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Abstract: Enzymes in the transcarbamylase family catalyze the transfer of a carbamyl  
group from carbamyl phosphate (CP) to an amino group of a second substrate. The  
two best-characterized members, aspartate transcarbamylase (ATCase) and ornithine 
transcarbamylase (OTCase), are present in most organisms from bacteria to humans.  
Recently, structures of four new transcarbamylase members, N-acetyl-L-ornithine 
transcarbamylase (AOTCase), N-succinyl-L-ornithine transcarbamylase (SOTCase), ygeW 
encoded transcarbamylase (YTCase) and putrescine transcarbamylase (PTCase) have also 
been determined. Crystal structures of these enzymes have shown that they have a common 
overall fold with a trimer as their basic biological unit. The monomer structures share  
a common CP binding site in their N-terminal domain, but have different second substrate 
binding sites in their C-terminal domain. The discovery of three new transcarbamylases,  
L-2,3-diaminopropionate transcarbamylase (DPTCase), L-2,4-diaminobutyrate transcarbamylase 
(DBTCase) and ureidoglycine transcarbamylase (UGTCase), demonstrates that our 
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knowledge and understanding of the spectrum of the transcarbamylase family is still 
incomplete. In this review, we summarize studies on the structures and function of 
transcarbamylases demonstrating how structural information helps to define biological 
function and how small structural differences govern enzyme specificity. Such information 
is important for correctly annotating transcarbamylase sequences in the genome databases 
and for identifying new members of the transcarbamylase family. 

Keywords: transcarbamylase; pyrimidine biosynthesis; arginine biosynthesis; arginine 
deiminase pathway; agamatine deiminase pathway; viomycin biosynthesis; zwittermicin A 
biosynthesis; padanamide biosynthesis 

 

1. Introduction 

The transfer of a carbamyl group from carbamyl phosphate (CP) to a nitrogen atom of another 
molecule is catalyzed by a family of enzymes termed transcarbamylases (Figure 1) of which aspartate 
transcarbamylase (ATCase) and ornithine transcarbamylase (OTCase) are the best-known members. 
ATCase catalyzes the first reaction in the de novo pyrimidine biosynthetic pathway, transferring of  
a carbamyl group from CP to L-aspartate to form N-carbamyl-L-aspartate [1]. ATCase is a ubiquitous 
enzyme which is present in almost all organisms, but with various quaternary structures in different 
organisms. Prokaryotic ATCases have three major types of quaternary structure. One type is a  
dodecameric holoenzyme, consisting of a complex of a single ATCase catalytic subunit with a single 
active or inactive dihydroorotase (DHOase) [2–4]. The second type is also dodecameric, but consists of 
two catalytic trimers linked by three regulatory dimers which may be either separated [5] or fused 
together [6]. A third type has only a catalytic trimer and is insensitive to allosteric effectors [7]. Two 
types of eukaryotic ATCases are known. Plants have a catalytic trimer similar to the third type of 
prokaryotic ATCase, but are sensitive to allosteric effectors [8]. In animals and the slime mould 
Dictyostellium discoideum, ATCase fuses with carbamyl phosphate synthetase 2 (CPS2) and an active 
DHOase to form a multifunctional polypeptide termed CAD (CPS2-ATCase-DHOase) [9]. CAD-like 
proteins occur also in fungi, but the DHOase domain is catalytically inactive [10]. Despite the variations 
in quaternary structure, the functional unit of all ATCases consists of a catalytically active homotrimer. 

OTCase is also a ubiquitous enzyme that exists in nearly all organisms. Two types of OTCases are 
known: anabolic and catabolic. While anabolic OTCases catalyze the carbamylation of L-ornithine to 
form citrulline within the arginine biosynthetic pathway in lower organisms and the urea cycle in 
mammals [11,12], catabolic OTCases promote the reverse reaction within the arginine deiminase 
pathway which degrades arginine to ornithine, and produces ornithine and CP from citrulline through 
phosphorolysis [13,14]. Catabolic OTCases are found only in lower microorganisms, which use arginine 
as an energy source to generate ATP. The functional unit of anabolic OTCases is generally a trimer  
with the following exceptions. The OTCases from two actinomycetes (Streptomycetes clavuligerus and  
Nocardia lactamdurans) are hexameric enzymes [15] that possess both anabolic and catabolic functions. 
The anabolic OTCase from the thermophilic bacterium, Pyrococcus furiosus, is a dodecameric  
enzyme, with increased thermal stability [16]. Similarly, most catabolic enzymes are dodecamers that 
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are sensitive to allosteric effectors [12,17–19], with some exceptions; for example, the catabolic OTCase 
from Lactobacillus hilgardii was reported to be a hexamer [20]. 

 

Figure 1. Schematic drawing of the carbamyltransferase reactions and the structures of its 
substrates. Carbamyltransferase catalyzes the transfer of a carbamyl group from carbamyl 
phosphate to the amino group (colored as blue) of the second substrate. The forward reaction 
is catalyzed by anabolic enzymes and the reverse reaction by catabolic enzymes. The forward 
reaction is kinetically favored. 

Three additional transcarbamylases were identified recently in a few of bacteria. A novel  
N-acetyl-L-ornithine transcarbamylase (AOTCase) that catalyzes the carbamylation of N-acetyl-L-ornithine 
to form N-acetyl-L-citrulline in a modified arginine biosynthetic pathway was identified in  
Xanthomonas campestris and other eubacteria [21,22]. The structure determination of AOTCase led  
to the identification of another novel transcarbamylase, N-succinyl-L-ornithine transcarbamoylase 
(SOTCase), in Bacteroides fragilis [23]. Functional assignment was confirmed by catalytic studies and 
structure determination [24]. The presence of the latter enzyme suggests that B. fragilis and some other 
bacteria with this unique protein have a novel arginine biosynthetic pathway that uses succinylated 
derivatives as intermediates [24]. AOTCase and SOTCase are distinguished from one another by three 
amino acid substitutions [25]. 

