
pilation of publicly available databases and generates a data
set containing only experimentally verified entries, which
include data from UniProtKB/Swiss-Prot, Phospho.ELM
(34), PhosphoSitePlus (35), O-GLYCBASE (36), dbSNO
(37), SysPTM (38) and HPRD (39). However, heterogene-
ity issues still left unresolved include (i) annotations are not
mapped to a unified proteome reference and (ii) naming of
PTMs is not standardized. In this study, we integrated and
curated data from all of the above data sources and mapped
the functional sites to the UniProtKB/Swiss-Prot human
proteome to allow comprehensive and uniform analysis of
the effects of germline and somatic nsSNVs.

In contrast to the extensive research performed on the
functional impacts of variation (1,5,30,40) or on interpret-
ing the possible function of the PTM/active/binding sites
(2,28,31–32), combined studies, though of great impor-
tance, are relatively rare. Recently, however, publications on
pan-cancer analysis showcase the importance of these types
of studies. Examples include studies by Jia et al. which ana-
lyzed somatic mutations in nine major cancers and resulted
in the proposal of 3–5 predominant mutational processes
that likely underlie each cancer genome (41). Analysis per-
formed by the pan-cancer genome program (42) demon-
strates how such analyses may aid in identifying new pat-

terns of drivers for cancer (43–46). Although pan-cancer
analysis is being heavily pursued because of the availabil-
ity of cancer genomics data, to the best of our knowledge,
there is no study that systematically profiles the interplay
between germline and somatic variants mapped to an array
of functional sites to answer the critical questions like how
many sites are impacted and what is the possible relation-
ship between nsSNVs and various functional sites. Here, we
present a study that provides a detailed view of the human
and tumor protein coding variome and their functional ef-
fects. Furthermore, a phylogenetic analysis of NGS whole
exome sequencing samples of 30 breast cancer tumor pa-
tients and cell lines is provided as a demonstration of how
this type of functional analysis and patient classification can
provide a novel direction in personalized diagnostics and
therapeutic research.

MATERIALS AND METHODS

Integration of nsSNV data

The comprehensive non-redundant data set of nsSNVs was
compiled from the following sources. The Cancer Genome
Atlas (TCGA) and CGHub data portal (https://cghub.ucsc.
edu/) was used to download TCGA variation data sets.
The latest release of International Cancer Genome Con-
sortium (ICGC) (15) was downloaded in January of 2014
from its FTP site. IntOGen (23) variation data was down-
loaded in January 2014 also. CSR (3) data set from 25
TCGA breast cancer patient samples and 5 breast cancer
cell lines from NCI-60 panel was downloaded in January
2014. Mutation data from NCI-60 Panel was retrieved from
CellMiner verson 1.4 (47). Additional data was obtained
from files generated from SNVDis (5) which integrates data
from Catalog Somatic Mutations in Cancer (COSMIC), db-
SNP, UniProtKB/Swiss-Prot and nextProt (48). It is known
the projects mentioned above may collect data from each
other. For example, COSMIC is the portal of somatic data
mined from literatures and TCGA release; ICGC is built
on TCGA and raw data from partner institutes across all
over the world; IntOGen collects data mainly from ICGC
(15) and TCGA (46). UniProtKB provides curated protein
mutations from literature. All somatic nsSNV data was in-
tegrated into BioMuta using previously described method-
ologies (19) for pan-cancer analysis.

Integration of functional sites

The complete protein functional site data set includes
the curated annotations from UniProtKB/Swiss-Prot (22),
CDD (26) and dbPTM 3.0 (33). The UniProtKB/Swiss-
Prot complete human proteome was downloaded in Jan-
uary 2014. Active and binding sites were retrieved based
on the FT line description. Modification data was extracted
using PTMlist which is a controlled vocabulary provided
by UniProtKB/Swiss-Prot. The NCBI CDD-based anno-
tations of functional sites was retrieved using BATCH CD-
Search (49) against CDART database in January 2014. Cus-
tomized Perl/Python scripts were used to filter out en-
tries such as domains, repeats and motifs with longer than
five consecutive amino acids. Filtered sites were categorized
manually into various types of PTM sites, active sites and
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binding sites with original annotations maintained in a sep-
arate column. Other PTM records were adopted based on
dbPTM 3.0 (33) which collects PTM data from more than
10 different sources.

Generating unified and non-redundant data sets

Records with genomic positions and variants were translat
ed and annotated through Seattleseq Annotation pipeline
(http://snp.gs.washington.edu/SeattleSeqAnnotation138/).
Resulting RefSeq accessions and positions were then
mapped to UniProtKB/Swiss-Prot complete human pro-
teome using methods we developed in previous works
(5,50). Annotations from NCBI/CDD with Refseq protein
accessions were directly translated to UniProtKB/Swiss-
Prot using methods described earlier (3,5,50). Other
annotations with UniProtKB/Swiss-Prot accessions were
integrated into the data set following a validation process
that confirms the existence of the wild-type amino acid in
UniProtKB/Swiss-Prot entry.

Protein conserved sites and conservation ratio

Degree of conservation for each functional site and nsSNV
was measured by using Basic Local Alignment Search Tool
(BLAST) (51) against five mammalian proteomes (Rattus
norvegicus, Mus musculus, Canis familiari, Bos Taurus and
Equus caballus) downloaded from UniProtKB in January
2014. The five species are selected based on their proteome
quality, completeness and evolutionary relatedness to hu-
mans based on Representative Proteome Group algorithm
developed earlier by us and collaborators (52). Only best
hits with e-value lower than 0.00001 for each species were
considered homologs. Conservation was calculated as the
number of homologs in which the site is conserved. For each
site, if the amino acid was found to be conserved across
all five selected mammalian species then it was regarded as
‘conserved’. To facilitate the comparative analysis on con-
servation status of different types of functional sites being
affected by nsSNVs, the conservation ratio was calculated.
The conservation ratio of a specific amino acid was deter-
mined based on the percent of nsSNV impacted amino acids
that were found to be conserved. Significance was calcu-
lated based on methods described earlier (5,53) where the
expected number of nsSNV impacted conserved functional
site is = (total number of conserved nsSNV/total number
of nsSNV) × total number of the functional site impacted
by nsSNV.

Mapping nsSNV to functional sites/motifs

Customized python scripts were developed to map nsSNVs
against functional sites and motifs using specific keys, which
is the combination of UniProtKB accession and position
and the corresponding variation, as shown in Figure 1. Af-
ter a variant was successfully mapped to the corresponding
functional site, an evaluation process determined whether
the variant can affect or cause a loss of function based on
the type of functional site (sites/types considered for this
study are listed in Table 1). Site information was obtained

Figure 1. Flowchart of the proteome-wide investigation of the impact of
human nsSNV on protein functional sites and the downstream data in-
tegration. As shown in the flowchart, once the nsSNV affected functional
site is disrupted by alteration, it is then annotated by conservation, NCI-60
cell line mutation and disease annotation.

from the following sources - Acetylation: (54–56) Amida-
tion: (57) Biotinylation: (58) Crotonylation: (59) Gamma-
carboxyglutamic acid: (60,61) Hydroxylation: (62) Methyla-
tion:(63,64) Myristation: (65) N-linked Glycosylation: (66)
O-linked Glycosylation: UniProtKB documents; (66) C-
linked Glycosylation: UniProtKB documents. Palmitoyla-
tion: (67,68) Phosphorylation: (69–71) Prenylation: (72) S-
nitrosylation: (73,74) Sulfation: (75) Sumoylation: (76) Ubiq-
uitylation: (77). Variants that can be tolerated without po-
tential loss of function, like T to S variation for the third po-
sition in the N-linked glycosylation motif NXS/T (where N
is an asparagine, X is any amino acid except proline and ser-
ine or threonine is the third amino acid), were not regarded
as functional site affecting nsSNVs. The final results of this
mapping were organized into two files: a file with a list of
impacted functional sites and variants with additional an-
notations such as conservation, frequency, etc.

Significance was calculated based on methods described
earlier (5) and represented as the ratio of expected minus
observed impact of nsSNVs (53). Therefore, the resultant P-
value describes the deviance degree between a global ratio
and an observed ratio. The calculation of the expected num-
ber n(E) of nsSNVs affecting a certain type of functional site
is shown below:

p(F) = n(F)/L
n(E) = N ∗ p(F) = N ∗ n(F)/L

where N, n(F) are total number of variations and the to-
tal number of positions for a specific functional site, respec-
tively. The probability p(F) of observing an amino acid from
human proteome as a functional site equals to the value of
n(F) divided by total length of human proteome L. Based
on the expected number of functional site being affected by
nsSNV n(E), and the actual observed number n(O), P-value
is calculated through adopting the Binomial statistic as ap-
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Table 1. The knowledge summary of 18 common PTM types from the human proteome and their counts in our integrated data set

Modification type Modification Modified 
residue

Significant 
tolerance Motifs Reference Counts in current 

dataset

Acetylation

N-acetylalanine A STGM

Mostly on N-terminal;

Kinase specific;

No generic consensus

N-terminal:(54)

Lysine 
specific:(55)

897

N-acetylglycine G ASTM 25

N-acetylserine S AGTM 396

N-acetylthreonine T AGSM 83

N-acetylmethionine M AGST 769

N6-acetyllysine K NA Kinase specific; No generic consensus (56) 6056

Amidation
13 different amino acids 

are involved Mainly G N/A Its formation is associated with certain enzymes (57) 37

Biotinylation Biotinylation site K N/A Kinase specific; MKM is commonly seen (58) 5

Crotonylation N6-Crotonyl-L-lysine K N/A Unknown (59) 204

Gamma-
carboxyglutamic acid

4-carboxyglutamate E N/A Gla-x(3)-Gla-x-Cys motif in the middle of Gla 
domain

(60) (61) 82

Hydroxylation

5-hydroxylysine K N/A

No generic consensus

(62)

50

Hydroxyproline P N/A 194

(3S)-3-hydroxyasparagine N N/A 38

Methylation

Methylarginine R N/A

Kinase family specific;No generic consensus;

Many arginine methylations are associated with 
RGG /RXG /RGX or GXXR motifs

(63)

(64)

388

Methyllysine K N/A 287

Methylserine

Methylhistidine

Methylglutamine

S/H/Q N/A 3

Myristation N-Myristoyl glycine G N/A Kinase specific; No generic consensus (65) 61

N-linked N-linked (GlcNAc...) N N/A N*(!P)*T/S (66) 16170

N-linked (Glc...)