The primary sequence of putrescine transcarbamylase (PTCase) is closely related to OTCase, 
enabling it to be identified in genomic data and by phylogenetic analysis [26]. It is involved in the 
catabolism of the polyamine agmatine in the agmatine deiminase pathway found in several  
Gram-positive bacteria [27]. Most PTCases have been erroneously annotated as OTCases because of 
their high sequence similarity [26]. The assignment of PTCase of Enterococcus faecalis was recently 
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confirmed enzymatically and structurally [28,29]. The liganded and unliganded structures indicate that 
the active subunit is trimeric, similar to anabolic OTCase, AOTCase and SOTCase [29,30]. 

Among more than 40,000 transcarbamylase sequences found in the uniprot (www.uniprot.org) 
database, there are still a number of sequences that form independent clades that are distantly  
related to the above transcarbamylases in the phylogenetic tree; the functions and pathways of these 
transcarbamylases remain unknown [26]. Using the reaction module concept and bioinformatics 
analysis, a novel transcarbamylase, ureidoglycine transcarbamylase (UGTCase), was recently identified 
in the purine degradation pathway in Rubrobacter xyaniphilus [31]. The sequences of UGTCase  
are quite similar to ATCase and they have been annotated as a pseudo ATCase in the databases. The 
structure of one particular transcarbamylase of unknown function, ygeW encoded transcarbamylase 
(YTCase), was recently determined, revealing a canonical trimeric tertiary structure, but a very different 
active site structure [32]. 

New transcarbamylases that catalyze the carbamylation of L-2,3-diaminopropionate (Dap) to form  
β-ureidoalanine (Uda) emerged from the characterization of the biosynthetic gene cluster for zwittermicin  
A in Bacillus cereus and the viomycin biosynthetic gene cluster in Streptomyces lividans [33,34]. 
Homologous genes can be identified in most Streptomyces genera. Similarly, another new 
transcarbamylase that catalyzes the carbamylation of L-2,4-diaminobutyrate (Dab) to L-2-amino-4-
ureidobutyrate (Aub) has been identified in Streptomyces sp. RJA2928 from the analysis of a 
biosynthetic gene cluster in padanamides. It will be interesting to investigate how subtle structural 
differences in these transcarbamylase members confer specificities for ligands that have side-chains  
that are one or two carbons shorter than L-ornithine. 

Structures and mechanisms of ATCase have recently been reviewed [35,36]. The present review 
focuses on a comparison of all known and unknown members of the transcarbamylase family. Recent 
progress in crystallographic analyses has provided new insights into the relationship among the 
structures, functions and sequences that will aid in establishing correct annotations of transcarbamylase 
sequences in genomic databases. 

2. Structures Deposited in the Protein Data Bank (PDB) 

As of the end of 2014, 138 three-dimensional structures of transcarbamylase superfamily members 
have been deposited in the PDB. These structures, together with their source, ligands and PDB ID are 
summarized in Supplementary Table S1. 

Aspartate transcarbamylase—Of the 81 structures deposited in the PDB, 64 are of E. coli ATCase 
complexed with different ligands and various mutant forms. Thus, E. coli ATCase is one of the best 
structurally characterized enzymes. Most of these structures are of the dodecameric holoenzyme,  
which consists of two catalytic trimers and three regulatory dimers, and is sensitive to allosteric  
effectors [5,37–39]. Three are structures of the isolated catalytic trimer [40,41]. Seventeen  
structures are from organisms other than E. coli, six are from the hyperthermophilic archaeons,  
Pyrococcus abyssi [42], Sulfolobus acidocaldarius [43,44] and Methanococcus jannaschii [45–47], and 
one is from the γ-division of proteobacteria Moritella profunda, a psychrophilic deep sea bacterium [48]. 
S. acidocaldarius ATCase was solved as the dodecameric holoenzyme, while the structure from P. abyssi 
is of the catalytic trimer complexed with the bisubstrate analogue, N-phosphonacetyl-L-aspartate 
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(PALA). The structures of the catalytic trimer and regulatory dimer alone of M. jannaschii ATCase were 
also determined. The structure of M. profunda was determined in the T-state unliganded form. The only 
ATCase structure corresponding to a functional catalytic trimer in vivo is that of Bacillus subtilis [7,49]. 
Two structures of a prokaryotic ATCase from Auifex aeolicus that form a stable dodecameric 
holoenzyme with DHOase, were determined [50,51]. Only one eukaryotic ATCase structure, of 
Trypanosoma cruzi, has been determined (PDB code: 4IV5). 

Ornithine transcarbamylase—Thirty-three OTCase structures from 18 different organisms have  
been determined. Most are from bacteria and archaea: three from E. coli [52–54], two from the  
γ-division of proteobacteria, Pseudomonas aeruginosa [55], two from Mycobacterium tuberculosis [56], 
two from the hyperthermophilic archaea, Pyrococcus furiosus [57], and three from the thermophilic 
cyanobacteria Thermotoga maritima and Thermus thermophilus. Fourteen structures represent anabolic 
OTCases while the two structures from P. aeruginosa represent catabolic OTCases. The biological 
subunit of the anabolic OTCases from E. coli, M. tuberculosis, humans and sheep is a trimer while  
those of the catabolic OTCase from P. aeruginosa and the anabolic OTCases from the hypertherphilic 
P. furiosus and T. maritima are dodecamers, in which four trimers form a tetrahedron with the concave 
faces of the trimers facing outwards. However, the OTCase from the thermophilic T. thermophilus 
appears to be a trimer. Among mammals, four OTCase structures from humans [21,58–60] and one from 
sheep [61], have been determined. 

N-acetyl-L-ornithine transcarbamylase—Twelve structures of AOTCase from X. campestris were 
determined in complex with different ligands, including several structures of mutants [21,25,62], making 
AOTCase one of the best-characterized members of the transcarbamylase family. 

N-succinyl-L-ornithine transcarbamylase—Four structures of B. fragilis SOTCase have been 
determined in different liganded states and with various mutations [23,24]. 

Putrescine transcarbamylase—Five structures of PTCase from E. faecalis with and without ligands 
have been determined that provide significant insight into its structure, function and mechanism [29,30]. 

ygeW encoded transcarbamylase of unknown function—Four structures of E. coli and E. faecalis 
YTCase have been determined. Although the structures clearly demonstrate that CP is the substrate for 
carbamylation, the second substrate and thus the biological function of this protein remain unknown [32]. 