O-linked 
Glycosylation

O-linked (GalNAc...)
T/S

Y (rare)

K (only 
GalNAc)

S/T
Kinase specific;

No generic consensus

(66);

UniProtKB 
documents

2150

O-linked (GlcNAc) 335

O-linked (Xyl...) /  (fuc...)  / 
(HexNAc...) / (Hex) / 

(Glc…)
64

C-linked 
Glycosylation

C-linked (Man) W N/A
W-X-X-W

W-S/T-X-C

UniProtKB 
documents

72

Palmitoylation
N-palmitoyl cysteine

C N/A There is not a common motif for palmitoylation
recognition

(67)
187

S-palmitoyl cysteine (68)

Phosphorylation

Phosphoserine S T

Kinase specific;

No generic consensus
(69-71)(66)

49546

Phosphotherine T S 16115

Phosphotyrosine Y N/A 12114

Phosphohistidine H N/A 6

Prenylation
S-farnesyl cysteine

S-geranylgeranyl cysteine
C N/A

A Refined CaaX box as a fuzzy motif;

Kinase specific
(72) 73

S-nitrosylation S-nitrosocysteine C N/A
Kinase specific;

No generic consensus

(73)

(74)

755

Sulfation Sulfotyrosine Y N/A No generic consensus (75) 85

Sumoylation Glycyl lysine isopeptide K N/A A general core motif ΨKXE (76) 631

Ubiquitylation Glycyl lysine isopeptide K N/A
Kinase specific;

No generic consensus
(77) 22,549

Glycosylation

Notes:Table 1 lists only modification sites that are either prevalently distributed on the human proteome or well characterized/defined. Some rare types of
sites (less than 10 annotated in the human proteome) that are also included in our data sets are not shown here, but can be found in the Supplementary
Table S1b.
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plied by Mi et al. (53)

P − value =
∑ (

N
n(O)

)
p(F)n(O) ∗ (1 − p(F))(N−n(O))

Gene Ontology (GO) and pathway analysis

Proteins affected by nsSNVs were analyzed for GO term
and pathway enrichment using PANTHER Classification
System 9.0 (78,79). In order to identify GO terms and
pathways significantly affected, we calculated the P-value
based on the ratio between nsSNV affected genes and
genes that harbor the specific functional site according to
UniProtKB/Swiss-Prot annotation of GO terms (5,80).

Pan-cancer functional site analysis

BioMuta (19) is a curated cancer-centric variation and dis-
ease association database in which variations are mapped
to the genome/protein/gene. Cancer and somatic muta-
tion data is automatically collected from a variety of data
sources including TCGA, ICGC, COSMIC, ClinVar, IntO-
Gen, CSR, UniProt in addition to cancer-associated mu-
tation sites manually extracted from literature. All nsSNVs
are mapped to the UniProtKB/Swiss-Prot defined human
proteome and associated with UniProtKB accession, posi-
tion, actual and altered amino acids. A total of 645 706 so-
matic nsSNVs in BioMuta 2.0 version are associated with
at least one cancer type (includes both large-scale studies
and small-scale studies). All cancer terms in BioMuta are
assigned a DO (24) term to facilitate pan-cancer analysis.
All variations were scanned against BioMuta to identify
how mutations in different cancer types affect various func-
tional sites. The calculation of significance of observed and
expected functional site disruption under each DO term
was based on methods described in earlier sections. Heat
map and clustering analysis were performed using heatmap2
function from R package (http://www.R-project.org) and
pan-cancer visualization was performed using Circos plots
(81).

SNV-based phylogenetic analysis and group analysis of
nsSNV-affected functional sites

The SNV-based phylogenetic analysis using variants called
from Whole Exome Sequencing (WXS) data from 25
TCGA breast cancer tumor patients (30 samples) and 5
NCI-60 breast cancer cell lines is based on our previously
developed methods (3). SNV-based phylogenetic tree re-
quires two steps, SNV-based genome condensation and
alignment followed by phylogenetic tree generation. Align-
ment of sequences from tumor samples from 25 patients
and the NCI-60 cell lines containing a range of genomic
sequence around SNVs (0–3) was created using PhyloSNP
(3,82). FastTree (83) was used to generate phylogenetic trees
with 1000 bootstrap values and a matrix of different sample
IDs versus distinct nsSNV-affected functional sites was gen-
erated. The Newick format phylogenetic tree was overlaid
with functional site information and visualized using Inter-
active Tree Of Life (ITOL) (84). A clustering of the same
group of samples was performed based on their mutational

functional site profiles. This profile was built based on the
statistical significance of various types of mutation-affected
functional site from each sample using the same binomial
statistical method mentioned in the early section. For clus-
tering, we only kept those functional site types being im-
pacted by at least one nsSNV across 35 samples. The un-
supervised hierarchal clustering is conducted in R package,
heatmap2 function with enabled hclust function.

Disease association data

SwissVar (10) was downloaded in January 2014. Dis-
ease association data available through dbSNP including
clinical/LSDB variations was downloaded from dbSNP
March 2014. The NHGRI GWAS Catalog (85) was inte-
grated based on information obtained in January 2014.

RESULTS AND DISCUSSION

Integration and unification of functional sites and nsSNVs

As shown in the flowchart (Figure 1), the very first step in-
cludes integration of data from various sources.

The integration process is described in Materials and
Methods and the integrated data set is available on the Web
(http://hive.biochemistry.gwu.edu/tools/var2function/) for
users to browse, search/retrieve and download.

For the nsSNV data set (Supplementary Table S1a),
we integrated various germline and somatic variation data
sources (COSMIC, ICGC, TCGA, IntOGen, dbSNP, CSR,
NCI-60, UniProtKB/Swiss-Prot). For cancer-centric so-
matic variation databases, the percentage of entries that
overlap with dbSNP is less than 11% (COSMIC: 7.2%,
ICGC: 10.9%, TCGA: 7.6%, IntOGen: 6.6%), which im-
plies that the majority of variations are most likely not
germline polymorphisms. For the functional sites data set,
we integrated 17 major types of PTM covering 125 subtypes
of non-redundant sites from UniProtKB/Swiss-Prot, CDD
and dbPTM 3.0. Additionally, we integrated enzyme active
sites and binding sites which gave rise to 1125 different sub-
terms. Table 1 and Supplementary Table S1b provide details
of the sites analyzed in this study.

nsSNV impact on functional sites

The integration described above resulted in two com-
prehensive non-redundant UniProtKB/Swiss-Prot human
proteome-centric data sets with 1 705 285 and 259 216 nsS-
NVs and functional sites, respectively. Mapping of protein
variations to functional sites generated a list of variants that
cause functional site disruption. A total of 38 549 nsSNVs
that potentially affect protein functionality through replac-
ing original residues at active sites, binding sites or PTM
sites were identified (Table 2a). Particular variations for cer-
tain types of PTMs are tolerated without loss of function.
The list of tolerated residues can be found in Table 1. Ta-
ble 2a provides an overview of how nsSNVs obtained from
nine different sources impact the various functional sites in
the human proteome. Note that 14 of 19 common func-
tional sites have significantly lower (eight) or higher (six)
numbers of affected sites than expected by comparison to
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COSMIC TCGA ICGC IntOGen dbSNP CSR NCI60 

Acetylation 1.30 22.33 4.01 5.02 14.42 2.04 4.61 

Active Site 8.13 3.24 1.95 1.73 4.07 3.16 3.60 

Amidation 1.81 0.51 0.50 0.24 0.69 0.94 0.81 

Binding Site 70.03 32.41 15.19 15.83 19.10 10.42 2.89 
C-linked 

Glycosylation 0.34 1.27 0.21 0.30 1.96 0.10 0.14 

Crotonylation 10.22 2.34 2.64 4.46 0.57 0.29 0.40 
Gamma-

carboxyglutamic 
acid 

1.22 2.49 1.35 2.47 1.78 0.12 0.16 

Hydroxylation 1.50 0.89 0.64 0.32 0.31 0.40 0.20 

Methylation 26.03 16.00 12.88 23.74 2.31 2.68 0.20 

Myristation 1.07 0.23 0.40 0.25 0.64 0.72 0.13 
N-linked 

Glycosylation 46.23 78.08 43.43 39.36 162.40 4.35 7.49 
O-linked 

Glycosylation 6.59 21.08 7.67 8.85 5.10 1.08 0.74 
Other Lipid 

Modification 0.21 0.18 0.26 0.19 0.52 0.03 0.04 
Other Modified 

Residue 1.56 2.15 1.47 0.75 0.78 0.58 0.23 

Palmitoylation 0.52 0.47 0.32 0.43 0.76 0.27 0.37 

Phosphorylation 14.69 76.31 29.96 38.46 46.11 6.22 7.51 

Prenylation 0.80 1.29 0.98 0.73 0.78 0.10 0.14 

S-Nitrosylation 0.68 5.97 1.84 1.15 0.54 1.07 1.49 

Sulfation 0.44 0.44 0.89 0.38 0.42 0.12 0.17 

Sumoylation 1.11 3.29 2.98 1.33 6.06 0.89 0.35 

Ubiquitylation 7.16 78.76 14.62 24.81 60.96 8.57 7.63 

Figure 2. Data source-based analysis of statistical significance of nsSNV
affected functional sites. The P-value represents the measure of significance
of the functional site being affected by nsSNV. For visualization conve-
nience, the calculated P-values are then transformed by –log (P-value).
Overrepresented values are colored as green, and underrepresented values
are orange. Darker colors represent a stronger significance.

the overall distribution of nsSNVs along the human pro-
teome. Acetylation, O-linked glycosylation, phosphoryla-
tion and ubiquitylation are the top underrepresented PTMs,
methylation and N-linked glycosylation are the top overrep-
resented PTMs.

nsSNVs can be divided into two general categories:
germline and somatic. Because germline variations are her-
itable and thus under relatively higher selection pressure
than somatic variations, somatic nsSNVs can be more ran-
domly distributed on an individual genome. Due to their
different properties genetic diseases can be commonly cate-
gorized as a simple genetic disorder, such as Mendelian dis-
eases which are caused by germline mutations, or a com-
plex genetic disorder, like cancer which is associated with a
spectrum of somatic and germline variants. Although there
is no perfect method to distinguish between somatic and
germline variation, in this study we differentiate variant
type based on dbSNP categorization. Effects of germline
and somatic variations in functional sites are shown in Ta-
ble 2b. Active sites and binding sites show the sharpest dif-
ference between the two groups of nsSNVs where somatic
nsSNVs have a significantly higher frequency of occurrence
than expected compared to germline variations. Although
several PTMs have higher rates of potential loss of func-
tion due to variation, methylation and O-linked glycosyla-
tion stand out because of the distinct level of significance
in terms of overrepresentation observed for germline versus
somatic types of nsSNVs.

Based on our findings that the distribution of nsSNVs is
not random (2–3,5) we analyzed different data sources to
better understand the germline and somatic variome. Ta-
ble 2b and Figure 2 provides an overview of the analysis
results. For Figure 2, green cells represent overrepresenta-
tion while red cells show underrepresentation. The inten-
sity of the color is based on P-value significance. COS-

MIC, TCGA, ICGC and IntOGen maintain thousands of
cancer-associated variations, most of which are not in db-
SNP (more than 92% of COSMIC, 89% of ICGC, 93% of
IntOGen, 92% of TCGA) and can be considered somatic
mutations. The distribution of nsSNVs from these data sets
is similar to each other in terms of their distribution on
functional sites. The minor differences observed in Figure 2
among different cancer genomics data portals may be due to
the different data sources, collection and analysis methods,
and the number of cancer study data sets in these resources.
NCI-60 and CSR variants are called from the CSR pipeline,
which results in between 80% and 98% of variants currently
available in dbSNP for both human tumor samples and cell
line samples, explaining the similar pattern they share with
dbSNP. Below we provide additional details in terms of GO
and pathways that are enriched with genes that have varia-
tions mapped to key functional sites (complete list is avail-
able in Supplementary Tables S3a and S3b).

Phosphorylation sites: Out of 77 734 experimentally ver-
ified phosphorylation sites reported on the human pro-
teome, 9383 were replaced by an amino acid residue that
cannot be phosphorylated. A total of 5466 of those sites are
replaced by nsSNVs not in dbSNP (P-values shown in Ta-
ble 2b and Figure 2). Most of the variants impacted serine
(S), which causes the loss of 6063 phosphoserine sites (pS).
There were 2033 phosphothreonine (pT) and 1283 phos-
photyrosine (pY) sites lost, respectively. Phosphorylation
sites have significantly fewer than expected variations (Ta-
ble 2a, P-value: 1.28E-110) for both somatic and germline
variations (Table 2b). This is not surprising as phosphory-
lation is involved in protein activation/deactivation in vari-
ous pathways including transcription (86), translation (87),
cell cycle (88) and signal transduction (89), and is neces-
sary for normal cellular condition such that loss of phos-
phorylation has been implicated in many diseases (90,91).
It is possible that variations that affect phosphorylation
sites have a higher chance of being functionally relevant and
hence disease causing. Pathway analysis of genes with loss
of phosphorylation sites (Figure 3a and b, Supplementary
Table S3b) highlights 21 pathways with P-value lower than
0.05. The top two overrepresented pathways are angiogen-
esis (P-value 9.12E-06), VEGF signaling pathway (P-value
1.90E-05). GO enrichment analysis of genes affected by loss
of phosphorylation sites (Figure 3a, Supplementary Table
S3a) identified 32 biological processes, 23 molecular func-
tion terms having over-/underrepresentation with respect
to frequency of nsSNV occurrence, and 9 cellular compo-
nents terms. A wide variety of biological processes includ-
ing proteins in metabolic process, cellular process, cell cy-
cle and nucleobase-containing metabolic process are over-
represented, while for molecular functions terms overrepre-
sented terms include kinase activity and nucleic acid bind-
ing.

N-linked glycosylation sites: Among 16 170 experimen-
tally verified N-linked glycosylation sites, 4372 nsSNVs al-
ter the NXS/T motif (80), where N is an asparagine, X can
be any amino acid except proline and S/T is serine or thre-
onine. Note that 2375 of those impacted N-glycosylation
motifs are disrupted by variations not in dbSNP (somatic),
the remaining 1997 are germline variations (found in db-
SNP) with P-values 2.09E-118 and 3.95E-163, respectively
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Table 2a. Summary of nsSNV affected functional sites obtained through proteome-wide survey

COSMIC TCGA ICGC IntOGen CSR NCI60 dbSNP UniProt nextProt Total Expected Difference P-value

Acetylation 185 322 198 134 15 15 351 65 190 863 1242.877056 -379.8770564 2.30E-30
Active site 487 1051 506 379 27 40 811 247 541 2385 2214.980703 170.0192966 1.83E-04
Amidation 4 1 0 1 1 1 4 1 2 9 5.572089069 3.427910931 1.12E-01
Binding site 3877 8380 4010 3054 253 451 6395 1549 4005 18 681 17131.61374 1549.386262 4.81E-32
C-linked
glycosylation

1 1 2 1 0 0 0 0 0 4 10.84298413 -6.842984134 1.68E-02

Crotonylation 26 24 15 16 0 0 10 0 7 52 30.72178838 21.27821162 2.89E-04
Gamma-
carboxyglutamic
acid

5 13 6 7 0 0 11 20 22 36 12.34895415 23.65104585 3.46E-08

Hydroxylation 13 13 6 7 0 1 17 2 9 41 42.61895153 -1.618951527 4.42E-01
Methylation 78 109 63 71 8 3 61 32 59 224 102.4059613 121.5940387 2.24E-25
Myristation 4 4 1 1 1 0 2 0 4 9 9.788805121 -0.788805121 4.85E-01
N-linked
glycosylation

732 1705 843 656 84 125 1997 207 859 4372 2435.15352 1936.84648 4.53E-273

O-linked
glycosylation

28 58 35 19 4 8 108 22 52 205 383.8717577 -178.8717577 8.62E-24

Other lipid
modification

0 1 0 0 0 0 0 0 0 1 2.861343035 -1.861343035 2.21E-01

Other modified
residue

14 32 16 10 2 1 24 7 16 70 46.23327957 23.76672043 6.75E-04

Palmitoylation 3 10 5 3 0 0 8 3 3 20 28.16163935 -8.161639348 6.88E-02
Phosphorylation 1630 3764 1871 1272 180 257 3917 436 1835 9383 11706.50734 -2323.507343 1.28E-110
Prenylation 0 1 0 0 0 0 2 0 0 3 10.99358114 -7.993581136 4.94E-03
S-nitrosylation 15 19 13 11 0 0 43 7 20 75 113.7007364 -38.70073641 7.20E-05
Sulfation 1 4 5 1 0 0 4 5 5 13 12.80074516 0.199254842 5.15E-01
Sumoylation 10 21 7 8 0 2 13 0 8 48 95.02670818 -47.02670818 7.41E-08
Ubiquitylation 449 798 502 302 29 52 841 104 395 2055 3395.811795 -1340.811795 1.18E-136

Table 2b. Variant type-based comparison of nsSNV’s impact on different types of functional sites

Total +/- (Somatic)1
Not in dbSNP
(Somatic) +/- (Germline)2 In dbSNP (Germline)

Acetylation 2.30298E-30 - 4.39E-17 - 3.82E-15
Active site 0.00018315 + 1.56E-14 - 8.53E-05
Amidation 0.111861193 + 2.28E-01 + 2.05E-01
Binding site 4.81249E-32 + 2.26E-110 - 7.86E-20
C-linked
glycosylation

0.016786568 - 2.44E-01 - 1.09E-02

Crotonylation 0.000289402 + 8.62E-07 - 2.69E-01
Gamma-
carboxyglutamic
acid

3.45678E-08 + 1.80E-07 + 1.66E-02

Hydroxylation 0.441785011 - 4.85E-01 - 4.90E-01
Methylation 2.24421E-25 + 2.86E-28 + 4.84E-03
Myristation 0.484614874 + 3.47E-01 - 2.26E-01
N-linked
glycosylation

4.5346E-273 + 2.09E-118 + 3.95E-163

O-linked
glycosylation

8.61577E-24 - 9.79E-22 - 7.98E-06

Other lipid
modification

0.220837281 - 5.03E-01 - 3.03E-01

Other modified
residue

0.000674978 + 5.24E-04 + 1.67E-01

Palmitoylation 0.0688012 - 1.67E-01 - 1.73E-01
Phosphorylation 1.2829E-110 - 6.85E-66 - 7.78E-47
Prenylation 0.004939609 - 1.22E-02 - 1.64E-01
S-nitrosylation 7.19603E-05 - 2.24E-06 - 2.91E-01
Sulfation 0.514831294 + 3.33E-01 - 3.84E-01
Sumoylation 7.40765E-08 - 2.25E-03 - 8.66914E-07
Ubiquitylation 1.1793E-136 - 1.57E-71 - 1.10915E-61

1,2Over- or underrepresentation.