3. Sequences of Transcarbamylases 

In the NCBI genomic database, 13,608 bacterial, 533 archaeal, 30,677 fungal, two plant  
(Arabidopsis thaliana, Oryza sativa), two insect (Apis mellifers and Drosophila melanogaster), one fish 
(Danio rerio), one frog (clawed frog), one chicken (Gallus gallus) and nine mammalian (human, mouse, 
rat, cow, pig, dog, rabbit, guinea pig and chimpanzee) genomes are available for Blast searches of 
transcarbamylase sequences as of 2 January 2015. Two transcarbamylase sequences, one for ATCase 
and one for OTCase, are available for most species, including mammals. As indicated earlier, 
mammalian OTCase functions within the urea cycle, while ATCase is involved in the biosynthesis of 
pyrimidines. Mammalian ATCase sequences are usually fused to the sequences of CPS2 and DHOase 
to encode a polyfunctional protein termed CAD. Among invertebrates, most insects have ATCase, but 
do not have OTCase except for the honeybee, which has both anabolic and catabolic OTCases. Similarly, 
the nematode Caenorhabditis briggsae does not have an OTCase. However, the purple sea urchin does 
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have an OTCase. Other urea cycle enzymes, including N-acetylglutamate synthase and arginase have 
also been identified in this organism, suggesting that it may have a functional urea cycle. 

Most protozoa have only ATCase for synthesizing pyrimidines. However, five different 
transcarbamylase-like sequences from Trichomonas vaginalis G3 have been deposited in the database 
(XP_001315726, XP_001301097, XP_001326968, XP_1298740 and XP_1298741), none of which 
seems to be an ATCase. Two of them (XP_001315726 and XP_001301097) were annotated as OTCase, 
but have unusual DxxxSYH and NCLP motifs. Since no other genes in the arginine biosynthetic 
pathway, such as acetylglutamate kinase, argininosuccinate synthetase and lyase, were found, it is likely 
that these genes do not function as anabolic OTCases. Instead, enzymes for the arginine dihydrolase 
pathway, which converts arginine to ornithine with the generation of ATP, have been found, suggesting 
that these transcarbamylases likely function as catabolic OTCases [63]. The third sequence 
(XP_001326968) corresponds to YTCase, whose homologue sequence can be also identified in certain 
bacteria such as E. coli. The sequences XP_1298740 and XP_1298741 appear to be incomplete. If the 
stop codon TAA in XP_1298740 is changed to GAA for Glu, XP_1298740 and XP_1298741 will 
together encode a 417 amino acid full-length transcarbamylase that has 90.6% sequence identity to 
XP_00132968. It may be that the apparent stop codon is a sequencing error and that Trichomonas vaginalis 
G3 has two YTCases. 

Most plants have two transcarbamylases, OTCase and ATCase. However, two OTCase isoenzymes 
were identified in the leaves of Canavalia lineata. Both can effectively use ornithine or canaline as  
a substrate, but one has higher in vitro ornithine-dependent activity while the other has higher  
canaline-dependent activity [64]. The sequences of these isoenzymes are very similar with 70% sequence 
identity. Canaline and canavanine, which are guanidooxy analogs of ornithine and arginine, respectively, 
are both nitrogen storage molecules in plants and are synthesized from homoserine using enzymes 
involved in the arginine biosynthetic pathway [65]. In the pea (Pisum sativum L.), two ATCase isomers 
with 83% sequence identity were identified [66]. 

Most fungal genomes contain two transcarbamylases, one for OTCase, and the other for ATCase, 
which usually fuses to CPS2 via an inactive pseudo-DHOase domain, although classified as a bifunctional 
protein [67,68]. 

The number of transcarbamylase-like sequences in bacteria and archaea varies significantly,  
ranging from zero to six. Some bacteria, such as Helicobacter pylori, contain only one transcarbamylase 
sequence corresponding to ATCase, but others have more than four transcarbamylase sequences. Six 
transcarbamylase sequences have been identified in Nocardioides sp. (strain BAA-499), which is able 
to assimilate vinyl chloride. Among them, a significant number of sequences do not have essential  
motifs of known transcarbamylases. These sequences may encode novel transcarbamylases the 
biological functions of which are still unknown. 

The primary sequence alignment of selected transcarbamylase sequences from different members of 
the transcarbamylase family is shown in Figure 2. The greatest conservation across the superfamily is in 
three regions: the Fx(E/K/N/D/A/Q)xSxRT motif, the HPxQ motif and the HxLP motif. These three 
motifs define the common characteristics of the transcarbamylase family. Sequences in four loop 
regions, the 80’s loop, 120’s loop, proline-rich loop and 240’s loop, vary significantly among different 
transcarbamylase members. 
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Figure 2. Sequence alignment of Enterococus faecalis PTCase, Escherichia coli OTCase, 
Xanthomonas campestris AOTCase, Bacteroides fragilis SOTCase, E. coli ATCase and  
E. coli YTCase. Sequence encoding secondary structure elements (based on the E. faecalis 
PTCase structure) are indicated by boxes in yellow-green (β-strand) and red (α-helix). The 
conserved motifs, SxRT, HPxQ and HxLP across transcarbamylase members are indicated 
in blue. Nonconserved residues, which might be involved in binding substrates, are indicated 
in red. The 80’s, 120’s, proline-rich, 240’s and extra loops are boxed. 

4. Overview of the Structural Fold 

Despite functional variations across the transcarbamylase superfamily, the protein topology of the 
catalytic subunit is quite similar as shown in Figure 3. The subunit structures of all transcarbamylase 
members can be divided into two domains: the CP domain and the second substrate-binding domain. 
Both domains have an αβα structure with a parallel β-sheet in the center and α helices on both sides.  
The two domains are linked by two α helices (helices 5 and 12 in E. coli ATCase). The fold of the  
CP domain in all known transcarbamylases is virtually identical consisting of five central β strands 
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arranged in 1-5-4-2-3 topology. The five central β strands of the second substrate-binding domain of all 
transcarbamylases also have a common 8-7-6-9-10 topology. However, the second domains of ATCase, 
OTCase and PTCase are unknotted, while the second domains of AOTCase, SOTCase and YTCase 
contain a 31 trefoil knot. The knot in these proteins requires many residues (85 residues in AOTCase,  
70 residues in SOTCase and 124 residues in YTCase) at the C-terminal end to thread through the  
proline-rich loop [32] (Figure 3). The joint occurrence of the proline-rich loop and the knotted fold 
suggests that a proline-rich loop is a pre-requisite for knot formation. 

 

Figure 3. Ribbon diagram of the catalytic subunit of Escherichia coli ATCase, E. coli 
OTCase, Enterococus faecalis PTCase, Xanthomonas campestris AOTCase, Bacteroides 
fragilis SOTCase and E. coli YTCase. The ribbons are colored in rainbow from blue  
(N-terminus) to red (C-terminus). The bound substrates or inhibitors are shown in space-filling 
models. The 31 trefoil knots are formed by residues at the C-terminal end threading through 
the proline-rich loop (indicated by arrows) in AOTCase, SOTCase and YTCase. 

Although all members of the transcarbamylase family have a similar fold, each member has its own 
distinctive features. The 240’s loop, a major recognition site for the second substrate, has different 
conformations in different members of the family. YTCase, in particular, has two extra helices in its 
equivalent 240’s loop. AOTCase and SOTCase have extended 80’s and 120’s loops relative to the 
unknotted transcarbamylase members, ATCase, OTCase and PTCase. The 80’s and 120’s loops in  
E. coli YTCase are disordered, probably because substrates are not present. Based on the sequence 
alignment (Figure 2), the conformation of the 80’s loop in YTCase should be very similar to that of 
ATCase and OTCase, while the 120’s loop would be expected to be similar to that of AOTCase and 
SOTCase. YTCase also has extra helices at both its N-terminal and C-terminal ends. These helices sit 
on helix 1, forming a three-helix bundle. PTCase’s special feature is an extra long helix at its  
C-terminal end, which extends to cover helix 1 of the adjacent subunit (Figure 4). This feature appears 
to be important in stabilizing the catalytic trimer and preventing formation of a larger oligomer [29,30]. 

 



Int. J. Mol. Sci. 2015, 16 18844 
 

The basic catalytic unit for all transcarbamylase members is a trimer, even though most ATCases 
tend to form larger aggregates by fusing or binding to other enzymes with different catalytic activities. 
The trimer is shaped like a triangular cup with a radius of about 50 Å (Figure 4). The three N-terminal 
CP domains interact with each other close to the threefold axis, forming the bottom of the cup, while  
the three C-terminal domains protrude from the concave face to form the rim of the cup (Figure 5). In 
ATCase, OTCase, AOTCase and SOTCase, the N-terminal helix 1 (α1) which runs across helix 12 at 
about a 60° angle, forms the ridge of the convex face of the trimer. In PTCase, this helix is covered by 
the extra C-terminal helix (α13) from the adjacent subunit. In YTCase, two additional helices (α1′ and 
α13) sit on top of this helix. The 240’s loop, which is located at the concave face of the trimer, forms  
a cover that moves towards the active site during the catalytic reaction. In YTCase, because of the 
presence of two extra helices in the 240’s loop, the concave mouth is much smaller. 

 

Figure 4. Ribbon diagram of the catalytic trimer of Escherichia coli ATCase,  
E. coli OTCase, Enterococus faecalis PTCase, Xanthomonas campestris AOTCase, 
Bacteroides fragilis SOTCase and E. coli YTCase, viewed down the three-fold axis. 
Different subunits are shown in different colors (rainbow, green and magenta, respectively). 
The bound substrates or inhibitors are shown as space-filling models. 

5. Active Site and Substrate Specificities 

The active sites of all transcarbamylase members are located at the concave face of the trimer,  
in the cleft between the two domains and the interface between two subunits (Figures 4 and 5). Since  
the active site involves residues from two adjacent subunits, it is not surprising that a trimer is the  
basic catalytic unit. In the CP binding site, the SxRT motif provides a major recognition site for the 
binding of the phosphate moiety of CP, while the HPxQ motif is the major site of interactions with  
the carbamyl moiety. Even though the side-chains of the HxLP motif are not involved in direct 
interactions with the substrate, it maintains a characteristic conformation in which Leu is an outlier in 
the Ramachandran plot and the peptide between Leu and Pro is in a cis-conformation that helps orient 
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main-chain O atoms for substrate interactions (Figures 6 and 7). Since these main-chain O atoms  
interact with both substrates, they appear to play a critical role in bringing the two substrates together 
for the catalytic reaction. In addition to these three major motifs, all members of the transcarbamylase 
family have a conserved Arg in the β4 strand that is involved in binding CP (R141 in human OTCase, 
R105 in E. coli ATCase, R103 in E. faecalis PTCase, R112 in X. campestris AOTCase, R110 in  
B. fragilis SOTCase and R122 in E. coli YTCase). The 80’s loop from an adjacent subunit also  
provides one or two residues involved in CP binding. However, this residue varies among different 
transcarbamylase members, even within the same transcarbamylase family; for example, this residue is 
a His in human OTCase and a Gln in E. coli OTCase (Table 1). 

Table 1. Active site residues for various transcarbamylases. 

Protein CP-Binding Site The Second Substrate-Binding Site 

ATCase 
S52, T53, R54, T55, R105  
H134, Q137, P266, L267  

Ser80 *, Lys84 * 
R167, Q231, R229, L267 

OTCase 
S55, T56, R57, T58, R106  
H133, Q136, C273, L274  

R319, Q82 * 
N167, D231, S235, M236, L274 

PTCase 
S52, T53, R54, T55, R103  
H130, Q133, C269, L240  

R297, Q79 * 
Q164, D227, Y233, L240 

AOTCase 
S49, M50, R51, T52, R112  
H148, Q151, C294, L295  

R322, W77 * 
E144, K252, L295 

SOTCase 
S47, L48, R49, T50, R110  
H147, Q150, C274, L275  

R302, W75 
E142, K236, H176, R178, R278, L275 

YTCase 
S71, T72, R73, T74, R122  
H165, Q168, C330, L331  

K363, Q98 * 
Q160, K270, D124, S200, K203, L331 

DPTCase 
S50, T51, R52, T53, R100  
H128, Q131, D250, L251  

K278, Q76 * 
N159, T160, T211, R212, D250, L251 

DBTCase 
S57, T58, R59, T60, R108  
H135, Q138, D271, L272  

K299, Q84 * 
N166, T229, S233, M234, L272 

UGTCase 
S74, T75, R76, T77, R126  
H155, Q158, T298, L299  

S102 *, K106 * 
R189, S258, K261, T298, L299 

* The residue is from the adjacent subunit. The residues in italics fonts indicate they are suggested  
substrate-binding residues that have not been confirmed by crystal structures. 
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Figure 5. Ribbon diagram of the catalytic trimer of Escherichia coli ATCase,  
E. coli OTCase, Enterococus faecalis PTCase, Xanthomonas campestris AOTCase, 
Bacteroides fragilis SOTCase and E. coli YTCase, viewed perpendicular to the three-fold 
axis. Different subunits are shown in different colors (rainbow, green and magenta, 
respectively). The bound substrates or inhibitors are shown as space-filling models. 