(Table 2b and Figure 2). Note that 2387 of the variants dis-
rupt the motif by altering the Ser/Thr residue, while 1938
nsSNVs directly change the asparagine and 70 loss of N-
glycosylation motif is caused by a change to proline (P).
We observed higher numbers of loss of N-linked glyco-
sylation motifs than expected (P-value 4.53E-273, shown
in Table 2a) for both somatic and germline nsSNVs (Ta-

ble 2b), and also across different data sources (Figure 2).
This phenomenon suggests that unlike phosphorylation,
the N-linked glycosylation landscape is more likely to be
altered. These results are counterintuitive to published re-
sults by Park et al. where they show that N-linked glycosy-
lation motifs are more conserved, unlike what they observed
for phosphorylation sites (92). One explanation could be
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Figure 3. Heatmap and clustering of pathway and GO overrepresentation
test. Unique terms are listed in rows and each column represents the de-
gree of impact that a specific type of functional site has on that term. For
visualization convenience, the calculated P-values are then transformed to
–log(P-value). Underrepresentation is colored in red and overrepresenta-
tion is in blue. The darkness of the color in each box reflects the absolute
value of –log(P-value). According to the patterns of –log(P-value) among
various GO terms and PANTHER pathways, functional sites are clustered
into different groups.

that the two types of PTM sites might be involved in ad-
ditional yet unknown functions and the two processes deal
with loss of functional sites differently. Pathway analysis
(Figure 3b, Supplementary Table S3b) highlighted two dis-
tinct pathways, which are cadherin signaling pathway (P-
value 1.55E-03) and Wnt signaling pathway (P-value 4.34E-
03). GO enrichment analysis (Figure 3a, Supplementary Ta-
ble S3a) identified 46 terms such as cell adhesion (P-value
1.24E-06), nervous system development (P-value 7.62E-06)
and ectoderm development (P-value 6.73E-04).

Ubiquitylation sites: Out of 22 549 experimental veri-
fied ubiquitylation sites, 2055 were found to be impacted
due to nsSNVs. More than half of those sites (1214) are
not in dbSNP (underrepresented, P-value 1.57E-71), the
rest (841) are affected by nsSNVs found in dbSNP (under-
represented, P-value 1.10915E-61) (Tables 2a and 2b and
Figure 2). Ubiquitylation sites, like phosphorylation sites,
are significantly less altered than what is expected by both
germline variation (based on dbSNP records) (Table 2b)
and somatic variation (Figure 2). Key ubiquitylation related
tasks such as protein degradation, transcriptional regula-
tion and genomic maintenance (93–95) are therefore less
prone to variation-related changes.

O-linked glycosylation sites: O-linked glycosylation is im-
portant for proprotein processing, biosynthesis of mucins,
formation of proteoglycan core proteins and blood group
proteins (96,97). Out of 2549 O-linked glycosylation sites in
the human proteome, 205 are found to be disrupted. Note
that 97 of those impacted O-linked glycosylation site are re-
placed by nsSNVs not in dbSNP, the remaining 108 are mu-
tated by nsSNVs found in dbSNP (Table 2b and Figure 2).
As shown in Table 1, the main type of O-linked glycosyla-
tion studied is 2150 O-N-acetylgalactosamine (O-GalNAc)

site, out of which 138 are affected by nsSNV. Note that 51
sites out of 335 O-N-acetylglucosamine (O-GlcNAc) sites
are changed by nsSNV, some of which can be potentially
linked to cross-talk with other PTMs to cause cancer (98).
O-linked glycosylation sites unlike N-linked glycosylation
sites are significantly underrepresented in terms of the num-
ber of proteins that are observed to contain variation at the
site versus the number of proteins expected to be impacted
(P-value 8.62E-24, Table 2a) which underscores the need for
studying these two types of glycosylations independently.
This underrepresentation trend is true for variations in both
dbSNP (Table 2b) and somatic variation data sources (Fig-
ure 2), which implies that both cancer-related variations and
germline SNPs have a resistance to disruption at the sites to
maintain capability of O-linked glycosylation, which also
plays role in protein secretion (O-GalNAc) (96) and path-
way regulation with phosphorylation (O-GlcNAc) (99,100).

Acetylation sites: Out of 8253 acetylation sites in the hu-
man proteome, 863 lose acetylation due to nsSNV. 512 of
those are replaced by nsSNVs not in dbSNP, the remain-
ing 351 are mutated by nsSNVs found in dbSNP. Acety-
lation occurs by two distinct biological mechanisms: en-
zyme systems, substrate and position preference, which are
a co-translational modification termed N-terminal acetyla-
tion (101,102); and PTM via Lysine acetylation (103). N-
acetylation contributes 2194 sites, 201 of which are affected
by nsSNVs. N6-acetyllysine, on the other hand, has 673
sites altered among a total of 6056 sites. According to Ta-
bles 2a and 2b, nsSNVs from both germline and somatic
variations that cause the loss of acetylation sites are signif-
icantly less abundant than expected (P-value 4.39E-17 and
3.82E-15, respectively). If one considers the two different
types of acetylation, total nsSNV affecting N-acetylation
and N6-acetyllysine has similar constraints for variation
(P-value 1.08226E-14 and 6.03084E-17, respectively). Fur-
ther investigations into how nsSNVs in dbSNP and those
not in dbSNP affect these two types of modification re-
vealed a different type of behavior for the two subtypes of
nsSNVs. For nsSNVs in dbSNP, N6-acetyllysine sites are
less affected than N-acetylation sites with P-value 3.54E-
12 to 2.18E-05, while for somatic variations the behavior
is opposite (N6-acetyllysine with P-value of 2.19E-07 com-
pared to N-acetylation P-value 3.68E-11). N6-acetylation
is needed for transcriptional regulation and N-acetylation
is involved in protein’s synthesis, stability and localization
(104–106). This indicates that transcriptional regulation is
targeted more by somatic mutations.

Methylation sites: Histone methylation as a PTM has
been extensively studied (107). Non-histone methylation is
prevalent yet relatively poorly understood (108). Methyla-
tion can be subtyped according to the modified residue, ei-
ther lysine (Lys) or arginine (Arg). Subtypes are studied
separately as they involve different enzyme families (108–
110). Out of 680 experimentally verified methylation sites
reported on the human proteome, 224 sites were affected
by nsSNV. Note that 163 of those sites were replaced by
nsSNVs not in dbSNP, the remaining 61 were found to be
mutated by nsSNVs found in dbSNP. There are 388 unique
methylarginine sites and 287 unique methyllysine sites in
our data set. nsSNV changed 172 arginine sites and 52 lysine
sites. From Table 2a, methylation, like N-linked glycosyla-
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tion, is significantly affected (overrepresentation, P-value
2.24E-25) by nsSNV. After subgrouping nsSNVs by somatic
and germline origins, a clearer view of how methylation sites
are affected at the proteome level was revealed. nsSNVs not
in dbSNP show a significant overrepresentation (P-value
2.86E-28) compared to germline variations (4.84E-03). Fig-
ure 2 shows that loss of methylation site is more prevalent in
cancer/somatic mutation centric databases than in dbSNP.
The above statistical significance indicates that the PTM
methylation is greatly affected in tumor cells which corrobo-
rate previous studies linking loss of methylation site to can-
cer where the authors propose such loss of methylation site
with global effects which may alter epigenetic states in a va-
riety of pathologies (111).

Crotonylation sites: Out of 204 experimentally verified
crotonylation sites reported in the human proteome, 52 sites
are modified by nsSNVs. Note that 42 of these sites are im-
pacted by variations not in dbSNP, the remaining 10 are im-
pacted by polymorphisms found in dbSNP. Loss of crotony-
lation due to somatic mutations is significantly high (P-
value 8.62E-07) unlike germline variations (P-value 2.69E-
01). It was recently shown that lysine crotonylation is a con-
served histone PTM found in somatic cells (59). Frequent
disruption by somatic mutations of crotonylation sites cor-
roborates previous knowledge that the histone code is more
likely to be affected in cancer cells (112).

S-nitrosylation sites: Out of 755 experimentally verified
S-nitrosylation sites reported in the human proteome, 75
sites are impacted by variation. Note that 32 of those are
changed by nsSNVs not in dbSNP, the remaining 43 are af-
fected by nsSNVs found in dbSNP. Somatic variations are
underrepresented (P-value 2.24E-06). Certain exceptions
can be seen from the Figure 2, like COSMIC and IntOGen
which provide cancer-centric somatic variation sets that are
not significantly underrepresented. As a PTM related to
various major diseases (113) including cancer (114), heart
diseases (115,116) and Alzheimer’s disease (117), it is not
clear why S-nitrosylation sites are under functional pressure
in cancer cells. Availability of additional experimentally ver-
ified S-nitrosylation sites and functional analysis of the loss
of nitrosylation sites will provide a better understanding of
this PTM.

Enzyme active sites: Out of 14 708 experimental verified
active sites reported on the human proteome, 2385 are de-
tected to be substituted by an amino acid residue that can
potentially interrupt original activity (2). Note that 1574 of
the impacted active sites are affected by somatic nsSNVs,
the remaining 811 are from dbSNP. Overall, there appears
to be more variation on these sites than expected (Table 2a;
P-value 1.83E-04). Further comparison between somatic
and germline nsSNVs gives a clear indication that active
sites are under opposite pressures in terms of significance
between the two variation types (Table 1b). Somatic varia-
tions have a significantly higher chance of loss of active sites
due to variation (P-value 1.56E-14) while germline varia-
tions usually do not occur at such sites (8.53E-05), a phe-
nomenon we have reported previously (2). As discussed in
the previous study (2), nsSNV is assumed to cause a loss or
change of function at active or catalytic sites by replacing
the essential site with a residue not optimized to the specific
interaction required by the enzyme for proper functional-

ity. There is a variety of experimental evidence which de-
scribes this mechanism of functional loss and related dis-
eases (118,119).