In contrast to the conserved common CP binding site, different transcarbamylase members use 
different sets of residues to recognize their respective second substrates. In the unknotted group of 
transcarbamylases, the loop referred to as the 240’s loop in E. coli ATCase, which is equivalent to the 
SMG and 230’s loops in OTCase and PTCase, respectively, is involved in binding the second substrate. 
The RxQxER motif of the 240’s loop is found in all known ATCases. R229 and Gln231 of this motif in 
E. coli ATCase are directly involved in anchoring the β-carboxyl group of aspartate (Figure 6A). In 
addition to this major recognition motif, other residues such as R167 and K84 * from the adjacent  
subunit help to position the α-carboxyl group of aspartate. In OTCase, the SMG loop, which contains 
the DxxxSMG motif, is involved in recognizing the second substrate, ornithine [52,58] and D231, 
Ser235 and Met236 (E. coli OTCase numbering) are directly involved in binding ornithine (Figure 6B). 
Two additional residues, Asn167, and K53 in the FxKxSxRT motif, are also involved in binding 
ornithine. Even though K53 interacts with ornithine via a water molecule, this residue is quite conserved 
in OTCases, indicating the importance of this interaction. In PTCase, structure determination clearly 
revealed that D227 and Y233 from the equivalent 230’s loop and Q164, which hydrogen bonds to the 
amino group, directly shape the putrescine binding site with participation of E236 and H83 * from the 
adjacent subunit (Figure 6C) [29]. However, residues Y233, E236 and H83 * are not conserved in other 
PTCase sequences [30]. How different residues shape the putrescine binding site and whether other 
hypothetical PTCases with sequence variations are true PTCases remains to be established. 

The second substrate recognition site in the knotted transcarbamylases (AOTCase, SOTCase and 
YTCase) [21,24,32] appears to be different from the unknotted group (Figure 7). In these knotted 
transcarbamylases, the presence of the proline-rich loop prevents the significant movement towards the 
active site of the equivalent 240’s loop that is involved in binding the second substrate in the unknotted 
transcarbamylases. Therefore, there is only one conserved lysine at the beginning of the 240’s loop, 
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K252 in X. campestris AOTCase and K236 in B. fragilis SOTCase, that is involved in second substrate 
binding, in combination with the conserved glutamate residues, E144 in AOTCase and E142 in 
SOTCase. In B. fragilis SOTCase, the succinyl group of N-succinylornithine is anchored by three other 
residues: H176, R178 and R278 (Figure 7A,B) [24]. 

 

Figure 6. Stereo diagrams of the active sites of Escherichia coli ATCase (A); E. coli  
OTCase (B); and Enterococus faecalis PTCase (C). The residues involved in binding CP  
are shown as green sticks. The residues involved in binding the second substrate are  
indicated as yellow sticks. The residues from the adjacent subunit are indicated as cyan 
sticks. The bound substrates or inhibitor are shown as thick magenta sticks. The oxygen  
and nitrogen atoms are shown in red and blue sticks, respectively. The potential hydrogen 
bonding interactions are indicated by red dotted lines. 

The YTCase structure clearly revealed that the enzyme is able to bind CP since all the CP binding 
residues can be identified and are located in positions similar to other transcarbamylases [32]. The 
second substrate-binding site of YTCase has some similarities to those of AOTCase and SOTCase. 
Residues K270 and Q160 are located at positions similar to K252 and E144 in AOTCase, and K236 and 
E142 in SOTCase, in order to anchor the carboxyl group of the putative substrate. Other residues such 
as D124, S200, K203, D334 and E344 are located around this site and may also be involved in binding 
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this substrate (Figure 7C). The residue changes relative to SOTCase, (F112 to D124, W75 * to Q98 *), 
make the substrate-binding site of YTCase larger, more hydrophilic, and more negatively charged.  
Since YTCase likely functions as a catabolic transcarbamylase, whether the organisms that encode 
YTCase are able to use bulkier metabolites, such as citrulline-containing peptides as substrate, needs  
to be investigated. 

 

Figure 7. Stereo diagrams of the active sites of Xanthomonas campestris AOTCase (A); 
Bacteroides fragilis SOTCase (B); and Escherichia coli YTCase (C). The residues involved 
in binding CP are shown as green sticks. The residues involved in binding the second 
substrate are indicated by yellow sticks. The residues from the adjacent subunit are indicated 
by cyan sticks. The bound substrates or inhibitor are shown as thick magenta sticks. The 
residues in the original model (PDB code 3Q98) that are missing in YTCase were modeled 
based on OTCase Vibrio vulnificus (PDB code 4H31) and Enterococus faecalis YTCase 
(2YFK) using the IntFold server [69]. The CP and N-succinyl-L-norvaline in YTCase shown 
as grey sticks are not in the original model, but indicate the possible substrate binding site. 
The oxygen and nitrogen atoms are shown in red and blue sticks, respectively. The potential 
hydrogen bonding interactions are indicated by red dotted lines. 
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Even though the structures of DPTCase, DBTCase and UGTCase have not yet been determined,  
their models can be reliably built based on the structures of OTCase and ATCase because of their 
sequence similarity. These structural models suggest that the D250 residue within the HDLP motif 
(Saccharothrix mutabilis DPTCase numbering), which is a characteristic feature in DPTCase and 
DBTCase sequences [70], will likely interact with the α-amino group of the second substrate and  
residue R212 from the equivalent 240’s loop may be involved in anchoring the carboxyl group of  
that substrate. In a similar way, T298 from the characteristic H(T/S)LP motif of UGTCase  
(Rubrobacter xylanophilus UGTCase numbering) [31] is likely to form a hydrogen bond with the ureido 
N atom of ureidoglycine. The exact binding mode of the substrates for these transcarbamylases will  
require structure determination. 