Binding sites: The abundance of binding sites can be seen
from both numbers of types of functional sites and num-
bers of sites (Supplementary Table S1b and Table 1). A to-
tal of 113 758 sites belonging to 1105 subtypes of binding
sites were collected. There are several studies on how bind-
ing sites are affected by nsSNVs and how they are linked
to diseases (120,121). This study provides a comprehensive
view of how germline and somatic mutations affect such
sites. Out of 113 758 experimentally verified binding sites
reported on the human proteome, 18 681 are affected by
nsSNVs. Note that 12 286 of those impacted binding sites
are replaced by nsSNVs not in dbSNP, the remaining 6395
are mutated by nsSNVs found in dbSNP. Similar impact
patterns can be seen (Tables 2a and 2b and Figure 2) be-
tween binding sites and active sites, however, binding sites
are overrepresented with an abundance of residue-changing
variants (Table 2a; P-value 4.81E-32). Further analysis be-
tween somatic and germline nsSNVs provides a similar pro-
file as observed for active site variations: somatic variation
is overrepresented (P-value of 2.26E-110) while germline
variations are underrepresented (P-value of 7.86E-20). The
top six binding sites that are affected are DNA binding site,
ATP binding site, Ca2+ binding site, dimer interface, sub-
strate binding site and Cytokine receptor motif.

Pathway and GO analysis summary. There are recent stud-
ies that report the association and coordination between
different types of PTMs from both experimental and com-
putational aspects (29,31,122–125). GO overrepresentation
analysis is often used in gene expression analysis and a vari-
ety of other large-scale studies (31,126–128). However, there
is no effort yet dedicated to the comprehensive study of the
effects of germline and somatic variations on all major PTM
sites. The GO term enrichment test and the follow-up clus-
tering analysis among 10 main types of functional sites can
be seen in Figure 3a. A total of 332 distinct GO terms of
biological process, molecular function and cellular compo-
nents showed over-/underrepresentation to at least one type
of nsSNV affected functional site. It is interesting to see
ubiquitylation and acetylation are grouped together by sim-
ilarity of pathway hits as similar observations about func-
tional associations are found in literature (31). We also see
nsSNV affected phosphorylation, N-glycosylation, enzyme
active sites and protein binding sites are enriched/depleted
significantly among a wide range of GO terms with dis-
tinct patterns. Phosphorylation, especially, behaves similar
to what is described in previous studies (31,129) and is more
likely to be involved in protein interaction networks and
pathways. Besides GO, PANTHER pathway analysis pro-
vided similar clustering results. Note that 249 distinct path-
ways were found to be influenced by proteins containing
nsSNV-affected functional sites. Similar patterns and rela-
tionship between acetylation and ubiquitylation can be ob-
served in Figure 3b. Details of the significantly influenced
pathways and GO terms are described in the above sec-
tion. It is important to note that GO and pathway annota-
tions are different ways of classifying genes, and they have
different coverage and focus and therefore can only reflect
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Figure 4. Pan-cancer analysis of cancer associated nsSNVs. Underrepre-
sentation is colored in red and overrepresentation is in blue. The darkness
of the color in each box reflects the absolute value of –log(P-value). Based
on the patterns of –log(P-value), functional sites and cancer types are clus-
tered into different groups. In the heatmap, functional sites are listed, with
the most underrepresented type of nsSNV at the bottom and most over-
represented nsSNV at the top.

the current knowledge available to the scientific community.
Maturation of methods in metabolic modeling is expected
to provide additional insights into how these variations ef-
fects the biological system (130).

Proteome-wide pan-cancer analysis

Comparative analysis of the functional effects of varia-
tions on different cancer types provides a comprehensive
overview of the similarities and differences between differ-
ent cancer types (Figure 4, Supplementary Table S4b). In
order to better understand the functional impact of muta-
tions in different cancer types we undertook a proteome-
wide pan-cancer analysis. The systematic pan-cancer scale
investigation of somatic mutations has been impossible to
achieve until recent advances of sequencing technologies
(131,132). Recently, the TCGA pan-cancer analysis project
across 12 tumor types has been launched (133) and sev-
eral others are ongoing. Recent studies by Alexandrov et al.
(131) reported genome-wide mutational signatures and re-
gions. A follow-up study by Jia et al. (41) have shown
that for nine cancers, 3–5 independent mutational signa-
tures in each cancer underlie each cancer genome where
both mutagen exposure and changes in DNA repair systems

were identified as key mutagenesis forces. Other previous
works have shown that there exists specific mutational pat-
terns in different cancers (134,135) and recent studies have
started identifying genes to be ‘truly associated’ with cancer
(23,43,135–136). Our pan-cancer study goes a step forward
by identifying not just the genes but key mutations that po-
tentially affect known protein function.

Our data set of cancer-associated nsSNVs was mapped
to 73 DO terms (24). The DO terms were further collapsed
into 12 DO terms to facilitate pan-cancer analysis (Figure 4,
functional site affecting mutation counts can be found in
Supplementary Table S4a and P-value is available in Sup-
plementary Table S4b). The mapping result from cancer
types to our total nsSNV data set (1 705 285) resulted in
the assignment of 573 789 nsSNVs associated with at least
one cancer type. Note that 38 549 of these nsSNVs affected
a protein functional site and 13 159 nsSNVs have cancer as-
sociations. We found that across the different cancer types,
N-linked glycosylation, methylation and binding sites are
all preferentially affected by somatic mutation. Conversely,
phosphorylation and ubiquitylation are significantly less
impacted by variation compared to what is expected based
on the distribution of all variations. O-linked glycosyla-
tion and acetylation show a similar trend albeit less signifi-
cant. It is interesting to note that unlike most of the cancer
types having statistically less nsSNVs interrupting phospho-
rylation sites, acute myeloid leukemia (DOID:9119) shows
overrepresentation of cancer nsSNVs on phosphorylation
sites (P-value 1.24E-03). It has been shown that phospho-
rylation status regulates the function of CCAAT/enhancer-
binding protein alpha, a crucial factor associated with the
development of various subtypes of acute myeloid leukemia
(AML) (137). Furthermore, a recent NGS study on AML
clinical samples revealed that 59% of case samples harbor
at least one nsSNV in signaling genes which are pathogen-
esis related (138). However, further research is required to
elucidate the role of phosphorylation on the development
of AML.

Comparison across cancer types show that lung cancer
(DOID:1324) and breast carcinoma (DOID:3459) are clus-
tered together (Figure 4) as nsSNVs from both cancer types
showing underrepresentation of phosphorylation, ubiqui-
tylation and O-linked glycosylation and overrepresentation
in N-linked glycosylation and methylation. Interestingly, for
active sites, the two cancer types behave differently. Other
cancer types such as urinary bladder cancer (DOID:11054),
ovarian serous cystadenocarcinoma (DOID:5746), rectum
adenocarcinoma (DOID:1996) and uterine corpus cancer
(DOID:9460) are grouped together since they share sim-
ilar mild or lack of significance for both groups of func-
tional sites that commonly show over- (like N-linked gly-
cosylation) and underrepresentation (such as phosphory-
lation). Skin melanoma (DOID:8923) and renal clear cell
carcinoma (DOID: 4467) are grouped together because
they share the overrepresentation of nsSNVs abolishing N-
linked glycosylation site and normal occurrence of nsSNVs
on phosphorylation site, which is usually underrepresented.
The nsSNVs from endometrial carcinoma (DOID: 2871)
and colon adenocarcinoma (DOID: 234) share the pattern
of overrepresentation on binding sites and underrepresenta-
tion for O-linked glycosylation sites compared to orophar-
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ynx cancer (DOID: 8857) which is clustered alone beside the
clade of the former two. In terms of overrepresentation on
phosphorylation sites, nsSNV from acute myeloid leukemia
(DOID: 9119) is separated on one branch. It is interesting
to note that the ontologically closely related cancer types
from DO hierarchy are not clustered into the same branch
but into adjacent branches as they show different functional
impact patterns. For instance, colon adenocarcinoma is not
clustered together with rectum adenocarcinoma, but they
are all under the term colorectal cancer (DOID:9256) in
DO. Similar patterns can be seen in uterine corpus cancer
and endometrial carcinoma.

It has been suggested that the number of driver muta-
tions required during oncogenesis is relatively small, so it
is possible to identify such driver mutations by looking to
see which mutations are shared across cancer types (43). Po-
tential driver mutations were identified based on mutations
that are present across multiple cancer types. We success-
fully assigned 5496 distinct genes with 13 132 functional site
affecting nsSNVs to cancer types. Out of these 5496 genes,
514 genes with 755 nsSNV affected functional sites are asso-
ciated with two or more cancers (full list in Supplementary
Table S4c). And 51 of these genes harboring 106 nsSNV af-
fected functional sites were found in three or more cancer
types.