6. Catalytic Mechanism and Domain Movement 

Binding of substrates and product release are believed to be ordered in all transcarbamylases. In the 
anabolic transcarbamylases, CP binds before the second substrate [71] while the catabolic enzymes bind 
the ureido-containing substrate before phosphate [32]. The forward reaction that transfers the carbamyl 
group of CP to the amino group of the second substrate is thermodynamically favorable. Direct  
attack of the carbamyl carbon of CP by the amino group of the second substrate to form reaction  
products via a tetrahedral intermediate is the common catalytic mechanism for all transcarbamylases. 
This tetrahedral intermediate model was first proposed for E. coli ATCase [72]. Both the main-chain  
O atoms of Pro266 and Leu267 and the side-chains of Arg105, His134 and Gln137 play an important 
role in stabilizing the tetrahedral intermediate. When the intermediate collapses upon product formation, 
a proton of the amino group of the second substrate is released. Three possible acceptors of the proton 
have been proposed: the leaving phosphate group [72], the side-chains of Arg105, or Lys84 * of the  
adjacent subunit. In OTCase, the structure of E. coli OTCase complexed with a natural inhibitor,  
Nδ-N′-sulfodiaminophosphinyl-L-ornithine models the tetrahedral intermediate. The main-chain O atoms 
of Cys273 and Leu274, together with the side-chains of Arg57, Thr58. Arg106, His133, and Gln136, 
participate in stabilizing the tetrahedral intermediate [53]. The proximity (3.1 Å) of the Nδ atom of 
ornithine to the O atom of the phosphate group is consistent with an intra-molecular proton transfer. 

Most structural studies of ATCase use the E. coli holoenzyme as a model, in which two ATCase 
catalytic trimers associate with three regulatory dimers to form a heterodimeric dodecameric  
structure [36]. Because of the restraints imposed by the regulatory subunits, the enzyme remains in the 
less active T (taut) state when CP binds, but the 80’s loop’s conformation changes bring S80 and K84 
into the active site [71]. Subsequent aspartate binding induces conversion of the enzyme from the  
T state to the more active R (relaxed) state, which involves an elongation of 11 Å along the three-fold 
molecular axis, a relative rotation of 12° between two catalytic trimers, and a rotation of 15° for each of 
three regulatory dimers around their two-fold molecular axes (Figure 8A,B). Aspartate binding also 
induces additional conformational changes in the 80’s and 240’s loops, and relative domain closure of 
8° between CP and aspartate domains. As a result, the two substrates are forced close to each other to 
lower the activation energy for the catalytic reaction. 

Since most OTCases consist only of a catalytic trimer, the substrate induced conformation changes 
are not restrained by the regulatory subunits. Therefore, CP binding appears to induce most of the 
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conformational changes of the equivalent 80’s loop and relative domain closure between CP and 
ornithine domains that accompany substrate binding. Ornithine binding induces the SMG loop (the 
equivalent 240’s loop) to swing into the active site and a small additional domain closure [60]. 

The proline-rich loop in members of the knotted transcarbamylase family prevents movement of the 
equivalent 240’s loop into the active site, making the conformational changes and relative domain 
movements of AOTCase associated with substrate binding much smaller (1.1°–2.2°) than those of the 
unknotted OTCase and ATCase [21,62]. 

 

Figure 8. Higher oligomeric structure of ATCase. (A) R-state of Escherichia coli ATCase 
showing the dodecameric structure with two catalytic trimers (shown in red, magenta and 
cyan) at the top and bottom, and three regulatory dimers (shown in grey and tints) in the 
equator; (B) T-state of E. coli ATCase; (C) Structure of Aquifex aeolicus ATCase in complex 
with dehydroorotase. Two catalytic trimers located at the top and bottom are completely 
separated by three dehydroorotase dimers in the middle. Left: viewed perpendicular to  
three-fold axis; right: viewed down 3-fold axis. 

7. Higher Oligomer Structure and Biological Significance 

Although the isolated ATCase trimer alone has catalytic activity, ATCase often complexes or  
fuses with other protein units to form higher oligomer structures in vivo. The most known and  
best-characterized example is E. coli ATCase, a whole holoenzyme that consists of two ATCase trimers 
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and three regulatory dimers (Figure 8A,B) [73]. This dodecameric structure is essential for the observed 
coupling of feedback inhibition and stimulation of catalytic activity by CTP and ATP, respectively. The 
higher oligomeric structure is also essential for cooperative substrate binding; the isolated catalytic 
trimer does not show cooperativity. Structural studies of ATCase by both X-ray crystallography and 
small-angle X-ray scattering (SAXS) clearly demonstrated that the ATCase holoenzyme has two 
different quaternary structures: the T and R states (Figure 8A,B). In the T state, the ATCase holoenzyme 
is constrained in its compressed quaternary structure with an open active site, low substrate affinity and 
low catalytic activity. Interactions between the two catalytic trimers and between catalytic chains and 
regulatory chains stabilize the T state. Substrate binding of both CP and aspartate shifts the structure to 
the R state with a closed active site and repositioning of the 80’s and 240’s loops, resulting in markedly 
increased substrate affinity and high catalytic activity. Nucleotide binding also alters the quaternary 
conformational structure of the enzyme by shifting the equilibrium between T and R states [74]. 

In the pyrimidine biosynthetic pathway of prokaryotes, the first three enzymes in the pathway are 
usually expressed by separate genes and function independently. In contrast, in mammals, these enzymes 
(CPS2, ATCase and DHOase), are fused together as a single polypeptide chain that self-associates to 
form a hexamer [75]. In A. aeolicus, ATCase and DHOase associate to form a dodecamer that has both 
ATCase and DHOase activities. The structure of the ATCase-DHOase complex reveals that the 
dodecamer is arranged in such a way that two ATCase trimers are located at the two polar ends with six 
DHOase subunits at the equator to form a hollow reactor with an internal reaction chamber that is about 
60 Å in diameter (Figure 8C) [50]. All twelve active sites face the central cavity that connects to the 
exterior through narrow channels. Like the dodecamer of E. coli ATCase holoenzyme, the two ATCase 
catalytic trimers of the ATCase-DHOase complex have their convex faces at the polar ends of the 
complex and their concave sides oriented towards the central cavity. However, the two ATCase trimers 
are separated completely by the six DHOase subunits, in contrast to the E. coli holoenzyme in which 
there are still some interactions between the two trimers. Three features of the novel quaternary  
structure of the A. aeolicus ATCase-DHOase complex are believed to promote its biological function. 
(a) Direct interactions between DHOase and ATCase activate DHOase; (b) Six protein subunits form  
a reaction chamber to promote efficient catalytic reaction; (c) Separation of charge between the inside 
and the outside of the reactor helps DHOase overcome the unfavorable kinetics of condensing  
carbamyl-aspartate into dihydroorotate. The A. aeolicus ATCase- DHOase complex has been proposed 
as a model of the core scaffold of CAD [50]. However, the recent structural determination of the DHOase 
domain of human CAD raises doubts as to whether this type of assembly is feasible in CAD [76]. 

Although most catalytically active OTCases are homotrimers, higher oligomeric architectures have 
been reported for OTCases from thermophilic bacteria and OTCases with catabolic function. The 
OTCases from thermophilic bacteria, P. furiosus and T. maritima, are dodecamers arranged as  
a tetramer of trimers with their concave sides outwards (Figure 9A) [57,77]. The dodecameric  
assembly was believed to confer thermal stability of these enzymes. However, not all OTCases from 
thermophilic bacteria are dodecamers. For example, OTCase from T. thermophilus is reported to be a 
trimer (PDB 2EF0). The OTCases that function as catabolic enzymes in vivo usually assemble as larger 
oligomers: dodecamers for catabolic OTCases from P. aeruginosa and M. panetrans, or hexamers for 
the catabolic OTCase from L. hilgardii (Figure 9B) [19,20,55]. The larger oligomeric architectures of 
catabolic OTCases create additional characteristics such as strong CP homotropic cooperativity, 
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allosteric inhibition by spermidine and activation by AMP [78]. The larger oligomeric assemblies of 
OTCase have two common features. (a) The concave sides of the trimer always face outwards, in contrast 
to the ATCase trimer in larger oligomeric structures; (b) The first helix on the convex side is involved 
in intertrimeric interactions [29]. There is a single report of the assembly of anabolic OTCase from 
Gleobacter violaceus as a hexamer (PDB 3GD5), but with concave sides facing inwards as in ATCase. 
However, the intertrimeric interactions are much weaker in this structure. Whether the biologically 
functioning unit is a hexamer in vivo remains to be established. 

 

Figure 9. Higher oligomer structure of OTCase. (A) Pyrococcus furiosus OTCase  
showing tetrahedral arrangement of four catalytic trimers with concave faces outward;  
(B) Lactobacillus hilgardii OTCase shown the hexamer structure with convex faces 
interacting with each other. Different catalytic trimers are shown in different colors. 

The functional unit of all other transcarbamylases is a homotrimer. This is expected for AOTCase 
and SOTCase since both of them play an anabolic role in the arginine biosynthetic pathway [21,24]. 
Even though PTCase and YTCase were proposed to play a catabolic role, both function as  
homotrimers [29,30,32]. Both PTCase and YTCase have one interesting common structural feature; the 
first N-terminal helix (the equivalent helix is the second helix in the YTCase structure because of the 
presence of an extra N-terminal helix) is covered by other helices. In PTCase, the characteristic  
C-terminal long helix (helix 13) covers helix 1 and it was proposed that a function of the C-terminal 
helix is to prevent the formation of a larger oligomer, since PTCase without the C-terminal helix will 
form a hexamer [29] or an even larger oligomer [30]. In YTCase, the equivalent helix is buried by the 
additional helices at both the N- and C-termini [32]. Whether or not the additional helices in YTCase 
play a role similar to the last C-terminal helix in PTCase is unknown. It would be interesting to know 
why these catabolic transcarbamylases develop mechanisms that prevent formation of higher oligomers. 

8. Annotation of Transcarbamylases 

The available structures of transcarbamylases demonstrate that SxRT, HPxQ and HxLP are common 
motifs involved in binding CP (even though some variations exist) and that these motifs are characteristic 
of all known transcarbamylases. Variations in four loops, the 80’s loop, 120’s loop, proline-rich loop, 
and 240’s loop, determine the specificity of the second substrate. 
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As discussed in the previous section, the transcarbamylases can be classified into two major  
structural groups, unknotted and knotted, based on their different folds, and two major functional  
groups, anabolic and catabolic, based on their different biological roles. The presence of a proline-rich 
loop seems to be a signature of knotted transcarbamylases. Furthermore, all currently known members 
of the knotted transcarbamylase group have the extended 120’s loop. Therefore, the presence of  
the proline-rich and extended 120’s loops can be used to distinguish knotted from unknotted 
transcarbamylases. Three members of the knotted group, AOTCase, SOTCase and YTCase, have  
been identified. The function of YTCase remains unknown, even though its structure has been  
determined [32]. Relative to AOTCase and SOTCase, the sequences of YTCase are longer with extra  
N-terminal and C-terminal helices, and an extended 240’s loop with two extra helices. However, the 
80’s loop in YTCase is shorter than those of AOTCase and SOTCase and does not have a Trp that is 
involved in binding the second substrate. Instead, its 80’s loop is similar to those of OTCase and PTCase 
with Gln98 to potentially bind the substrate. YTCase can also be distinguished from AOTCase and 
SOTCase on the basis of their location on the chromosome. Both AOTCase and SOTCase are anabolic 
enzymes involved in arginine biosynthesis and their genes are usually located in the arginine biosynthetic 
gene cluster while YTCase is proposed to be a catabolic enzyme whose gene is close to the carbamate 
kinase gene in most organisms [32]. Distinguishing between AOTCase and SOTCase is more difficult 
because of their close sequence similarity. However, both AOTCase and SOTCase structures with 
substrate bound have been determined and the key residues that define their substrate specificity are 
clearly defined. Three residues, Glu92, Asn185 and Lys302 (X. campestris AOTCase numbering) can 
be used to distinguish AOTCase from SOTCase since the equivalent residues are A/S/P/V/Q, P and 
V/I/E, respectively [25]. 