In order to better understand what we found through this
pan-cancer analysis, a comparison was performed by using
the gene list of 127 significantly mutated genes (SMG) iden-
tified by a recent pan-cancer study that used TCGA data
(43). By mapping the published SMG data it was found that
88 out of 127 SMGs have a functional site affecting muta-
tion based on our analysis. Out of these 88 genes, 29 were
found in our list of 514 genes affected in two or more can-
cers described above. From our study we wish to emphasize
13 genes which are (i) present in the list of 127 SMG set,
(ii) present in our list of 51 genes which are present in three
or more cancers and (iii) have key functional site-affecting
mutations. Table 3 provides a list of these genes and muta-
tions. While the majority of these 13 genes are well known to
be involved in cancer, this work highlights for the first time,
key point mutations through a comprehensive pan-cancer
analysis. To better visualize the data we plotted all func-
tional site-affecting cancer-associated mutations from the
above 51 key genes using Circos plot (Figure 5, the matrix
seen Supplementary Table S4d). The plot includes a total of
990 mutations related to one or more cancers (106 of them
are associated with three or more cancer types). Functional
site-affecting mutations from genes like TP53, HIST1H4A,
HIST1H3A, RELN, SMAD4, CTNN81, DICER1, KRAS,
NRAS, BRCA2 and PTEN account for majority of the
nsSNVs associated with cancers. Figure 5 provides an
overview of distinct patterns on how different functional
site-disrupting nsSNVs are contributed by each gene. The
127 SMGs consists of one miRNA (MIR142) and 126 pro-
tein coding genes. Note that 21 of them either are found
to have no functional site annotations (such as EGR3) or
have functional site(s) which do not overlap with with nsS-
NVs (e.g. PCBP1). Note that 17 of them contain at least one
nsSNV affected functional site, which links to disease anno-
tation(s) (e.g. MECOM) but not a cancer type; and the rest
88 of them harbor one or more mutations associated with at

Figure 5. Circos plot representing 990 cancer-associated mutations from
51 genes that contain at least one somatic mutation from at least two
or more cancer types. Cancer types are listed using DO identifiers. Each
gene in the plot is assigned a unique color and the ribbon width indicates
the corresponding counts of total cancer-associated mutations for that
gene. DO identifier terms refer to following cancer types: DOID:8923 =
skin melanoma, DOID:1319 = brain cancer, DOID:363 = uterine cancer,
DOID:684 = hepatocellular carcinoma, DOID:1749 = squamous cell car-
cinoma, DOID:263 = kidney cancer, DOID:50745 = diffuse large B-cell
lymphoma, DOID:2893 = cervix carcinoma, DOID:8557 = oropharynx
cancer, DOID:1996 = rectum adenocarcinoma, DOID:3948 = adreno-
cortical carcinoma, DOID:2526 = prostate adenocarcinoma, DOID:3193
= peripheral nerve sheath neoplasm, DOID:1107 = esophageal carci-
noma, DOID:686 = liver carcinoma, DOID:1793 = pancreatic cancer,
DOID:3963 = thyroid carcinoma, DOID:1324 = lung cancer, DOID:219
= colon cancer, DOID:1612 = breast cancer, DOID:2394 = ovar-
ian cancer, DOID:1909 = melanoma, DOID:1967 = leiomyosarcoma,
DOID:11054 = urinary bladder cancer, DOID:734 = urethra cancer,
DOID:10534 = stomach cancer, DOID:9119 = acute myeloid leukemia,
DOID:74 = hematopoietic system disease, DOID:4465 = papillary renal
cell carcinoma.

least one cancer type. For those proteins which have func-
tional sites and nsSNVs in our data set but show no overlap
between the two can point to passenger mutations or might
indicate paucity of known/annotated functional sites. For
example, PCBP1, which has around 40 functional sites and
38 nsSNVs on a 356 amino acids long sequence, shows sur-
prisingly no overlap of nsSNVs and functional sites. It is
possible that for such proteins either are protected from mu-
tation of functional sites or the knowledge of all of the func-
tional sites in the protein is incomplete.

In addition to the above analysis we wanted to interrogate
the data to identify mutations that are reported in multiple
studies in hopes of gaining a slightly different perspective of
the genes and mutations associated in cancer and providing
a measure of validation to our analysis of cancer-specific
mutations. To achieve this we counted the number of publi-
cations associated with a specific variation (based on count-
ing unique PubMed IDs). We found 3787 functional site-
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Table 3. Key mutations identified through pan-cancer analysis

Gene
Name UniProtAC Variation Functional site Cancer type Conserv. PDB ID

TP53 P04637 K164E Acetylation ovarian cancer; brain cancer; colon cancer; lung cancer Yes 3D06
ATM Q13315 N2875S Binding Site(ATP binding site) breast cancer; rectum adenocarcinoma; colon cancer Yes N/A
TP53 P04637 R248Q Binding Site(DNA binding site) brain cancer; lung cancer; uterine cancer; colon cancer; rectum

adenocarcinoma; breast cancer; ovarian cancer; kidney cancer
Yes 3D06

TP53 P04637 R248W Binding Site(DNA binding site) brain cancer; lung cancer; uterine cancer; colon cancer; rectum
adenocarcinoma; breast cancer; ovarian cancer

Yes 3D06

TP53 P04637 S241F Binding Site(DNA binding site) breast cancer; ovarian cancer; uterine cancer Yes 3D06
TP53 P04637 S241C Binding Site(DNA binding site) breast cancer; uterine cancer; kidney cancer Yes 3D06
TP53 P04637 A276P Binding Site(DNA binding site) breast cancer; ovarian cancer; hepatocellular carcinoma Yes 3D06
TP53 P04637 C277F Binding Site(DNA binding site) urinary bladder cancer; ovarian cancer; breast cancer; lung cancer Yes 3D06
TP53 P04637 R273H Binding Site(DNA binding site) brain cancer; lung cancer; uterine cancer; colon cancer; rectum

adenocarcinoma; breast cancer; ovarian cancer
Yes 3D06

TP53 P04637 R273L Binding Site(DNA binding site) breast cancer; ovarian cancer; lung cancer Yes 3D06
TP53 P04637 R273P Binding Site(DNA binding site) breast cancer; ovarian cancer; lung cancer Yes 3D06
TP53 P04637 R273C Binding Site(DNA binding site) brain cancer; lung cancer; uterine cancer; colon cancer; rectum

adenocarcinoma; breast cancer; ovarian cancer; hematopoietic system
disease; acute myeloid leukemia

Yes 3D06

TP53 P04637 R273S Binding Site(DNA binding site) uterine cancer; diffuse large B-cell lymphoma; lung cancer (found in ‘-’
strand)

Yes 3D06

DNMT3A Q9Y6K1 R792H Binding Site (substrate interaction site) acute myeloid leukemia; hematopoietic system disease; diffuse large
B-cell lymphoma; lung cancer

Yes 2QRV

TP53 P04637 C275Y Binding Site(DNA binding site) brain cancer; lung cancer; rectum adenocarcinoma; colon cancer; breast
cancer; ovarian cancer; pancreatic cancer

Yes 3D06

TP53 P04637 N239S Binding Site(DNA binding site) diffuse large B-cell lymphoma; lung cancer; uterine cancer; colon cancer;
breast cancer; ovarian cancer; kidney cancer

Yes 3D06

TP53 P04637 R280T Binding Site(DNA binding site) breast cancer; oropharynx cancer; lung cancer; urinary bladder cancer Yes 3D06
TP53 P04637 R280I Binding Site(DNA binding site) ovarian cancer; colon cancer; lung cancer Yes 3D06
TP53 P04637 R280G Binding Site(DNA binding site) hematopoietic system disease; oropharynx cancer; lung cancer Yes 3D06
KRAS P01116 Q61H Binding Site(GEF interaction site) rectum adenocarcinoma; pancreatic cancer; colon cancer; uterine cancer Yes 4LUC
KRAS P01116 Q61L Binding Site(GEF interaction site) uterine cancer; colon cancer; lung cancer Yes 4LUC
NRAS P01111 Q61L Binding Site(GEF interaction site) brain cancer; colon cancer; lung cancer Yes 3CON
NRAS P01111 Q61R Binding Site(GEF interaction site) rectum adenocarcinoma; uterine cancer; colon cancer; breast cancer;

ovarian cancer; hematopoietic system disease; acute myeloid leukemia
Yes 3CON

NRAS P01111 Q61K Binding Site(GEF interaction site) lung cancer; rectum adenocarcinoma; colon cancer; uterine cancer;
hematopoietic system disease; acute myeloid leukemia

Yes 3CON

NRAS P01111 Q61H Binding Site(GEF interaction site) skin melanoma; hematopoietic system disease; acute myeloid leukemia Yes 3CON
BRCA2 P51587 R3052W Binding Site(OB2/OB3 interface) breast cancer; ovarian cancer; colon cancer Yes N/A
BRCA2 P51587 R3052Q Binding Site(OB2/OB3 interface) breast cancer; ovarian cancer; uterine cancer Yes N/A
PTPN11 Q06124 Q510L Binding Site (Substrate) brain cancer; hematopoietic system disease; acute myeloid leukemia Yes 3B7O
PTPN11 Q06124 Q510H Binding Site (Substrate) brain cancer; hematopoietic system disease; acute myeloid leukemia Yes 3B7O
IDH2 P48735 R172S Binding Site (Substrate) brain cancer; acute myeloid leukemia; colon cancer Yes 4JA8
DNMT3A Q9Y6K1 C497Y Binding Site(Zn binding site) acute myeloid leukemia; hematopoietic system disease; diffuse large

B-cell lymphoma
Yes 3A1B

SMAD4 Q13485 R361H Binding Site(trimer interface) oropharynx cancer; rectum adenocarcinoma; colon cancer; lung cancer Yes 1YGS
TP53 P04637 C242Y Binding Site(zinc binding site) brain cancer; oropharynx cancer; lung cancer Yes 3D06
TP53 P04637 H179R Binding Site(zinc binding site) brain cancer; lung cancer; uterine cancer; colon cancer; breast cancer;

ovarian cancer; hematopoietic system disease; prostate adenocarcinoma;
pancreatic cancer

Yes 3D06

TP53 P04637 H179Y Binding Site(zinc binding site) breast cancer; brain cancer; oropharynx cancer; lung cancer Yes 3D06
TP53 P04637 C176Y Binding Site(zinc binding site) ovarian cancer; colon cancer; lung cancer Yes 3D06
TP53 P04637 C176F Binding Site(zinc binding site) breast cancer; brain cancer; colon cancer; lung cancer Yes 3D06
TP53 P04637 C238S Binding Site(zinc binding site) breast cancer; hematopoietic system disease; oropharynx cancer Yes 3D06
TP53 P04637 C238F Binding Site(zinc binding site) brain cancer; urinary bladder cancer; lung cancer; uterine cancer;

oropharynx cancer; breast cancer; ovarian cancer
Yes 3D06

TP53 P04637 C238Y Binding Site(zinc binding site) brain cancer; diffuse large B-cell lymphoma; lung cancer; uterine cancer;
colon cancer; rectum adenocarcinoma; breast cancer; ovarian cancer;
pancreatic cancer

Yes 3D06

TP53 P04637 R110L Methylation ovarian cancer; pancreatic cancer; lung cancer No 3D06
TP53 P04637 R213L Methylation breast cancer; oropharynx cancer; colon cancer Yes 3D06
TP53 P04637 R213Q Methylation kidney cancer; brain cancer; uterine cancer; urinary bladder cancer;

rectum adenocarcinoma
Yes 3D06

EP300 Q09472 R580Q Methylation rectum adenocarcinoma; colon cancer; uterine cancer Yes N/A
TP53 P04637 R209I Methylation breast cancer; uterine cancer; squamous cell carcinoma Yes 3D06
TP53 P04637 R337L Methylation colon cancer; oropharynx cancer; lung cancer Yes 1A1E
TP53 P04637 R337C Methylation brain cancer; ovarian cancer; oropharynx cancer; breast cancer; colon

cancer; hematopoietic system disease; acute myeloid leukemia
Yes 1A1E

TP53 P04637 S215R Phosphorylation breast cancer; ovarian cancer; hematopoietic system disease; squamous
cell carcinoma

Yes 3D06

CTNNB1 P35222 S37F Phosphorylation stomach cancer; brain cancer; uterine cancer; lung cancer Yes 3FQR
CTNNB1 P35222 S37C Phosphorylation urinary bladder cancer; uterine cancer; liver carcinoma; lung cancer Yes 3FQR
CTNNB1 P35222 S33C Phosphorylation brain cancer; uterine cancer; liver carcinoma; colon cancer Yes 3FQR
CTNNB1 P35222 S45F Phosphorylation liver carcinoma; uterine cancer; colon cancer; lung cancer Yes N/A
TP53 P04637 T155N Phosphorylation breast cancer; brain cancer; squamous cell carcinoma No 3D06
TP53 P04637 T155P Phosphorylation breast cancer; pancreatic cancer; lung cancer No 3D06
CTNNB1 P35222 T41A Phosphorylation uterine cancer; colon cancer; lung cancer Yes 2G57
TP53 P04637 T211I Phosphorylation colon cancer; brain cancer; oropharynx cancer Yes 3D06
PTEN P60484 Y155C Phosphorylation breast cancer; uterine cancer; thyroid carcinoma Yes N/A
SF3B1 O75533 K700E Ubiquitylation breast cancer; diffuse large B-cell lymphoma; acute myeloid leukemia;

pancreatic cancer; prostate adenocarcinoma
Yes N/A

TP53 P04637 K164E Ubiquitylation ovarian cancer; brain cancer; colon cancer; lung cancer Yes 3D06
TP53 P04637 K132N Ubiquitylation breast cancer; colon cancer; oropharynx cancer; urinary bladder cancer Yes 3D06
TP53 P04637 K132E Ubiquitylation breast cancer; ovarian cancer; lung cancer Yes 3D06
TP53 P04637 K132R Ubiquitylation ovarian cancer; colon cancer; lung cancer Yes 3D06
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Figure 6. Conservation analsysis of nsSNVs. (a) Conservation ratio profile
of germline/somatic variations and protein functional site affected by nsS-
NVs. The conservation ratio is calculated based on the percent of nsSNV
impacted amino acids found to be conserved according to the BLAST re-
sults. In the radar chart, the radiating axis shows the conservation ratio
values ranging from 0.3 to 0.9. ‘ALL’ stands for a specific type of amino
acid that is affected by nsSNV regardless of functional site annotation.
‘Fun’ stands for an amino acid containing a functional site affected by
nsSNV. ‘G’ stands for germline nsSNV site while ‘S’ stands for somatic
nsSNV site. ‘T’ represents total conservation ratio for both germline and
somatic nsSNVs. (b) Amino acid-based conservation ratio profile of var-
ious types of functional site affected by nsSNVs. The conservation ratio,
which is calculated by the same method as in Figure 6a, is presented as the
height of each bar. For each amino acid, depending on the type of func-
tional site there can be one or multiple bar(s) that are colored differently.
Each colored bar is represents the conservation ratio of a specific type of
functional site affected by nsSNVs for that particular type of amino acid.
For instance, the color ‘red’ is for acetylation, so there are red bars that
occur among A(Ala), K(Lys), M(Met) and S(Ser).

disrupting nsSNVs supported by two or more published
studies (Supplementary Table S4e). Out of those 3787 mu-
tations, 379 are described in three or more studies. Based
on our review of the publications associated with the muta-
tions we conclude that although there are several publica-
tions that associate cancer to specific mutations, very few of
these mutations are reported in databases. Focused biocu-
ration can connect cancer, mutation and PMIDs together
which in turn can help identify mutations that have been
identified by multiple studies.

Conservation analysis. Conservation analysis can be used
as a complimentary method to measure the importance of
a specific site from an evolutionary perspective. The con-
servation ratio ranges from 0 to 1 as described in Materials
and Methods. We found that functional sites impacted by
nsSNVs are significantly more conserved than nsSNV sites
which are not associated with any known function (Sup-
plementary Table S5a). Other than the significance analy-
sis using P-value, the absolute ratio provides finer resolu-
tion (Figure 6a) and at the same time illustrates the distinct
differences between germline and somatic SNVs. It is clear
that somatic SNVs disrupts more conserved sites compared
to germline mutations in both functional site affecting nsS-
NVs and total nsSNVs (All+S and Func+S, respectively, in
Figure 6a). Generally, we found nearly all the sites affect-
ing a functional site has a higher conservation ratio than

the global nsSNV conservation ratio, especially binding site
(on average 0.78) and active site (on average 0.83) as can
be seen in Figure 6b. Common PTM types, like N-linked
glycosylation and phosphorylation, have a mild conserva-
tion ratio which is higher than the global ratio for total nsS-
NVs. O-linked glycosylation is the only exception where the
conservation ratio for nsSNV affecting the site has a value
(Ser 0.44, Thr 0.26) even lower than the global nsSNV ra-
tio (Ser 0.50, Thr 0.46). More experimentally verified O-
glycosylation sites are needed to evaluate if this trend holds.
Figure 6b only delineates an overall trend among different
amino acids while Supplementary Table S5 provides the de-
tails of total conservation ratio, somatic/germline ratio on
all the main amino acid grouped by different type of func-
tional sites in our data set.

Example filtering and sorting of data to identify validation
targets. There are several ways one can filter and sort the
data to identify priority validation targets. In addition to the
analysis mentioned above, we present below several exam-
ples of sorting the data to retrieve potential targets which
can be further characterized and validated to connect ge-
nomic variation to functional impact and disease.

Through the comprehensive analysis of variations in all
types of cancers that lead to loss of phosphorylation sites,
we identified 143 mutations present in at least 2 types of
cancers and 16 mutations found in 3 or more cancers (Sup-
plementary Table S4c). From our analysis of TCGA breast
tumor cancer samples (CSR porject (3)), we found a nsSNV
(hg19 chr17:12915009) that changes reference nucleotide G
to A. This mutation was found in 33% of the tumor sam-
ples and 12% of the control samples. The SNV maps to the
protein zinc phosphodiesterase ELAC protein 2 (ELAC2;
Q9BQ52) and changes 217 serine (S) to leucine (L). In
UniProtKB, this mutation is recorded as a natural variant
with the note ‘in HPC2; does not affect the enzymatic ac-
tivity’. However, in our data set, we found this mutation is
shared among CSR, NCI-60 (27 out of 60 cell lines (14)),
dbSNP and annotated in UniProtKB to cause the loss of
a phosphorylation receptor Ser (a phosphoserine site (35)).
We also found that the site is conserved in 4 out of 5 or-
thologous proteins in mammals (for list of organisms see
Materials and Methods). This mutation is linked to a Swiss-
Var record for ‘prostate cancer, hereditary, 2’. This mapping
and annotation bridges the gap between the phosphoryla-
tion site and disease-driven mutation and provides clues to
test the possible mechanism of disease.

For loss of N-glycosylation sites we identified 63 mu-
tations present in 2 or more types of cancers and 5 mu-
tations found in 3 or more cancers (Supplementary Table
S4c). Here we use the replacement of an asparagine residue
in position 130 of SLCO1B1 protein (UniProtKB acces-
sion: Q9Y6L6) as an example. The genomic variation on
hg19 chr12:21329738 from A to G is shared by CSR, ICGC,
dbSNP and NCI-60 exome project. The variation can be
mapped to UniProtKB entry Q9Y6L6 (protein name: So-
lute carrier organic anion transporter family member 1B1).
We found that there is nearly a 20% frequency difference be-
tween CSR breast cancer samples and normal samples for
this specific variation and the variation can be widely de-
tected on 28 cell lines across the NCI-60 cell line panel. The

 at G
eorge W

ashington U
niversity on Septem

ber 22, 2014
http://nar.oxfordjournals.org/

D
ow

nloaded from
 

http://nar.oxfordjournals.org/


14 Nucleic Acids Research, 2014

corresponding protein site is under moderate conservation
(conserved in 3 out of 5 orthologous proteins).