Among members of the unknotted transcarbamylases, phylogenetic analysis divides this group into 
two major branches, the ATCases and OTCases [79]. PTCase, DBTCase and DPTCase belong to the 
OTCase branch while UGTCase belongs to the ATCase branch. Of these enzymes, structures of ATCase, 
OTCase and PTCase have been determined. These structures clearly demonstrate that the 240’s loops is 
the major site providing the second substrate specificity. DxxxSMG and RxQxxER motifs from this  
loop can be used to distinguish OTCase and ATCase respectively from other transcarbamylases. Even 
though PTCase sequences show 40%–50% sequence similarity to those of OTCase, they do not contain 
a specific DxxxSMG motif in the 240’s loop. Instead, (Y/W)(G/W)(V/L/I)x from the equivalent loop 
has been proposed to be the PTCase-specific motif [29]. Another interesting feature of the PTCase 
primary sequences is that the residue in the third position of Fx(E/K/N/D/A/Q)xSxRT is Gln rather than 
Lys in OTCase or Glu in ATCase. Additionally, PTC sequences have approximately 20 more residues 
at their C-terminus relative to ATCase and OTCase. 

Although the structures of DPTCase and DBTCase are not available, it is expected that the 240’s loop 
will be involved in binding the second substrate in these enzymes because they belong to the unknotted 
transcarbamylase family. In this loop, the residues in the positions equivalent to the DxxxSMG OTCase 
recognition motif are (T/S)RWQTTG and TRWQSMG in DPTCase and DBTCase, respectively. The 
replacement of the conserved Asp residue in OTCase by Thr/Ser in DPTCase and DBTCase seems to be 
the key difference in distinguishing DPTCase and DBTCase from OTCase. Another key difference is 
the HxLP motif. The residue in the second position is Cys in most OTCases, whereas it is Asp in the 
DPTCase and DBTCase. The differences between DPTCase and DBTCase are less obvious; particularly 
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since the DBTCase has been identified in only one species, Streptomyces sp., RJA2928 [70]. Whether 
the slight differences between (T/S)RWQTTG and TRWQSMG at the fifth and sixth position can 
separate these two transcarbamylases is unclear. 

9. Future Outlook 

Technological advances now allow genome sequencing at a much faster pace and lower expense,  
and the number of protein sequences in the database has increased exponentially. Annotating these 
sequences with their correct functions is a significant challenge, particularly for transcarbamylases that 
display only subtle differences in their primary sequences. Furthermore, new members with novel 
functions remain to be investigated. The transcarbamylases are involved in a wide variety of biological 
processes; both anabolic and catabolic, and novel transcarbamylases not yet discovered may be involved 
in the synthesis of natural products. Bacteria also use various ureido-containing metabolites as their 
energy sources for the production of ATP from arginine and agmatine by catabolic OTCase and PTCase, 
respectively. The discovery of UGTCase revealed that in some bacteria, a metabolite in the purine 
degradation pathway could be used as an energy source [31]. It may also be possible that metabolites in 
pyrimidine degradation pathways can also be used as energy sources in some bacteria. The possible 
existence of a catabolic ATCase that uses carbamyl-aspartate as an energy source or of a catabolic  
β-alanine transcarbamylase that uses carbamyl-β-alanine as an energy source remain to be proven. For 
example, the genomes of some bacteria such as the Burkholderia genera have two ATCase sequences. 
Both have typical FxExSTR and RxQxER motifs characteristic of ATCase, but one has a shorter 
sequence (~340 residues) and an HPGP motif, and the other has a longer sequence (~430 residues) and 
an HPLP motif. Whether one of these proteins plays a catabolic role is unknown. Another interesting 
example is Trichomonas vaginalis G3, which lacks the ability to synthesize many essential building 
blocks for DNA and protein synthesis de novo, particularly purines, pyrimidines and arginine [80].  
T. vaginalis G3 obtains its energy source via fermentative metabolism under aerobic and anaerobic 
conditions. Four transcarbamylases in this bacterium most likely play a catabolic role in using  
ureido-containing compounds as an energy source to generate ATP in combination with carbamate 
kinase. These novel transcarbamylases could be targets for drug development against T. vaginalis G3  
if they are proven to be essential for survival. In T. vaginalis G3, the arginine deiminase pathway 
contributes about 10% to the organism’s total energy requirement [81]. Whether the YTCase related 
pathway provides additional energy remains to be established. 

Sequence similarities among different members of the transcarbamylase family provide many 
opportunities to alter substrate specificity, For example, the substrate preference of AOTCase and 
SOTCase can be switched by mutating a few key residues [25]. In a similar way, the substrate preference 
of PTCase can be changed from putrescine to ornithine by mutating the substrate recognition loop [29]. 
The discovery of several novel transcarbamylases further reveals that subtle differences in their primary 
sequences alter their substrate preferences. The substrate for UGTCase, ureidoglycine, differs in only 
two atoms from aspartate, the substrate for ATCase [31]. The substrates of DBTCase and DPTCase,  
2,4-diaminobutyrate and 2,3-diaminoprionate, have side-chains that are one or two carbons shorter  
than ornithine, the substrate of OTCase [33,34,70,82]. Therefore, it is possible to engineer extant 
transcarbamylase members for new biological functions. Since N-carbamylglutamate has been used as 
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a drug to replace N-acetylglutamate to activate CPS1 and restore urea cycle function in  
N-acetylglutamate synthase (NAGS) deficiency [83–87], it would be of great value to engineer an 
existing transcarbamylase such as ATCase to produce carbamylglutamate using a bacterial system. 
Furthermore, it might be possible to incorporate a gene to encode this novel transcarbamylase into  
human symbiotic bacteria such as Lactobacilli, already present in the small intestine [88], to allow for 
continuous generation of carbamylglutamate for NAGS deficiency patients. 
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