A comprehensive analysis of variations in all types of can-
cers that lead to loss of active sites identified 33 such muta-
tions that are present in no less than 2 type of cancers and 1
mutation were found in 3 or more cancers (Supplementary
Table S4c). The mutation of an enzyme’s active site can de-
stroy its activity. In the 2385 nsSNV modified active sites,
222 are annotated to be associated with diseases. Here we
choose one variation not yet well-studied to identify dis-
ease associations for which we have a distinct sample fre-
quency among the case and control samples of our CSR
TCGA breast cancer research. The genomic variation on
human genome hg19 chr14: 24707479 from G to A occur in
13% of case samples but only 4.8% of control samples of our
CSR TCGA breast cancer data. The same variation has also
been reported by the NCI-60 cell line panel exome study (5
cell lines out of total 60). The protein is GMP reductase 2
(GMPR2) and the variation is mapped to the protein’s ac-
tive site Gly on 242 which is changed to Asp by the nsSNV.
This may cause loss of function resulting in a disease phe-
notype. It is interesting to note that it has been shown that
lack of expression of the proteins GMPR2 and PPRA are
associated with the basal phenotype and patient outcome
in breast cancer (139) and loss of function may play a role
in carcinogenesis. For loss of binding sites we identified 439
such mutations that are present in 2 or more cancer types
and there are 19 mutations that can be seen across 4 and up
to 9 distinct DO cancer terms (Supplementary Table S4c).
As an example we highlight here a GTPase NRas (NRAS)
protein and its variation in position 61 from Gln to Arg
caused by genomic variation on hg19 chr1:115256529 from
T to C. The SNV is present in TCGA, ICGC, IntOGen,
NCI-60 cell line data set and dbSNP. The corresponding
protein variation can also be found in the corresponding
UniProtKB feature line. This binding site information is
from the CDD database (26), which records the site as a part
of GEF interacting site. General annotation in UniProtKB
states that NRAS is activated by GEF. Thus, the mutated
binding site of GEF interaction may lead to an impaired
activation function of the protein, which can lead to the
disease annotation for that site labeled ‘lung carcinoma cell
and melanoma’ in SwissVar. By checking the reference (140)
that identified the site as the disease-causing site, we found
there is no explicit description how the disease is caused by
the variation. The disrupted interaction with the activator
GEF may serve as one possible explanation proposed by
our study. Similar potential validation targets can be iden-
tified for all of the nsSNV-affected PTM and functional sites
discussed in this paper.

Phylogenetic classification of patients

Cancers are primarily classified based on tissue of origin.
Based on our pan-cancer analysis results described above
we see that there is a need to develop additional methods
of classification for biomarker discovery. Recently, we have
developed a method that allows phylogenetic classification
of tumor and normal samples based on mutation profile
compared to the human reference genome (3). Such phy-
logenetic analysis promises a systematic view of multiple

samples or a population which can help us to understand
the background heterogeneity of each sample from patients
with the same or similar disease phenotype. This analysis
also facilitates personalized analysis which can lead to per-
sonalized diagnostics and therapeutics. In this study, we se-
lected 30 breast cancer samples and compared them with 5
breast cancer derived NCI-60 cell lines. The cancer-centric
phylogenetic tree in Figure 7a was generated based on SNVs
extracted from the 35 samples (30 tumor samples and 5 cell
lines). Phylogenetic analysis shows that the samples fall into
few main groups and it is interesting to note that all NCI-60
cell lines, T-47D, HS-578T, MCF7, BT549 and MDA-MB-
231 in the same clade with several patient samples associ-
ated with that specific branch. It has long been argued that
breast cancer is a complex and heterogeneous disease. Till
date several factors have been used to classify breast cancer
types and cell lines that include expression analysis, histo-
logical type, tumour grade, lymph node status, presence of
predictive markers such as oestrogen receptor and human
epidermal growth factor receptor 2, luminal subtype, etc
(141). The use of breast cancer cell lines to model breast can-
cer has benefits and we believe phylogenetic classification of
the cell lines and tumor cells provides a higher level of clas-
sification that can complement existing methods and help
investigate the functional impact of variation in different
subgroups. Additionally, this type of analysis can also help
provide some basic quality control step where multiple sam-
ples have been sequenced from the same patient from the
same tissue. Figure 7a provides such an example where we
can see that samples from the same tissue and same patient
(share the same TCGA patient sample barcode) are paired
in the same branch (TCGA-A7-A13E-01A and TCGA-A7-
A13E-01B). It is important to remember that the phyloge-
netic tree is based on multiple sequence alignment of all ex-
omes (patients and cell lines) and not just somatic muta-
tions (3,19). If whole genome sequence data is present then
based on the phyloSNP (82) algorithm one can classify the
patients and the tumors with a higher resolution.

The merged matrix shows 527 nsSNVs that affect func-
tional sites among 35 samples, which indicates overlapping
of functional site impacting nsSNVs across samples. The
heat map appended on the phylogenetic tree (Figure 7a)
provides a visual representation of the distribution of those
nsSNVs based on clustered samples. From inside to outside,
the colored boxes represent acetylation, active site, binding
site, methylation, N-linked glycosylation, O-linked glycosy-
lation, other modified residue, phosphorylation and ubiq-
uitylation.

These 527 nsSNVs impact nine different types of func-
tional sites. The statistical significance of each type of
nsSNV affected functional site from each sample was cal-
culated and is presented as a heatmap (Figure 7b). Based
on different patterns of significance, an unsupervised hier-
archical clustering was performed to show the association
between different samples. From the figure, acetylation, ac-
tive site, binding site, phosphorylation site and ubiquityla-
tion sites were found to have significant impact by nsSNVs.
N-linked glycosylation and O-linked glycosylation present
the overall trend of overrepresention of nsSNVs with few
exceptions, which indicates the heterogeneity of functional
profile from the genomic landscape of tumor samples. The
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Figure 7. (a) The phylogenetic tree of the whole exome sequencing re-
sults of 30 TCGA breast cancer tumor samples (from 25 patients) and 5
NCI-60 breast cancer cell lines and the proteome-wide functional site anal-
ysis. The five breast cancer cell lines from the NCI-60 panel are shaded in
green. Branches are colored to visualize the bootstrap value (color from
red to yellow represents the corresponding bootstrap value from high to
low). Heatmap demonstrates the status of loss of functional sites of each
individual sample is overlaid at the tip of the phylogenetic tree branches.
From inside to outside of the heatmap contains mutated functional sites
from acetylation to ubiquitylation. (b) A hierarchal clustering is performed
based on significance of mutational profile on functional site. Underrepre-
sentation is colored in red and overrepresentation is in blue. The darkness
of the color in each box reflects the absolute value of –log(P-value). Based
on the patterns of –log(P-value), cancer samples/cell lines are clustered
into different groups.

sample level resolution also allows the observation of other
outstanding data points. For example, there are few sam-
ples which show myristylation or methylation being affected
by nsSNVs while the majority show no significance impact
for these functional sites. When looking across the clustered
samples, we can summarize that the grouped five cancer cell
lines are relatively less impacted by nsSNVs in binding and
phosphorylation sites than most of the TCGA patient sam-
ples, which suggests cell lines are under less selection or have
higher tolerance to variations interrupting these types of
functional sites. Comparing this clustering with SNV-based
phylogenetic tree on the same group of samples (Figure 7a),
additional insight can be gained. Shared result from the two
figures includes the clustering of five cell lines. The fact that
the cell lines are grouped together under the two distinct
methods, suggests the differences of mutational profile and
mutated functional profile between cell lines and patient
samples are significant. Although, we agree to Meyerson
view ‘millions and millions of people are getting cancer, and
over time the statistical power of looking at primary tumors
is going to be greater’(142); however, the boundary is some-
times bridged as can be seen in Figure 7b. There are three
patient samples that cluster closely with the five cell lines
as they share similar patterns of nsSNV affected functional
sites. Rest of the samples are clustered in more or less dif-
ferent hierarchy than the SNV-based phylogenetic tree, in-
dicating the heterogeneity of tumor samples. It is also inter-
esting to see different mutated functional site profile among
evolutionarily paired samples from the same tumor patient.
Overall, we believe this type of analysis can provide an in-
formative reference as a complement of traditional classifi-
cation methodologies described above.

Linking the nsSNV impacted functional sites to diseases

For this analysis disease associated SNVs from SwissVar,
GWAS catalog project and dbSNP was collected. The col-
lection resulted in 63 927 distinct entries though some can-
cer entries from different sources may overlap. Among 63
927, there are 2110 that are present in nsSNV affected func-
tional sites (Supplementary Table S6, column Disvar). The
top 10 genes which have the highest number of mutations
(normalized based on their length) related to diseases are
TP53, HBB, VHL, TTR, HMBS, HBA1, SOD1, GCH1,
F8 and KRAS. Although, we attempted to have a compre-
hensive disease-related mutation list we realized that addi-
tional biocuration and literature mining-based methods can
significantly increase this type of mapping. Increased map-
pings may lead to additional genes associated with nsSNVs
and their impact to functional site.

CONCLUSION

The significance of nsSNV impact calculated based on the
source and type of functional site provides a comprehensive
view of how germline and somatic variations are distributed
on protein functional sites. Somatic nsSNVs collected from
various cancer-centric databases, instead of showing ran-
dom distribution, occurs on functional sites with significant
over- or underrepresentation and therefore may be involved
in the development of the tumor phenotype. Additionally,
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use of phylogenetic classification using SNVs and overlay-
ing the tree with functional site variations provides a frame-
work for novel translational and personalized medicine re-
search and can lead to targeted diagnostics and therapeu-
tics. It is important to note that many disease-related mu-
tation sites are located in the non-coding regions of the
genome (143). Analysis of those mutations using methods
similar to the ones described in this paper may help to
unravel some disease complexity. In this study even after
collecting the most comprehensive information on protein
functional sites we find only 2.29% affect the types of func-
tional sites defined in our study. Therefore, the vast major-
ity of cancer-associated mutations either have no effect on
protein function or one can argue that our current knowl-
edge of protein functional sites is highly limited. Additional
protein functional site information in the coming years will
help refine and improve this analysis. Our future plans in-
clude redoing the analysis described here every 2 years and
compare and contrast the results over time.

It is also possible that neutral sequence variants may de-
fine individuals and their diseases (40). Additionally, certain
disease phenotypes arise through combinations of many
variants whose individual effects might not be damaging.
With the development of sequencing technologies, high-
quality genomics and proteomics data will help unravel
the complexities of biological systems and help connect
genomes to phenomes, especially for complex diseases like
cancer and diabetes. In order to get a better understanding
of the system, functional annotation that facilitates the ex-
ploration of the impact of a variant is necessary and hence
active biocuration of genomic and proteomic data is of ut-
most important.
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